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Abstract

In the last decade, the rise of electric vehicles has brought benefits such as reduced reliance on fossil

fuels. However, the limited-range batteries and charging challenges have created the need for advanced

electric vehicle route planning. This thesis explores three different methodologies to solve the electric ve-

hicle route planning problem, minimizing both route duration and cost. The first methodology consists of,

a search-based approach utilizing the Dijkstra’s algorithm, to obtain the optimal path for our problem for-

mulation. The second methodology, consists of a Meta-heuristic approach utilizing a Genetic algorithm,

to obtain a close-to-optimal solution in a faster runtime. The third and final methodology, consists of a

reinforcement learning approach utilizing the Deep Q-Learning algorithm, to obtain a close-to-optimal

solution in real time. The experimental results obtained showed the capability of the Genetic algorithm

to obtain solutions with comparable quality to those achieved by Dijkstra’s algorithm, but with signifi-

cantly improved runtime efficiency. The results obtained from the Deep Q-Learning algorithm, although

underwhelming showed the potential of the algorithm utilization.
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Resumo

Na última década, a adoção dos veı́culos elétricos trouxe benefı́cios, como a redução da dependência

de combustı́veis fósseis. No entanto, a autonomia limitada das baterias e os desafios na recarga,

criaram a necessidade de um planeamento de rotas mais avançado para veı́culos elétricos. Esta

tese explora três metodologias diferentes para resolver o problema de planeamento de rotas para

veı́culos elétricos, minimizando tanto a duração da rota como os custos. A primeira metodologia con-

sistem, numa abordagem baseada em busca, utilizando o algoritmo de Dijkstra, para obter o cam-

inho ótimo para a nossa formulação do problema. A segunda metodologia consiste numa abordagem

meta-heurı́stica utilizando um algoritmo genético para obter uma solução quase ótima num tempo de

execução mais rápido. A terceira e última metodologia consiste em uma abordagem de reinforce-

ment learning utilizando o algoritmo Deep Q-Learning, para obter uma solução quase ótima em tempo

real. Os resultados experimentais obtidos demonstraram a capacidade do algoritmo genético de obter

soluções de qualidade comparável às obtidas pelo algoritmo de Dijkstra, mas com uma eficiência de

tempo significativamente melhor. Os resultados obtidos com o algoritmo Deep Q-learning, embora

menos impressionantes, demonstraram o potencial para a utilização do algoritmo.

Palavras Chave

Planeamento de Rotas para Veı́culos Elétricos, Dijkstra, Algoritmo Genético, Deep Q-Learning.
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1.1 Context and Motivation

In the last decade, the utilization of Electric Vehicle (EV)s has increased significantly [4]. With all the

advantages that EVs have brought especially in terms of their independence from fossil fuel, their limited-

range batteries have created a new constraint in Electric Vehicle Route Planning (EVRP). EV’s battery

sizes have been continuously increasing [1], as depicted in FIgure 1.1, to the point where they are now

capable of making long-distance routes without the constant need for charging [4].

Figure 1.1: Evolution of the battery capacity since the mid 80s until now [1].

However, due to the time associated with the charging of EVs, users tend to be overcautious about

their EV range, especially when performing long-distance routes. This compounded with the possible

waiting times due to the lack of infrastructure [5] shows the need for solutions for EVRP problems. In

addition to waiting times at charging stations due to rising electricity prices, EV users are increasingly

more interested in minimizing energy consumption and charging costs [6]. It has been concluded that, in

comparison with conventional route planning, EVRP is more challenging mainly due to the time variables

associated with EV charging such as the state of charge, the power of the charging station and the

occupancy state of the charging station [7], [8]. This routing problem also becomes more complex when

taking into consideration the different charging costs of charging stations and the possibility of prioritizing

charging costs and energy consumption over route duration.

With this context in mind, the focus of this work is to explore the different algorithms capable of finding

the optimal route from a starting location to a goal location in a manner that optimizes both time and

cost. Our specific goal is to find the necessary charging stations in which to make a charging operation,

3



in order to achieve our final location. To find the correct charging stations, our algorithm needs to be able

to select the best charging stations to achieve our cost and time minimization goal, on the characteristics

of the charging stations such as location, charging cost, and charging power. By leveraging these station

characteristics, the algorithm should be able to find the route that achieves the best balance between

route duration and route cost.

1.2 Problems and Objectives

The main purpose of this master thesis is to develop a methodology that allows choosing an optimal EV

route in order to minimize energy consumption, charging cost, and route duration. More specifically, we

want to implement an algorithm that from the characteristics of the road network and charging infras-

tructure is able to find the fastest route in terms of driving time and charging time while minimizing the

cost of charging. In order to fulfill this objective, the following research question must be answered:

• How to design an optimization algorithm that is able to find the fastest route in terms of driving time

and charging time while minimizing the cost of recharging?

• What are the most adequate optimization algorithms for EVs routing problems?

1.3 Related Projects and Scientific Outputs

The work carried out as part of this thesis was developed under the scope of the following research

project:

• Horizon Europe EV4EU – Electric Vehicles Management for carbon neutrality in Europe, funded

by the European Union under grant agreement no. 101056765. Views and opinions expressed are

however those of the authors only and do not necessarily reflect those of the European Union or

CINEA. Neither the European Union nor the grating authority can be held responsible for them.

1.4 Outline

This document is structured as follows. The present chapter introduces the primary motivation and

contributions of this thesis.

Section 2 presents some background on the definition of graph search, the shortest path problem,

and the algorithms used to solve it.

Section 3 explores the advantages and disadvantages of the different current approaches to EVRP

and an explanation of their methodology.
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Section 4 gives a formulation for the routing and charging problem proposed for this thesis and

explains the methodology that will be used to solve the optimization problem.

Section 5 presents the results obtained from the experimental setup.

Finally, in Section 6 we present the final conclusions achieved from this work and present insights

into possible future work to be explored.
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To better understand the formulation of the electric vehicle route planning problem and its solution, in

Section 2.1 and 2.2, its analyzed the fundamentals of graph theory and the shortest path problem, and

the most used algorithm to solve shortest path problems such as our route planning problem. Section

2.3 details the fundamentals of Meta-heuristic algorithms and most in-depth the fundamentals of genetic

algorithms. Section 2.4 and 2.5 presents the concepts necessary to understand and apply reinforce-

ment learning approaches to electric vehicle route planning, and the most applicable algorithms to this

problem.

2.1 Graph Theory

Graph theory consists of the study of the relationship between edges and vertices. A graph G = (V,E)

consists of a finite set V of vertices and a finite set E of edges. In an edge(x, y) ∈ E directed from the

vertex x to the vertex y, the vertex x is called the tail of the edge, and the vertex y is the head of the edge.

A path consists of a sequence of vertices connected by edges, i.e. in G = (V,E), P is a path if for

the sequence of vertices (u1, u2, ..., uk) ∈ V , the edge e(ui−1, ui) ∈ E (where 1 < i < k). Given two

vertices us, uF ∈ V uF is called reachable if a path P = (us, ..., uF ) starting in the vertex us and ending

at vertex uF exists in G.

If a weight is associated with an edge e ∈ E by the weight function ω, then the weight of a given

path P = (u1, ..., uk) is defined by the sum of the weight associated with the edges e(ui−1, ui) ∈ E

(where 1 < i < k) i.e., ω(P ) =
∑k

i=1 ω(e(ui−1, ui).

Given a vertex uS , a vertex uF , and the path P starting at us and ending at uF , the weight of P is

called the distance between uS and uF . In the case where an edge e ∈ E has ω(e) < 0 then ω(P )

can be also negative. If there is no path P between two vertices then the distance between those two

vertices is infinity. In the case where for any edge e ∈ E, ω(e) ≥ 0 there is at least one path P between

vertex uS , a vertex uF with the smallest path weight. This path P is the shortest path between uS and

uF .

2.2 Shortest Path Problem

The shortest path problem consists of several problems associated with the computation of the shortest

path between two given vertices in a given graph.

The problems we are going to focus on mainly in this thesis are:
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• The Single Pair Shortest Path (SPSP), which consists of finding the path P between the source

vertex uS and the target vertex uT with the smallest path weight;

• The Single Source Shortest Path (SSSP), which consists of finding the paths from a source vertex

uS with the smallest path weight to the all other vertices in the graph.

In order to solve these problems, multiple algorithms have been developed, being the most predom-

inantly used the Dijkstra’s algorithm, the Bellman-Ford algorithm, and the A* algorithm.

2.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is one of the widely used algorithms to solve SPSP and SSSP in a directed graph

with only positive edge weights. The algorithm was first published by Edsger Dijkstra in 1959 [9]. The

algorithm receives as input a directed graph, an edge weight function ω −→ R+
0 , and a source vertex.

The output of the algorithm is the shortest path tree from the source vertex to all the other vertices in the

graph, with this shortest path tree we are able to obtain the shortest path and distance value from the

source to any given vertex of the graph.

Algorithm 1 Dijkstra’s algorithm
Input: graph G(V,E), weight function ω , source vertex s ∈ V
Output: Shortest path from s to all other vertex

for u ∈ V do
dist(u) = ∞
prev(u) = null dist(s) = 0

add u to Queue
while Queue is not empty do

remove u from Queue
for all edges(u, v) ∈ E do

if dist(v) > dist(u) + ω(u, v) then
dist(v) = dist(u) + ω(u, v)
prev(v) = u

The algorithm works by maintaining a set of distances for each node in the graph. These distances

represent the shortest known distance from the source node to that node. The algorithm initially sets all

distances to infinity, except for the distance to the source node, which is set to zero. It then repeatedly

selects the node with the smallest distance and updates the distances to its neighbors. This process

continues until all nodes in the graph have been processed, at which point the algorithm has calculated

the shortest distances from the source to all other nodes. Adaptations of this algorithm can be seen

used in [8,10] to solve EVRP.
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2.2.2 Bellman-Ford Algorithm

The Bellman-Ford algorithm [11] like Dijkstra’s algorithm is widely used to solve SPSP and SSSP in a

directed graph with the advantage over the Dijkstra algorithm of also working with negative edge weights

but at the cost of not being as fast as Dijkstra’s, which leads to the algorithm only being preferred in

graphs with negative edge weights.

Algorithm 2 Bellman-Ford algorithm
Input: graph G(V,E), weight function ω, source vertex s ∈ V
Output: Shortest path from s to all other vertex

for u ∈ V do
dist(u) = ∞
prev(u) = null dist(s) = 0
for V - 1 times do

for all edges(u, v) ∈ E do
dist(v) = min{dist(v),dist(u) + ω(u, v)}

In [12] we see the authors use the Bellman-Ford algorithm to solve their EVRP formulation due to

the existence of negative weighted edges.

2.2.3 A* Algorithm

The A* algorithm [13] is an extension of Dijkstra’s algorithm through the use of a heuristics function the

algorithm is able to find the shortest path to a given vertex faster than Dijkstra’s algorithm. In [7] we can

see the use of the A* algorithm to accelerate the shortest path search for their electric vehicle route.

A* works by maintaining a priority queue of nodes that need to be visited. The priority of a node

is determined by a heuristic function, which estimates the cost of the cheapest path from that node to

the goal. When the algorithm is run, it initially adds the start node to the priority queue, and then it

repeatedly extracts the node with the lowest priority from the queue and processes it.

Processing a node involves expanding it to its neighbors, which are the nodes that can be reached

from the current node with a single edge. For each neighbor, the algorithm calculates the cost of the

cheapest path from the start to that neighbor, which is the sum of the edge weights along the path. The

algorithm then updates the priority of the neighbor based on the cost and the heuristic estimate and

adds it to the priority queue. This process continues until the goal node is reached or there are no more

nodes in the queue to process.

2.3 Meta-Heuristic Algorithms

Meta-heuristic algorithms are a set of problem-solving algorithms that unlike exact algorithms instead of

finding the optimal solution no matter the time and computational cost this algorithm focus on obtaining
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a close to optimal solution at a better time a computational cost. These algorithms are very useful

in applications where obtaining a solution quickly is more valuable than obtaining the optimal solution.

Some examples of this algorithms are:

• Genetic algorithms: These algorithms are inspired by the idea of natural selection. The algorithm

creates a population of possible solutions, and by applying genetic mechanisms to the members

of the population with the highest fitness, the population evolves to have a population of better

solutions.

• Ant Colony Optimization: This algorithm is based on the search behavior of ant colonies. The

algorithm creates a population of artificial ants to explore solution paths.

• Particle Swarm Optimization: This algorithm is based on the social behavior of animals that partic-

ipate in large groups such as fish. The idea is for each particle to move through the solution space

adjusting its trajectory based on its own experience and the experience of the other particles.

2.3.1 Genetic Algorithms

Genetic algorithms are a problem-solving algorithm that works based on the idea of natural selection

and evolution. The basis of the algorithm is to create a population of possible solutions and assign them

a given fitness value depending on their performance for the given problem. By assigning a greater

likelihood of being used to generate a new generation to the best-fitting solutions, the algorithm evolves

to create better solutions with each generation.

The Genetic algorithm is characterized by representing the problem solution as a chromosome where

parts of the solution can be separated into genes in order to apply mutation and crossover mechanisms

to these chromosomes.

These mutation and crossover mechanisms are the key mechanisms that prevent the algorithm from

converging in local minimums and allowing close to optimal solutions to be found. The crossover mech-

anism is the mechanism that combines the chromosomes from two different solutions in order to create

a solution with the best parts of both solutions. The mutation mechanism is the mechanism that allows

the introduction of new solution paths to the algorithm by changing part of a solution´s chromosome with

new genes.

2.4 Markov Decision Process

Markov Decision Process (MDP) is a mathematical framework for modeling decision-making. A Markov

decision process is defined by a set of states and actions. These actions allow for the transitions between
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states and the outcome of these transitions allows us to evaluate these state-action pairs. In an MDP an

agent in, a given state, at a given time has a set of actions that can be performed based on its current

state and goal. By taking an action, the state of this agent changes to a new one, a reward is given

to the agent based on this action which could be positive or negative. The goal in an MDP is to find a

policy, which is a set of rules that the agent can follow to maximize the expected reward over time.

2.5 Reinforcement Learning

Reinforcement learning is a field of machine learning that focuses on training an agent by rewarding

(and punishing) the agent depending on the actions taken, in other words, is learning to act by trial and

error. In reinforcement learning, every time an action is performed by an agent in a given state, reward

is given to the agent and the goal of the agent is to maximize the sum of the reward.

Reinforcement learning, in contrast with supervised learning does not need labeled training to be

trained to learn the correct behavior, but instead, the training process rewards the model when it acts as

intended and punishes it otherwise. In this aspect, reinforcement learning is more similar to biological

learning where learning comes from rewards and punishments from trial and error.

Reinforcement learning algorithms can be divided into two categories, model-based, and model-free

algorithms. In model-based algorithms, as the name suggests, the agent models its environment and

from this model predicts future rewards without needing to perform those future actions. Model-free

algorithms, in contrast, do not need a model of the environment of the agent and can only know the

reward of a given action by performing it, this means that model-free algorithms will repeat the same

actions multiple times updating their action-taking strategy based on the outcome of their actions, to

maximize rewards.

There are multiple reinforcement learning algorithms that have been developed over the years, being

the most commonly used:

• Q-Learning: This algorithm is based on the idea of learning an optimal action-value function, which

estimates the expected reward for taking a particular action in a given state. Q-learning uses an

iterative update rule to improve the estimates of the action-value function over time.

• Deep Q-Learning: This algorithm is a variant of Q-Learning that uses deep neural networks to

approximate the action-value function.

• SARSA: This algorithm is similar to Q-learning, but it uses an on-policy learning approach, which

means that the agent’s behavior is based on its current policy.

• Actor-Critic: This algorithm consists of two neural networks, the actor and the critic, where the

actor-network, learns to take actions, while the critic network learns to evaluate the actions taken
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by the actor. The critic network then provides feedback to the actor-network, which helps it to learn

to take better actions over time.

• Policy Gradient Methods: these algorithms optimize a policy by making small changes to it at each

time step in the direction that increases the expected reward, as estimated by the gradient of the

expected reward with respect to the policy parameters.

For our approach, we are going to focus on the Q-Learning and Deep Q-learning algorithms that

due to it being a model free Reinforcement Learning (RL) algorithm which is necessary for a complex

environment like ours, where it is difficult to obtain a reliable model, and due to its trial and error learning

approach that helps to deal with the complexity and unpredictability of the interaction of our agent and

its environment.

2.5.1 Q-Learning (QL)

Q-Learning [14] is a model-free, policy-free reinforcement learning algorithm. This algorithm aims to find

the best action the agent can perform for a given state. The Q-learning algorithm is considered off-policy

for being able to learn from taking random actions, making the need for a policy not necessary. The way

the algorithm works is by having a quality function for every state-action pair the agent can perform, by

exploring the environment, the model updates this quality function with the reward obtained from each

action performed by the agent for a given state. Given enough training, the Q-learning algorithm is sure

to converge to an approximation of the best action-value function for a given goal.

2.5.2 Deep Q-Learning (DQL)

Deep Q-Learning is a deep reinforcement learning algorithm that picks up on the concepts of Q-learning

but uses a deep neural network to approximate the Q-function. In traditional Q-learning, the Q-function

is typically represented as a table of state-action values. This can be impractical for large or continuous

state spaces because the size of the table grows exponentially with the number of states and actions.

Deep Q-learning addresses this problem by using a neural network to approximate the Q-function. The

neural network takes as input the current state of the environment and outputs a predicted Q-value for

each possible action. The Q-values are then used to choose the next action in the same way as in

traditional Q-learning.

Due to its complexity EVRP is impractical to solve with a look-up table of state-action and therefore

the use of neural networks to compute the state-action values is necessary. In [15–17] we see the use

of neural networks to improve the Q-learning algorithm with positive results

One of the key challenges in using deep Q-learning is that the Q-function is not differentiable, which

means that standard backpropagation cannot be used to train the neural network. Instead, the network
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is trained using a variant of stochastic gradient descent called the Q-learning update rule. This update

rule adjusts the network weights to minimize the error between the predicted Q-values and the target

Q-values, which are the expected rewards of taking each action in the current state.

2.5.3 Dueling Network Deep Q-Learning (DNDQL)

The Dueling Network DQL [18] is a variation of the DQL algorithm that was created to improve the effi-

ciency and effectiveness of deep Q-learning, particularly in situations where it is challenging to estimate

the values of different actions accurately. The main difference between DQL and DNDQL is the Q-value

estimation. While DQL uses a neural network to estimate its Q-values, the DNDQL decomposes the

Q-value of a state-action pair into two components:

• State Value: which estimates the value of being in a particular given state.

• Action Advantage Value: which estimates the advantage of taking each possible action in the given

state, capturing the difference in expected rewards between different actions in the same state.

This decomposition improves the algorithm’s learning efficiency and can lead to more stable and

faster convergence for reinforcement learning tasks in complex environments.
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Since the focus of this thesis is on the optimal routing of electric vehicles considering the state of

charging stations, Section 3.1 explores the use of search-based and heuristic-based solutions to Electric

Vehicle Routing and Charging (EVRC). In section 3.3 it is analyzed the use of reinforcement learning

in EVRC. Section 3.4 explains the use and importance of realistic parameterization of EV consumption

and charging characteristics.

3.1 Conventional Search-based Approach to EVRP

The classical approach to this EV route planning is by using graph search algorithms such as Dijkstra,

Bellman-Ford, and heuristic accelerated search algorithms such as A-star [3,7,8,10,12]. These search

algorithms are single-label algorithms but they can be adapted to have a label set for each vertex and

therefore tackle multivariable problems like EVRC. In [12] the authors use an adaptation of the Bellman-

Ford algorithm to optimize EVRC taking into account the energy consumption of the EV depending on its

velocity, and in [8] the authors use an adaptation of Dijkstra’s algorithm to minimize not only travel time,

but also, the cost of energy recharging. Some authors also used heuristic accelerated algorithms [3,7],

which prove to improve the runtime in comparison to normal search-based algorithms. To use these

algorithms to solve our EVRP problem, the road network is converted into a graph network where the

charging stations are nodes that make part of the graph. This algorithm requires, however, some pre-

processing, as converting the entire road network into a graph is inefficient and makes the algorithm’s

runtime significantly worse, therefore, by only converting a small part of the road network, the part

where we are most likely to find our solution, we can speed up the algorithm runtime and diminish the

complexity of the system [7]. This pre-processing of the road network appears to be a good solution for

short routes in small road networks where it is possible to find the sample of the road network where the

optimal or close to optimal solutions will be. When scaling the problem to long-distance routes due to

the complexity of the graph problem and the runtime of the algorithms being directly tied to the number

of nodes in the graph i.e. to the size of the route, these algorithms become unsuited as the runtime is

either excessive or the sample of the road network is too small to obtain a meaningful solution.

3.2 Meta-Heuristic Algorithms in EVRP

One of the major shortcomings of the classical SPSP algorithms, like Dijkstra, is their time complexity

being exponential, which means that for graphs with a large number of nodes, their runtime increases

significantly making these algorithms less suited for these graphs. To solve this problem, meta-heuristic

algorithms such as Genetic Algorithm (GA), have been used to solve EVRP. Meta-heuristic algorithms

manage to solve these search problems in a more reasonable runtime than algorithms like Dijkstra.
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They achieve this by returning a near-optimal solution instead of the optimal solution in a much faster

runtime. Due to this, these algorithms can be incredibly useful in use cases where runtime is more

important than optimality. In [19] the authors use a genetic algorithm to route electric delivery vehicles

to distribute cargo throughout multiple sites. In their implementation of the genetic algorithm, they used

the order of sites to visit as its chromosome. In their problem, Shao et al. [19] want to minimize the

monetary cost associated with these routes. To achieve this they use the direct monetary characteristics

of the route, such as the charging cost, and convert the non-monetary characteristics of the route by

associating a monetary cost for the distance traveled and the time charging and loading the vehicle.

Shao et al. [19] applied their methodology to a discrete representation of a realistic road network in the

Beijing urban area. They concluded that ”The results indicate that the GA yields acceptable performance

on computational time, convergence, and solution quality. ” [19]. In [20], the authors used a variation of

the Genetic algorithm called the re-insertion Genetic algorithm to optimize the route of electric delivery

vehicles to distribute cargo to multiple clients. The algorithm used in [20], differs from the normal Genetic

algorithm by first using a nearest neighbor-like mechanism to generate the initial population, which

proves to obtain faster converging time in comparison to a random generation process. The algorithm

also changes the mutation process of the genetic algorithm, by instead of using a random process to

create the mutations in the chromosome, the algorithm uses a function to determine the correlation

between stops and removes and reinserts in a different order the stops with the highest correlation

between them. This methodology speeds up the convergence of the algorithm due to focusing on

changing the segments of the chromosome that might impact its performance the most. C. Li et al. [20]

like [19] uses the order of stops the vehicle needs to make to complete its route as the chromosome.

Their fitness is calculated as the inverse of the sum of the cost of the energy consumed, the charging

cost, and a cost associated with time window penalties(taking more than the defined time to complete

the route). To evaluate the performance of their algorithm, C. Li et all. [20], apply their algorithm in the

New York apple production area and use the algorithm to visit multiple apple producers in a given time

window. From their results, the authors concluded that not only the algorithm proved to achieve good

results performing the task, but also outperformed classical implementations of the Genetic algorithm in

terms of convergence speed and performance. In [21], the authors use a type of evolutionary algorithm

called Differential Evolution (DE) to solve the route and charge schedule of a EV transport shuttle in

an airport area. The DE algorithm uses the same genetic operators selection, crossover, and mutation

as the GA, but applies them in a different order. The algorithm starts by creating new chromosomes

from the previous generation by mutating them and applying the crossover mechanism between these

new chromosomes. After creating this new population, only then it selects the chromosomes that have

the target fitness for the new generation. Similar to the other implementations in [21] the chromosome

consists of the sequence of locations the transport EV needs to travel to complete its route. Barco et
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all. [21] compare the results obtained from their algorithm to the results obtained from a GA, and their

results show the DE was capable of achieving a significantly faster convergence time with a performance

very close to the GA.

3.3 Reinforcement Learning in EVRP

In recent years, in order to overcome the problems derived from classical SPSP algorithms and meta-

heuristic-based algorithms, reinforcement learning algorithms have been used to solve EVRP. In [15]

the authors use DQL to optimize the route of multiple EV’s to charging stations in order to minimize

waiting times and traffic. This centralized control is applied in a small network where the state of roads,

charging stations, and EVs is known which makes the algorithm obtain good results in reducing traffic

and waiting times in charging stations and shows promising results at dealing with the uncertainty as-

sociated with realistic traffic behaviors. In [16], it is proposed a similar approach to optimize the route

of EVs to charging stations but instead of multiple vehicles, the authors focus on a single vehicle to

charging station routing, by not controlling the parameters of the entire network, the authors implement

a feature extraction mechanism in order to adapt to traffic conditions, charging station waiting times, and

energy prices. In this paper, we can also see that this approach obtained good results in minimizing the

recharging cost associated with the trip. In [17], the author uses a dueling Deep Q-Learning algorithm

to optimize the route of an electric vehicle to its final goal. The use of DNDQL shows to be useful to

better evaluate the quality of different actions that lead to similar rewards. The approach on [17] is more

suited to EVRC having similar goals to the approaches presented in Section 3.1 but without the scaling

downsides associated with search-based approaches. In [15, 16], is proposed the use of RL applied

with great success to small local networks which although presenting great results do not deal with long-

distance routes with multiple recharges where these algorithms are most useful. In [16], the minimization

of recharging cost shows great results, which entails that the minimization of recharging cost applied to

an approach similar to the one in [17] can lead to an even better level of route optimization.

3.4 EV Consumption and Charging

The introduction of more realistic models of the physical characteristics of EVs was first introduced by

Zundorf [22]. Zundorf, instead of using a linear relationship between charge percentage and charging

time, and like some other authors assuming that all the recharging actions were full recharging, used a

charging curve composed of multiple linear functions to approximate the realistic charging curve between

charge percentage intervals. In an EV charging curve, we can observe that from 0% to 80% the charging

curve behaves very linearly, but for the last 20%, this curve stops being linear due to the decrease in
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input current in order to protect the battery. Due to this, for this last 20%, Zundorf divides into intervals

from 80% to 90%, and from 90% to 100%, using a different linearization for each interval. Since the

publication of [22], most research in EVRC has taken into consideration some kind of realistic charging

curve, in [8] the EVs are constrained to charging to a maximum of 80%, in order to only deal with

the linear part of the charging curve. In Figure 3.1, we can see that the authors in [2] used a piecewise

linear approximation for different types of charging stations, and in Figure 4.10, we can see the approach

used in [3] where the authors divide the charging curve into two charge percentage intervals, from 0 to

80% and from 80% to full charge. They then from data collected from the charging of an EV, make a

linear regression to obtain the curve for the first interval. For the second interval, instead of a second

linearization, they make a polynomial regression. By using a polynomial regression for the last charge

interval, the authors don’t need multiple linearizations to describe the charging curve correctly, as the

charging curve closely resembles a polynomial function at this charge percentage. In [7], the authors use

the normal values of current and voltage in the charging of a lithium-ion battery to obtain their realistic

charging model.

Figure 3.1: Piecewise linear approximation for different types of CS charging an EV with a battery of 16 kWh used
in [2].
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Figure 3.2: Charging curve used in [3].

Some authors have also used the relationship between an EV’s velocity and its energy consump-

tion to reduce the total energy consumption, increasing the distance the EV can last without needing to

charge, and even reducing Electric Vehicle Charging Station (EVCS) waiting times. In [12], the authors

use a realistic model of the forces applied to the vehicle during motion, to forecast the energy consump-

tion of the EV for different velocities. With this forecast applied to their algorithm, the obtained results

show that by driving at a slower speed to conserve energy, the total route time ends up being lower due

to avoiding extra charging stops. In [7], the authors analyze the energy consumption/speed curve of two

real-life electric vehicles, a Renault Zoe and a Tesla Model S, and find a function that best approximates

the consumption curve of these vehicles. From this curve, and due to the use of their database to know

how long the EV will have to wait at the charging station, the algorithm can choose a route with a speed

that minimizes energy consumption and uses the time the EV would be waiting in the charging station.

3.5 Summary of Literature Review

From the analysis of the literature reviewed throughout this section, we can notice that the problem of

electric vehicle route planning, from a start location to a target location, with multiple charging operations,

is mainly solved with classic search-based algorithms that, although optimal, require large amounts of

computing runtime and processing power. This leads them to be unsuited when scaling this problem to

larger road networks. From the literature focused on the use of reinforcement learning, we can observe

that the results obtained from its use in small networks that optimize multiple criteria, most importantly

the cost of the charging operation, are very promising [15, 16]. Although these papers only focus on

current location to single charging station routes, it can be observed in [17], the use of reinforcement

learning for electric vehicle route planning, from a start location to a target location, with multiple charging

operations, but with a reduced set of optimization goals, most notably the optimization of the charging
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cost from charging stations with different associated charging prices. With all this, we can find a lack of

literature in large road networks electric vehicle route planning, from a start location to a target location

with multiple charging operations, that not only optimize route duration and energy spent but also the

cost of the multiple charging operations.

Table 3.1 presents a comparison of the different objectives and challenges observed in the papers

reviewed in this section, and the algorithms used to solve them.

Table 3.1: Summary of literature review.

Ref objective methodology missing

[15]
Centralized EV routing to

charging station to minimize
traffic and waiting times.

RL
DQL

Only solves small local routes to CS.
It does not account for CS energy price.

Does not take into account mid-travel charging.

[16] Single EV optimal route to
charging station taking into

RL
DQL

Only solves small local routes to CS.
Energy prices are an approximation.

Does not take into account mid-travel charging.

[17] Single EV optimal route to
final destinantion

RL
DDQL Does not take into consideration CS energy price.

[19] Single delivery EV optimal
route through predefined stops Genetic algorithm Does not solve large distance routes.

[20]
Single delivery EV optimal

route through predefined stops

Re-insertion
Genetic algorithm

Focus on the cost of the energy spent during the
route.

Does not diferentiate charging stations.

[21]
Centralized delivery EV optimal

routing through predefined stops
Differential Evolution only solves small routes around case study area.

Only optimizes routes duration

[12]
Single EV optimal route to final

destination using realistic energy
consumption and realistic charging

Adapted
Bellman-Ford

Need of historical data for speed prediction.
Difficulty scaling due to graph size complexity.
Does not take into account CS energy prices.

[8]
Single EV optimal route to final

destination using day ahead
energy pricing.

Dynamic
programming

Adapted Dijkstra´s
algorithm

Need of historical data for speed prediction.
Difficulty scaling due to graph size complexity.

Day-ahead energy pricing works well for private
CS but not for public ones.

[10] Centralized EV routing using
mobile charging stations.

Dijkstra´s
algorithm

Requires mobile charging stations that follow
predetermined routes.

Only solves local routes.
Does not take into account CS energy prices.

[3]
Single EV optimal route to final

destination using realistic
charging.

A* algorithm
Difficulty scaling due to graph size complexity.

complexity.
Does not take into account CS energy prices.

[7]
SIngle EV optimal route to final

destination using centralized
Database.

A* algorithm

Difficulty scaling due to graph size complexity.
Need for a centralized database to obtain

predicted waiting times of each CS based on
historical data.

Objective methodology

This
Thesis

Single EV long distance optimal
route and charging using real

charging station data

Djikstra’s
vs

Genetic algorithm
vs

RL DDQL

24



4
Methodology

Contents

4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Environment Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Electric Vehicle Route Planning using Dijkstra . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Electric Vehicle Route Planning using GA . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Electric Vehicle Route Planning using RL . . . . . . . . . . . . . . . . . . . . . . . . . 40

25



26



4.1 Problem Formulation

In the Section 4.1a, is presented the Formulation for our route and charging optimization problem in

a mathematical formulation based in the formulation for electric vehicle route and planning formulated

in [10,16,17], where all the variables are defined in Table 4.1.

Table 4.1: Formulation Variables.

Symbol Description unit

V Set of nodes
s Starting node
g Goal node
(i, j) Path between node i and node j
tdij Drive time between node i and node j hour
tcj Charging time of charging operation in node j hour
ccj Charging cost of charging operation in node j Euro C
xij Binary decision variable to identify selected route 0-1
yj Binary decision variable to identify selected charging station 0-1
γ Multi-objective optimization weight

minimize
∑

i,j∈E,i̸=j

[
(ccjyj)γ + (tdijxij + tcjyj)(1− γ)

]
(4.1a)

subject to
∑

xsj −
∑

xjs = 1 ∀j ∈ V, (4.1b)∑
xgi −

∑
xig = −1 ∀i ∈ V, (4.1c)

xij − yj ≥ 0 ∀(i, j) ∈ V, (4.1d)

xij = {0, 1} ∀(i, j) ∈ V, (4.1e)

yj = {0, 1} ∀j ∈ V (4.1f)

Constraints 4.1b and 4.1c ensures the restriction imposed by the EVRC, where the EV always starts

at a vertex s and always arrives at a vertex g by following a sequential path of vertices ∈ V . Constraint

4.1d ensures the EV is only able to receive energy from charging stations that are in a reachable path.

Constraint 4.1e defines the binary decision variable xij which indicates whether the EV has followed

the path from i to j or not. Constraint 4.1f defines the binary decision variable yj which when yj = 1

indicates that the path from i to j leads to a charging station where the EV has received energy and

when yij = 0 indicates the path from i to j does not lead to a charging station and the EV has not

received energy.
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4.1.1 Markov Decision Process Formulation

The MDP for our route and charging problem is composed of a state space (S) and an action space (A).

In every state s ∈ S, the state is composed by the State of Charge (SoC) of the EV and its coordinates.

The action space is composed of the actions that link the states in S as depicted in Figure 4.1.

Figure 4.1: State and action representation.

Each action describes a path for the EV to drive, which implies a driving time and energy consumption

associated with the length of this path. The action also defines the existence and characteristics of a

charging station such as the number of charging ports, the type and power associated to each charging

port, and the price associated with the charging action. For each state transition associated with an

action, a reward must be given to the agent. This reward must take into account several factors:

• The cability of the EV of achieving the next station given the SoC. In order to prevent the agent

from running out of energy during a route between two stations, the reward must penalize actions

that attempt to achieve unreachable stations.
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• The energy cost and time spent in a recharging action, for the same amount of energy recharged

a station that can provide a faster charging stop time (waiting time + charging time) and cheaper

charging cost should obtain a higher reward value.

• The number of recharging actions already performed, this is to prevent unnecessary charging

stops by penalizing recharging actions.

From the reward given to an action performed by the agent in a given state we obtain the state-action

value, and from the cumulative sum of the state-action values rewarded to get to a given state we obtain

the state value.

4.2 Environment Formulation

In order to implement our solutions to the EVRP problem, we need to be able to model not only the

real-life road network and charging infrastructure, but also, the behavior of a typical EV. This section

will focus on the technologies utilized to model these parameters and obtain the data, required for the

correct implementation of our algorithms.

4.2.1 Routing API

The basis of EVRP settles in deciding which charging station a given EV should stop to charge. In

order to verify if the chosen charging stations are the best, we need to estimate the best route between

them, and correctly estimate the time and energy required to perform these routes. For our approach,

we relied on an open-source software called OpenRouteService (ORS) [23], which provides multiple

services based on crowd-sourced geographical data from OpenStreetMap [24]. For our solution, we

used a local client of their software which allows us to execute unlimited requests of routes, and used

their route service by making a query with an initial coordinate and final coordinate to the service. This

query provided us with an estimation of the time required to perform the route, the road distance in km

of the route, and an array of coordinates detailing the said route.

4.2.2 Charging Station Pre-processing

As stated in Section 4.2.1, the basis of EVRP settles in deciding which charging station a given EV

should stop to charge. Therefore, the model of this charging infrastructure needs to be as close as

possible to reality. In order to achieve this, we relied upon the acquisition of data from an open-source

API called Open Charge Map (OCM) [25]. With this API we were able to make a query to obtain the

data from all charging stations in their database for a given geographic area. The data provided by this

29



API ranged from its geographic coordinates to the number and power of the charging station ports. As

stated, this API relied on the definition of a geographic area of where we wanted to find charging station

data. To define this area, the API gave us multiple methods from which we decided to use the bounding

box method, where we would send two geographic coordinates, and the API would consider the area

to be the box created by these two coordinates latitude and longitude values. In order to find the best

two coordinates for a given trip the driving optimal route is calculated using our Routing API presented

in Section 4.2.1 and from this route, we find the extreme north, south, east, and west points of our route

and add an extra 20km in order to not remove potentially useful charging stations.

(a) (b)

Figure 4.2: Bounding box for a given route (a) - route from Lisboa to Covilhã (b) - route from Porto to Beja.

However, in some cases, this approach still resulted in an excessive number of impractical charging

stations, mainly because they were situated at considerable distances from the optimal driving route.

In order to fix this issue we filtered the stations obtained from the API by their location by checking if

their distance to the optimal driving route didn’t surpass a certain threshold. To achieve this for a given

threshold of 10Km we would choose a point in the optimal driving route every 10km and find which

stations are located less than 10km away from this point.

Figure 4.3: Station filtering where the radius of each circle is the chosen threshold.
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4.2.3 Electric Vehicle Model Formulation

To achieve reliable results with our solution to the EVRP problem we need to have a good electric

vehicle model. To achieve this we need to model the key parameters of the EV for our problem. These

parameters are the EV’s battery capacity and the energy consumption rate. With these two values, we

are then able to compute the EV’s driving range. With this model of the EV and with the information

provided by the charging station API and the Routing API we are able to compute the energy consumed

by each route and the time taken to recharge at each station.

4.3 Electric Vehicle Route Planning using Dijkstra

In order to solve the problem detailed in Section 4.1, we will employ the use of the Dijkstra’s algorithm

to find the optimal route for our formulation. Dijkstra’s algorithm is a search-based algorithm used to find

the shortest path between nodes in a given graph. By systematically exploring and evaluating potential

routes, it enables us to determine the most efficient solution to our problem.

4.3.1 EVRP Graph Formulation

In order to use our search algorithm the first step is to convert our environment into the form of a graph

that our algorithm can then use to find the optimal route. In our environment, we can see that the road

infrastructure and the charging stations already behave similarly to a graph where the roads connect the

multiple charging stations just like edges connect multiple nodes in a graph, therefore, the most logical

approach is to use each charging station as the graph node and the graph edges represent the cost

associated to moving from one station to another.

Nodes

Each charging station has different characteristics, these characteristics are what make a charging

station a good or a poor choice for recharging. Therefore, these parameters need to be well described

in their corresponding node. For this, we described each node with a dictionary containing the most

important of these characteristics, this being its geographic coordinates in order to calculate the route

characteristics to reach this Charging Station (CS), and the number of ports and their respective char-

acteristics in order to calculate the charging characteristics of the CS.

1 CS_node = {

2 "index": defined index

3 "Latitude": latitude coordinate,
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4 "Longitude": longitude coordinate,

5 "number of ports": number of charging ports,

6 "ports": [

7 {"A": port amperage, "V": port voltage, "KW" port power,

"type": port type of current },

8 {"A": port amperage, "V": port voltage, "KW" port power,

"type": port type of current },

9 ...

10 ]

11 }

Listing 4.1: Stop node implementation

Edges

In a weighted graph, the edges of the graph describe the cost associated with moving from one

particular node to another. In our environment, this cost refers not only to the time cost associated with

driving from one node to another, but also, the time cost associated with the charging operation per-

formed at the new node and its associated monetary cost.

States

In our algorithm, we want to find the path with the lowest cost from the initial state to the goal state.

We defined a state as a tuple containing the current node, the EV battery state percentage, and the path

done to achieve the current node.

1 State = [ CS_node , battery_state, [path]]

Listing 4.2: State implementation

4.3.2 Dijkstra’s Implementation Diagram

In figure 4.4 is depicted the flowchart design of our implementation of the Dijkstra algorithm to solve our

EVRP problem.
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Figure 4.4: Implemented Dijkstra’s algorithm diagram.
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4.4 Electric Vehicle Route Planning using GA

In order to solve our problem formulation defined in Section 4.1, we are going to employ the implemen-

tation of a Genetic Algorithm. Genetic Algorithms operate by utilizing genetic mechanisms that mimic

the principles of natural selection, crossover, and mutation to iteratively enhance solution populations

across generations. This approach enables us to systematically refine and evolve solutions to the spec-

ified problem.

In Figure 4.5 is depicted the flowchart design of our implementation of the GA to solve our EVRP

problem

Figure 4.5: Implemented GA diagram.

4.4.1 Chromosome

The first step in any GA implementation is to define our chromosomes. This chromosome describes the

behavior of each individual and is in this chromosome that the crossover and mutation mechanisms will

make changes.

In our implementation, the chromosome consisted of a list where the first element contains the num-

ber of stops of the individual. The second element consists of a list of the ordered stop nodes that define

the individual’s route. The last element consists of a list with the order index of the stop nodes of the
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individual’s route. This implementation can be seen in the Listing 4.3.

1 chromosome = [ Number_of_stops, [stop_nodes], [path]]

Listing 4.3: Chromosome implementation

In order for the algorithm to function as intended only valid chromosomes were accepted. For a

chromosome to be deemed valid it must satisfy these four rules:

1. The number of stops must be between the maximum and minimum number of stops for a given

route;

2. Each stop must be reachable from the previous stops;

3. The first stop must be reachable from the starting position;

4. The target position must be reachable from the last stop.

4.4.2 First Generation Creation

To create viable individuals, the algorithm starts by defining for the given start and target position the

list of stops reachable from the start position, the list of stops that can reach the target position, the

minimum number of stops, and the maximum number of stops. The minimum number of stops was

calculated by getting the road distance between the initial position and the final position and then dividing

this distance by the EV driving range. The maximum number of stops is then defined as max N stops =

2×min N stops+ 1.

With these lists and values, to create each viable individual the algorithm first chooses the number of

stops of the individual from a random integer between the minimum number of stops and the maximum

number of stops. After that, the first stop is randomly selected from the list of stops reachable from

the start position, this ensures the 3rd rule is always met. The subsequent stops until the last stop are

randomly selected from the stops that are not reachable from the start position and do not reach the goal

position. Finally, the last stop is randomly selected from the list of stops that reach the goal position also

ensuring the following of the 4th rule. After the initial creation of the individual, in order to ensure that

the 2nd rule is followed, the individual is evaluated to check if all stops are reachable from the previous

stop. If during the evaluation, the algorithm detects that one stop is not reachable from the previous stop

a new stop is randomly selected until a reachable stop is found.
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4.4.3 Fitness Function

The objective of the GA is to find the solutions most suited to solve our problem. In order to find this

solution there needs to be defined a fitness parameter to evaluate how good the solution of a given

individual of the population is. This fitness parameter needs to correctly describe the performance of

the individual in solving the problem at hand. For our problem, the fitness value was computed from two

components:

• The time component (Ctime) - consisting of the time associated with driving between stations and

the time associated with the recharging operations.

• The cost component (Ccost) - consisting of the cost associated with the recharging operation.

The time component is defined in Equation 4.2 by adding the total driving time of the chromosomes

route with the total charging time. In order to penalize unnecessary stops, an extra term is added to

represent the time cost of stopping in a charging station. This cost represents the real-time cost of

arriving at the charging station, the time of connecting the car to the charging station, and the time of

disconnecting and paying for the charging operation. This charging station cost is constant for every

station.

Ctime =
∑

tdriving +
∑

tcharging +
∑

tCS (4.2)

The cost component is only comprised of the sum of the cost of all of the charging operations of the

route and is defined in Equation 4.3.

Ccost =
∑

mcharging (4.3)

In order to combine these components in a single cost, a weight γ is used to find an optimization

balance between the two components. This is combined cost is defined in Equation 4.4.

Ccombined = (Ccost)γ + (Ctime)(1− γ) (4.4)

This combined cost, however, increases as the time component and the cost component of the route

increases. This would mean that the fittest individuals would be the ones that took the most time and

cost consuming route. Therefore, for the fittest individuals to be the most time and cost saving routes,

our fitness score consists of the inverse value of the combined cost. This is defined in Equation 4.5.

Fitness =
1

Ccombined
(4.5)
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4.4.4 Selection Mechanism

To create a new generation, a method to select individuals is necessary not only to select good individ-

uals for our new generations, but also, to select good individuals to use in our crossover and mutation

mechanisms. In order to create a new generation that tends to be fitter than the one before the first

logical idea would be always to select the top performers of each generation. While this solution might

improve the fitness from one generation to the next, it will quickly diminish the solution diversity of the

population, which can lead to the algorithm becoming stuck at a local minimum. In order to select good

individuals, the selection mechanism should tend to select the best-performing individuals but also se-

lect not as good performing individuals every now and then. In order to achieve this selection method

we utilized two common selection algorithms:

• The tournament selector.

• The biased roulette selector.

The tournament selector consists of randomly choosing two individuals from the population and

choosing the one with the highest fitness value. This method ensures that any individual from the

population can be selected except the worst-performing individual of the population, which will always

have a lower fitness value than any other individual in the population. Although this method tends to

select higher fitness value individuals, it is not guaranteed that the method will choose individuals from

the top 10% best performers more times than from the 50% best performers.

The biased roulette selector solves this problem by assigning probabilities of being chosen to each

individual of the population depending on its fitness value, i.e. the higher the fitness value of an in-

dividual, the higher the probability of being selected. For our implementation, we summed the fitness

values of the entire population, and then randomly selected a number from 0 to the sum of the fitness

values. Then from the highest fitness value individuals to the lowest, we sum the fitness values until this

sum is higher than the selected number and choose the last summed individual. This ensures that the

best-performing individuals will always have a greater probability of being selected.

In order to get the benefits of both methods, whenever a selection of an individual of the population

was needed, one of these methods was chosen randomly with the same probability for either one.

4.4.5 Crossover Mechanism

The crossover mechanism is an important part of the generation creation. In each generation, we will

find individuals that might excel at some parts of its solution, by using the crossover mechanism the

algorithm is able to combine the best parts of some individuals, to obtain a better-performing individual

than the two individuals separately.
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The basis for the crossover mechanism is to select two individuals and combine parts of their chro-

mosomes to create a new individual chromosome. In our problem, the sequence of the stops is as

important as the stops themselves. Therefore, the combination of the two chromosomes needs to pre-

serve good sequences of stops.

To achieve this, in our implementation, the algorithm begins by selecting two individuals from the old

generation using our selection mechanism to be our parent individuals. Then the number of stops of the

new ”child” individual is chosen to be the number of stops of one of the parent individuals.

Figure 4.6: Parent chromosomes and child chromosome.

After this, in order to preserve sequences of stops, the algorithm splits the child’s chromosome into

a randomly chosen point, between the first stop and the last stop. This split creates two chromosome

segments, the first segment from the 1st stop to the splitting point, and the second segment from the

splitting point to the final stop.

Figure 4.7: Possible split points.

In order to create this new chromosome consisting of two chromosome segments, we create 4 chro-

mosome segments from the parent chromosome. For the first chromosome segment of the child, for a

given number of stops N, we use the first N stops of each parent to create two chromosome segments.

For the second chromosome segment of the child, for a given number of stops X, we use the final X
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stops of each parent to create the other two chromosome segments.

Figure 4.8: Child chromosomes created from parent chromosome segments

To find the best combination of the parent chromosomes, two child chromosomes are created. In one

of the child chromosomes, the first segment comes from parent A and the second segment from parent

B. On the other child chromosome, the first segment comes from parent B and the second segment

from parent A. Then each child is evaluated and the best child is the one chosen for the new generation.

If during the creation of the two child chromosomes, we end up with an invalid chromosome for one of

them, the algorithm automatically chooses the other child. In the case where both child chromosomes

are invalid, the algorithm restarts the crossover mechanism with a new set of parents.

4.4.6 Mutation Mechanism

The mutation mechanism is the mechanism that brings genetic variability to the solution population.

During the creation of the new generation, the selection mechanism only allows the selection from

already seen individuals of the population, and while the crossover mechanism allows the algorithm to

create new individuals, the new individuals are merely combinations of the chromosomes of already seen

individuals of the population. This means that without any other mechanism, the algorithm would only be

able to find a local optimal solution based on the initial population. By having a mutation mechanism we
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allow the introduction of new chromosome combinations that haven’t yet been seen in the population.

This allows us to achieve a solution that is closer to the optimal solution without depending on the initial

population chromosomes.

For our implementation, we consider a mutation as changing one of the stops of the chromosome

with a new stop. Due to the nature of our problem, swapping one stop for another random stop would

in the majority of cases, lead to an invalid chromosome due to having an unreachable stop. To prevent

this, instead of choosing a random stop from the entire stop list, we only consider stops that are within

a 20 km radius of the stop we want to replace. Depending on the number of stops of the chromosome

we want to apply the mutation to, a number of mutations are randomly selected between 1 mutation and
N stops

2 . The algorithm then randomly selects which of the stops of the chromosome suffers a mutation.

4.4.7 Fixing mechanism

During the creation of the new generation, as a result of crossover and mutation, these mechanisms

only focused on checking the validity of these chromosomes, but some of these chromosomes might

contain redundant segments. For example, we can have a chromosome that has 5 stops but stop 5 is

reachable from stop 2 making stops 3 and 4 unnecessary. In order to verify this, every new candidate

for the new generation is tested for unnecessary stops before being added to the new generation.

To achieve this, an algorithm was developed that checked for every stop i where i ̸= final stop if

existed any stop j where j ≥ i+ 1 that can be reached from i and maintains the chromosome viable.

This fixing mechanism helps to accelerate the algorithm by removing viable but low-fitness solutions

from being added to the new generations.

4.5 Electric Vehicle Route Planning using RL

In order to solve the MDP proposed in Section 4.1.1 we use a RL based approach to find the optimal

strategy. This approach is based on the QL algorithm [26] that uses the Bellman equation to recursively

update the action-value function.

Q(s, a) = Q(s, a) + α(r + γmax
a′

(Q(s′, a′))−Q(s, a)) (4.6)

The classical QL algorithm action-value function is based on a look-up table which in our case would

require a multi-dimension table, in order to make this approach more suitable for our problem, we instead

use a deep neural network to approximate the value-action function.
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4.5.1 OpenAI Gym Environment

In order to implement the DQL algorithm in our problem, we developed a custom gym environment using

the openAI gym RL API.

To create a custom gym environment we had to define:

• The action space;

• The observation space;

• the reset and step function;

• the reward function.

Action Space

In our problem, we define an action as choosing which station to travel to from the current state,

therefore, our action space is comprised of the total possible stations the agent can choose from.

Observation Space

The observation space is comprised of all the variables important in our environment. In our imple-

mentation, we used a Python dictionary to define our observation. This dictionary was comprised of four

keys:

• ’agent’ - containing the agent’s current station index, latitude, longitude, and battery state;

• ’path’ - listing all the already visited stops;

• ’start’ - containing the start geographic coordinates.

• ’goal’ - containing the goal geographic coordinates;

• ’stops’ - consisting of an array containing all station indexes, geographic coordinates, charging

power, and charging cost.

Reset and Step Function

For the correct function of the gym environment, we need to develop a reset function that assigns the

initial state values for each variable of the system. And a step function that for the given action chosen,

computes its reward value updates the observation, and checks for termination of the episode
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4.5.2 Reward Funtion

The reward function determines the behavior our agent takes. In order to define this behavior the reward

function must return positive rewards when the agent takes steps that reflect the intended behavior and

return negative rewards when the agent takes unintended actions.

For our problem, the intended behavior we want our agent to learn is:

• To choose the minimum number of reachable stations necessary to reach the goal

• To minimize the route duration and associated cost.

In order to achieve the first point, our reward function cannot simply give a positive reward when

the agent takes a valid action. These rewards would incentivize the agent to choose the maximum

number of steps allowed in order to maximize the reward obtained from choosing a reachable station.

By giving the agent a positive reward for choosing a reachable station, we might be training the agent

to choose reachable stations, but we are not training the agent to find the minimum number of stations

to the goal. Therefore instead of giving positive rewards when the agent chooses a valid action, the

functions return a less negative reward. What this means is, that when the agent takes a valid action,

the reward function returns a negative reward, but the absolute value of this negative reward, is not

as penalizing as the negative rewards obtained from invalid actions. This still incentivizes the agent to

choose reachable stations, as they will return a less negative reward, but it also incentivizes it to choose

the minimum number of stations necessary to reach the goal, as adding unnecessary stops only returns

more negative rewards.

The reward received for a given valid action, must then be able to do two things: Inform the agent

about the quality of the action by itself, but also inform the agent about the quality of the action in the

context of the previous path. In order to achieve this, our valid action reward consists of two components.

An action component, in which the value represents the quality of the action by itself. This component

consists of the combination of the time component and cost component of the route, between the current

agent state and the agent’s state after the chosen action. This combination is very similar to the ones

described in Section 4.1 and 4.4.3, and is defined in Equation 4.7.

Action component = ccharging + (tdriving + tcharging)(1− γ) (4.7)

The other component is a path component that consists of the sum of past action rewards up to the

current agent state.

Path component =
∑

reward (4.8)

Considering that our algorithm’s objective is to minimize the route duration and cost, like in Section
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4.4.3, by utilizing the combination of these components our algorithm would be looking for the most

time and cost consuming route. Luckily for this algorithm, due to the fact that we need to use negative

rewards, by rewarding the agent with the negative combination of these components, the algorithm will

as intended minimize the route’s duration and cost.

However, with this reward function, we still have a problem, the agent has no incentive to look for

the goal. This is due to the fact that in order for the agent to maximize rewards, in some cases it is as

viable to choose multiple actions with very small negative rewards until the agent achieves the maximum

number of actions per episode, as it is to find the goal. Therefore in order to incentivize the agent to

look for the goal, when the agent performs a valid action that archives the goal a supplementary positive

reward is given to the agent.

(4.9)

With all this, our final reward function consists of the presented expression.

4.5.3 Deep Q Network Architecture

One of the most important parts of the DQL algorithm is its Q-value aproximator. For the estimation of

our Q-value for our DQL, we needed to design our Deep Q Network (DQN), the neural network that will

be our Q-value function approximator.

Neural Network

For the design of this DQN, we used a neural network consisting of 3 fully connected layers. The first

layer has 1024 neurons with a ReLU activation function, the second layer has 256 neurons with a ReLU

activation function, and in the final layer, the output layer, the number of neurons is equal to the number

of possible actions of the agent and a linear activation function. The size of this neural network input

is equal to the size of the environment observation, as for each step the agent feeds its environment

observation to the neural network.

43



Figure 4.9: Neural network used for DQL.

Dueling Networks

Due to the complexity of our environment, we used a dueling network architecture to improve the

convergence speed of our DQL implementation. The decomposition of the Q-value into two networks is

useful to better evaluate the quality of different actions that lead to similar rewards [17]. This improves

significantly the convergence speed of our algorithm, especially in a complex environment with a high-

action space like ours. For our implementation, we used the neural network architecture previously

explained. The re-composition of the Q-values for a given state is computed from the value of each

network with the following expression:

Q(s, a) = V (s, a) + [A(s, a)−AV G(A(s))] (4.10)

Where Q is the Q-value for action a when the agent is in the state s. V (s, a) is the value from the

state value network and A(s, a) the value of the action advantage network.
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Figure 4.10: Dueling Networks architecture.

4.5.4 Epsilon Greedy Policy

In order for our agent to explore its environment, we need to give them an exploration strategy. In

the beginning, our agent doesn’t know anything about its environment, and its action-value function

approximator is unable to give a good prediction for correct actions. Therefore, we need our agent to

explore its environment in order to improve its action-value function. In order to explore the environment,

one solution is for the agent to choose actions randomly from the action space. Although this will most

certainly lead to bad decisions, it will allow our agent to learn from these bad decisions. This method

works well in the beginning when the agent knows nothing about the environment, but after a while,

this strategy becomes ineffective. This is because the agent will be able to explore the first steps of

the environment, but to explore the environment after the initial steps, the agent needs to be able to

first advance in the environment, and for this to happen by random chance would take a lot of time.

Therefore, a method is needed that can have the benefits of random exploration, with the benefits of

exploiting the known environment. To achieve this we decided to use the Epsilon greedy policy. This

policy gives a probability for the decision to either be random or to be the action with the highest value

in our action-value function approximator. This allows the agent to progress in the environment with the

decisions from the action-value function, and to still be able to explore the environment with random

decisions. Just by setting a fixed epsilon, we can improve the exploitation of the environment, but we

know that it is more advantageous for the agent to focus on exploring the environment in the beginning,

and to focus on exploiting it after already having explored parts of the environment. To achieve this

behavior, we used a variable epsilon. The variable epsilon begins with a high probability of choosing a
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random action in order to explore our environment, and with each step, this probability would decrease,

which will increase the probability of choosing an action based on the action-value approximator. By

choosing more actions based on the action-value approximator, the agent is able to advance in the

environment to explore actions closer to the goal state.
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In this chapter, we present and analyze the results obtained in the experiments performed during this

work. We start by choosing our optimization parameters and obtaining our baseline results to compare

them to the other results obtained from the different algorithms.

5.1 Experimental Setup

In order to validate the behavior of our algorithms, an experimental setup needs to be designed. The

experimental setup intends to test the performance of the algorithm in a close to real-life utilization of the

algorithms. In order to achieve this, some parameters needed to be defined, such as the parameters for

the EV model, the parameters for the formulation, and the routes where the algorithms were going to be

tested.

5.1.1 Setup Parameters

EV formulation

As explained in section 4.2.3 to achieve realistic results with our algorithms we need to have a good

EV model. To achieve this, for our battery capacity we based our model on a study [27] which found

the average EV battery capacity to be 40 kWh. For our energy consumption rate, we based our model

on the average consumption rate of EV found in [28], which found an average energy consumption rate

of 0.2kW per Km, which gives a 200 km driving range to our EV. With this model of the EV and with

the information provided by the charging station API and the Routing API, we are able to compute the

energy consumed by each route and the time taken to recharge at each station.

Cost function Gamma

In order to solve the problem formulated in section 4.1, we need to select a gamma value to combine

the two costs. In order to obtain a good optimization of both costs, the gamma value must be chosen

considering its effect on each cost. From the formulation we can see that for a gamma value of 0, we

would obtain an optimization of only the trip cost, and for a gamma value of 1, we would obtain an

optimization of only the trip duration, this can be observed in Table 5.2. Therefore, we can expect to

obtain an increase in the trip cost and a reduction of trip duration the closer the gamma value comes to

1, and the exact opposite the closer the gamma value comes to 0.
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Table 5.1: Dijkstra results for the three selected routes with single cost optimization

Dijkstra
Short Trip

(265 possible CS)
Medium Trip

(463 possible CS)
Long Trip

(548 possible CS)
Time Cost Time Cost Time Cost

Gamma = 0 2:58:20 3.23 4:58:48 11,29 8:50:15 39.33
Gamma = 1 3:24:57 1,82 6:16:26 5.27 10:30:48 11,82

In figures 5.1 and 5.2 we can see the effect of different gamma values on the trip cost and time

duration.

Figure 5.1: Different gamma effect on the trip cost for different routes.

Figure 5.2: Different gamma effect on the trip duration for different routes.

In Figure 5.1 we can observe that for values of gamma superior to 0.5, the trip cost converges with

the optimal trip cost and we obtain trip cost values very close to the optimal trip cost. In Figure 5.2, we
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can observe that for values of gamma close to 1, the trip duration starts to significantly increase and

the lower the gamma value, the closer the trip duration comes to the optimal trip duration value. From

this observation, we decided to use a gamma value of 0.5 as this allows us to achieve a good balance

between time optimization and cost optimization

5.1.2 Routes

In order to compare the different algorithms, our experimental setup consisted of three routes. A short

route, from the city of Lisboa to the city of Covilhã, this trip’s fastest road route has a distance of 277km,

contains 265 possible charging stations and requires at least 1 recharging operation to be completed.

A medium route, from the city of Beja to the city of Porto, this trip’s fastest road route has a distance

of 448km, contains 463 possible charging stations, and requires at least 2 charging operations to be

completed. And finally, a long route, from the city of Bragança to the city of Vila Real de Santo António

(VRSA), this trip’s fastest road route has a distance of 778km, this route has 548 possible charging

stations and requires at least 5 recharging operations to be completed. These routes are represented

below in Figure 5.3.

(a) (b) (c)

Figure 5.3: (a) Short trip (b) Medium trip (c) Long trip

5.2 Baseline

In order to evaluate the performance of our algorithms, a baseline needs to be measured in order to

have a reference point to compare our algorithms. In this section, we analyze the data obtained from

Dijkstra’s algorithm to be used as our Baseline.
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5.2.1 Baseline results

In Table 5.2, we can observe the results obtained with our Dijkstra’s algorithm for the three defined

routes.

Table 5.2: Baseline results for the 3 selected routes

Dijkstra
Short Trip

(265 possible CS)
Medium Trip

(463 possible CS)
Long Trip

(463 possible CS)
Time Cost Time Cost Time Cost

Gamma = 0 2:58:20 3.23 4:58:48 11,29 8:50:15 39.33
Gamma = 0.5 2:59:23 1,86 5:43:15 5,28 10:06:27 12,15
Gamma = 1 3:24:57 1,82 6:16:26 5.27 10:30:48 11,82

As expected, we can see that the results from a gamma value of 0,5 give us the most balanced

results for each of the routes. In Figure 5.4, 5.5 and 5.6, we can see the routes associated to the results

in Table 5.2.

(a) (b) (c)

Figure 5.4: (a) gamma = 0 (b) gamma = 0.5 (c) gamma = 1

It is possible to see that in Figure 5.4, solutions (a) and (b) make almost the exact same route

but route (b) ends up saving 1.37 euros in comparison to route (a). This is due to route (b) selecting

a charging station very close to the one selected in route (a), but with a slightly lower charging rate,

increasing the total route duration by 1 minute but with a much cheaper charging cost.
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(a) (b) (c)

Figure 5.5: (a) gamma = 0 (b) gamma = 0.5 (c) gamma = 1

In Figure 5.5, we see a similar result where route (b) and (C) are very similar but where route (b) by

selecting charging stations with a slightly faster charging rate than route (c) can improve the duration

of the trip by 24:21 minutes from the route (c) by only increasing the trips cost by 0,33 euros. These

results show the importance of utilizing algorithms for EVRP where choosing charging stations with a

few kilometers of distance can make a big difference in trip duration and cost.

(a) (b) (c)

Figure 5.6: (a) gamma = 0 (b) gamma = 0.5 (c) gamma = 1
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In Figure 5.6 we can see that for longer routes the charging operations become very complex which

once again demonstrates the importance of these algorithms.

The results in Table 5.2 prove that Dijkstra’s algorithm performed as expected, but when looking at

the algorithm runtime we can find the expected downside of this algorithm. In Figure 5.7, we can observe

the real-life runtime of the algorithm for the different numbers of charging stations of the three routes.

Figure 5.7: Dijkstra’s algorithm runtime for different number of charging Stations.

From the analysis of Figure 5.7, we can clearly observe an exponential growth in the algorithm

runtime with the increase of Charging stations. This exponential growth is the main downside of Dijkstra’s

algorithm and the main problem we want to fix with our implementation of the other algorithms.

5.3 Genetic Algorithm

In this section, we are going to analyze the results obtained from our implementation of the genetic

algorithm, on the three defined routes. with these results, we will then compare them to the baseline

results obtained in the previous section.

5.3.1 Hyperparameters Tunning

In order to have the best performance of our genetic algorithm some hyperparameters needed to be

decided. One of these parameters is the stopping criteria. Besides the max number of generations,

our genetic algorithm has another stopping criteria, that is if the best solution of a population is the
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same for more than a defined number of generations our algorithm stops. This stop criteria is to prevent

the algorithm from wasting computational power to continue to find a new solution when the algorithm

already has converged in a good solution.

Figure 5.8: Genetic algorithms performance along generations.

As we can see in Figure 5.8, the performance of the GA improves along the generation, but after the

40th generation, the increase in performance per generation starts to diminish. Meanwhile, as we can

see in Figure 5.9, the runtime increases linearly along the generations, which means that for the later

generations, the small increase in performances requires a big increase in runtime. Therefore, in order

to get the best performance per runtime possible, we need to find a good number of generations for our

stopping criteria.

Figure 5.9: Genetic algorithm runtime along generations performing the medium trip.

In Figure 5.10, we can see that by increasing the number of generations of our stopping criteria,

the performance of our algorithm increases, but beyond 50 generations the increase in performance is
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mostly negligible. Meanwhile, due to the mostly linear increase of the runtime, beyond 50 generations

we are just increasing the runtime to obtain mostly the same performance. Therefore we decided on 50

generations with the same fitness as our stopping criterion.

Figure 5.10: Algorithm’s performance with different stop criteria values.

Another parameter that needs to be selected is the size of the population, which not only affects the

performance and convergence speed of the algorithm but also affects its runtime. By increasing the

population size of each generation, we introduce more chromosomes per generation, which increases

the genetic diversity of our population. This leads to an increase in the speed of convergence per

generation and also helps to prevent the algorithm from converging into a local optimum, which improves

the overall performance of the algorithm. However, the added computational power needed in each

generation to compute more new solutions increases the overall runtime of the algorithm.

Figure 5.11: Algorithm´s performance with different sizes of population.

In Figure 5.11, we can see that with the increase of the population size, the algorithm’s performance

increases but stabilizes beyond a population size of 15 chromosomes. Meanwhile, we can also observe

that beyond a population of 15, the increased runtime does not increase the algorithm’s performance.

From this observation, we concluded that a population of 15 chromosomes per generation would give

us the best performance-to-runtime ratio.
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5.3.2 Genetic Algorithms Results

To compare the performance of the GA to our baseline, we tested its performance using the parameters

in Table 5.3.

Table 5.3: GA experimental results parameters.

Parameters values

max number of generations 150
Population size 15
Generations with constant fitness limit 50
Gamma(γ) 0,5
Crossover rate 0,7
Mutation rate 0,2

Table 5.4 presents the results obtained performing the three routes described in section 5.1.2.

Table 5.4: Results obtained from Genetic Algorithm.

Short Trip Medium Trip Long Trip

Fitness Time Cost Runtime Fitness Time Cost Runtime Fitness Time Cost Runtime

Dijkstra 0,4119 2:59:23 1,86 0:03:28 0,181 5:43:15 5,28 0:11:00 0,089 10:06:27 12,15 0:18:01

Genetic Agorithm
(std dev)

0,4100
(0,006)

3:01:01
(0:04:39)

1,86
(0,0007)

0:00:43
(0:00:14)

0,171
(0,008)

5:55:13
(0:20:08)

5,79
(0,423)

0:01:53
(0:00:35)

0,080
(0,003)

10:44:23
(0:31:08)

14,23
(0,89)

0:09:18
(0:02:54

From the results in Table 5.4 and figures 5.12,5.13, we can see that the GA can reliably achieve

results very close to the optimal solution in a very reasonable runtime.

In Figure 5.12, we can observe the performance of the GA against the performance obtained from

the Dijkstra’s algorithm.
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Figure 5.12: Comparison of the GA performance results against the baseline results.

From the data in Figure 5.12, we can conclude that the performance of the GA comes very close to

the optimal solution achieving a solution with a performance of at least 90% of the optimal solution.

In Figure 5.13, we can observe the runtime of the GA associated with each route in comparison to

the runtime of the Dijkstra’s algorithm.

Figure 5.13: Comparison of the GA runtime results against the baseline results.

From the observation of Figure 5.12 and 5.13, we can conclude that the GA is able to achieve a very

reliable and close to optimal solution in a fraction of the runtime of the Dijkstra’s algorithm. These results

show the strength and the potential the GA has to solve this problem, especially in very time-sensible

applications.
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5.4 Deep Q-Learning

In this section, the results obtained from the DQL algorithm are going to be analyzed. First, we will

analyze the results from a simplified environment to validate the algorithm’s behavior. Then we will

analyze the performance of the algorithm in the experimental setup routes, which will allow us to evaluate

its performance with the algorithms explored in the previous sections.

5.4.1 Reward Function

As explained in Section 4.5.2 for the correct behavior of our algorithm, the tuning of the reward function

is imperative. From the formulation presented in Section 4.5.2, there are three reward values that need

to be tuned. For a valid action from one station to a reachable station, the reward of this action consists

of two values. The first value is the combination of the associated costs of the trip, for this cost we need

to define the gamma value, which based on the findings of section 5.1.1, we chose to be gamma = 0.5.

The second value consists of the cumulative rewards the agent received in previous steps. The absolute

value of these two values is summed and rewarded to the agent but with a negative value. This is to

encourage the agent to take the least amount of steps necessary as explained in section 4.5.2. For

a valid action like the one described before, but that also takes the agent to a station that is able to

reach the goal. For this action besides the reward from the action, the agent receives an additional goal

reward for achieving the goal. This goal reward is positive and with a value equal to the magnitude of

the cumulative reward, in order for the agent to end the episode with a cumulative reward value above 0,

but with a value where the agent is able to distinguish the best paths from less optimal paths. The last

reward value is for an invalid action where the agent chooses an unreachable station, for this action, the

agent receives a penalty equal to reward = −5000 in order to penalize this behavior.

5.4.2 Simplfied Experimental Setup

Due to the complexity of the DQL algorithm, we started by testing its capabilities in a simplified version of

our environment. This simplified environment consisted of a 100 by 100 units 2D plane with a distribution

of 20 points, where each point represented a charging station. This setup is represented in Figure 5.14.
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Figure 5.14: Simplified Environment

To represent the distance between charging stations, we utilized the Euclidean distance between the

points. This simplified setup, due to the much less computation complexity to calculate its parameters,

allowed us to train an agent in a much faster runtime, allowing us to verify implementation details much

faster.

In Figure 5.15 we can see the data from the training of 200000 steps.

Figure 5.15: Training data from Simplified Environment

From the training data, we can see that the algorithm is successful at converging the agent rewards

to around zero, which implies the algorithm during the training process is consistently reaching the goal.

The spikes in the final steps of training are due to our epsilon-greedy policy not reaching an epsilon of

zero, but instead maintaining an epsilon of 0.01 once it decays to this value.
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In figures 5.16 and 5.17, we can see the obtained results with the training of 200000 steps.

Figure 5.16: Example of a solution obtained in simplified
environment

Figure 5.17: Performance obtained from simplified
environment

As observed, the algorithm’s solution achieves a reasonable performance in finding the route from

the start position to the goal position, validating the algorithm’s behavior. The performance achieved by

the algorithm is not optimal as it achieves only about 90% of the performance of Dijkstra’s algorithm,

this shows that even for a simplified version of the algorithm, a longer training than the training of only

200000 steps would be required to achieve optimal results.

5.4.3 Deep Q-Learning Results

After validating the algorithm in the simplified setup, we tested its behavior in the three selected routes

to compare its performance to the Dijkstra’s algorithm and the Genetic algorithm’s performance.

Table 5.5: DQL experimental results parameters.

Parameters values

max number of steps per episode 10
starting epsilon(ϵ) 0,9
Min epsilon(ϵ) value 0,01
Epsilon(ϵ) decay rate 5e-5
Sequential memory size 5000
DQN optimizer Adam
DQN learning rate 1e-3
Training size 400 000

In Figure 5.18, we can see the training data of the algorithm for the three selected routes, this training

had a duration of 400000 steps which took around 10 hours of training using the parameters defined in

Table 5.5. We can see that for the routes with a higher number of possible charging stations, the agent’s
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rewards take longer to stabilize around zero and have a bigger interval between the highest reward and

lowest reward. Due to the action space of the agent being directly correlated with the number of charging

stations in the environment, this data demonstrates the difficulty the algorithm has in learning with the

increase of its action space.

(a) (b) (c)

Figure 5.18: Training data for (a) Short Trip (b) Medium Trip (c) Long Trip

This increase in difficult learning can be observed in Table 5.6 and in Figure 5.19, where, while the

solution of the algorithm in the short trip achieves a reasonable performance in comparison with the

other algorithms, for the medium trip the performance of the algorithm is very poor, and for the long trip,

the algorithm was unable to converge into a valid route during the 10-hour training.

Table 5.6: Results obtained from the three tested algorithms

Short Trip Medium Trip Long Trip

Fitness Time Cost Runtime Fitness Time Cost Runtime Fitness Time Cost Runtime

Dijkstra 0,4119 2:59:23 1,86 0:03:28 0,181 5:43:15 5,28 0:11:00 0,089 10:06:27 12,15 0:18:01

Genetic Agorithm
(std dev)

0,4100
(0,006)

3:01:01
(0:04:39)

1,86
(0,0007)

0:00:43
(0:00:14)

0,171
(0,008)

5:55:13
(0:20:08)

5,79
(0,423)

0:01:53
(0:00:35)

0,080
(0,003)

10:44:23
(0:31:08)

14,23
(0,89)

0:09:18
(0:02:54

Deep Q-learning 0,3466 3:21:00 2,42 - 0,118 6:56:24 9,9 - DNC DNC DNC -

In Figure 5.19 we can better see how the performance of the DQL algorithm compares to the other

algorithms.
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Figure 5.19: Comparison of the three algorithms performance.

By analyzing the figure, we can see that for the short trip the performance of the algorithm is about

15% worse than the other algorithms. For the medium trip, we can see that the algorithm can only

achieve a solution that performs 35% worse than the optimal solution obtained with Dijkstra’s algorithm.

This drop in performance combined with the algorithm not being able to provide a valid solution for the

long trip, shows that in order to obtain a quality solution the algorithm would need to be trained for a

much longer period of time. However, the capability to provide solutions of reasonable quality for the

smaller maps shows the potential of the algorithm. With these results, we can conclude that with proper

training, the algorithm can achieve a reliable solution. This combined with the advantage of obtaining

a solution instantly and being able to respond to real-time changes in the environment, gives the DQL

algorithm very high potential to be used in more dynamic and time-sensible applications.
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6.1 Conclusion

In this work, we have analyzed different approaches to find the optimal route of an EV in order to minimize

the route duration and also the recharging cost.

We started by exploring the most classical approach, of using the Dijkstra’s algorithm a search-based

algorithm widely used to solve routing problems. From our implementation, we observed that while the

algorithm is more than capable of achieving good results in solving the problem, the time complexity of

the algorithm makes it unsuited to solve medium to large routes in a reasonable runtime.

To improve on the results obtained from the search-based approach we explore the use of two other

methodologies.

We first explored the usage of Genetic Algorithms, a type of meta-heuristic approach. Meta-heuristic

algorithms are utilized for their ability to find nearly optimal solutions within significantly reduced com-

putation time compared to optimal algorithms like Dijkstra’s algorithm. The results obtained from our

implementation of the Genetic algorithm showed a great improvement in comparison to the Dijkstra’s

algorithm results, obtaining near to optimal solutions in a fraction of the runtime. These findings show

the potential of these algorithms for time-sensitive applications.

Finally, we explored the application of the Deep Q-Learning algorithm, a prominent reinforcement

learning technique. Deep Q-Learning is particularly suited for complex environments, as it leverages

deep learning to model intricate, nonlinear relationships. However, the results we found in our imple-

mentation, showed a very poor performance in comparison to the results obtained from the other algo-

rithms. These results where mainly due to the very high action space of our environment which required

much more extensive training in order for the DQN to be able to better approximate the Q-values for our

environment. Nevertheless, our initial testing of the algorithm showed that after adequate training the

algorithm is able to achieve reliable solutions in real time. This capability to obtain a solution instantly is

incredibly powerful and shows the potential this algorithm can achieve with the appropriate training.

In conclusion, our study demonstrates the trade-offs and advantages of different route optimization

approaches. The choice of method depends on the specific requirements of the task, with traditional

algorithms like Dijkstra’s offering simplicity but limited scalability, while meta-heuristic approaches like

Genetic Algorithms provide efficiency gains. Deep Q-Learning, although promising, requires substantial

training but offers the potential for real-time solutions in complex scenarios.

6.2 Future Work

In this section, we detail potential enhancements that future research and development efforts can in-

troduce to address limitations in our work and augment its overall functionality.
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6.2.1 Dinamic Station Status

One of the big problems of the real-life application of these algorithms is that the station’s status changes

dynamically. One station that might be available at the initial route estimation, might no longer be avail-

able. This can lead to unexpected waiting times, which can lead to unnecessary increases in the route

duration. One solution for this problem would be, to be able to know the station’s status in real-time,

through a centralized system, that receives real-time data from the entire charging station network. With

a system like this, we would then be able to update our route in real-time in order to adapt to the new

network status. This real-time data, paired with the capabilities of the DQL algorithm of responding to

these changes in real-time, make the use of this algorithm very promising, in creating a system capable

of dealing with the real-life dynamic behavior of charging stations and minimizing unexpected waiting

times.
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