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Abstract

The continuous growth of electric vehicles (EVs) has been boosted by the need to achieve society’s de-

carbonization targets. The mass adoption of EVs introduces new challenges in power systems planning

and operation. Clustering has emerged as a powerful tool to help better understand and categorize the

uncertain behavior of EV users and the electric vehicle supply equipment (EVSE) needs. However, pre-

vious studies lack empirical European EV charging data and relevance for practical applications. In this

thesis, different clustering techniques were evaluated to identify typical groups of EV charging processes

to support characterizing EV charging profiles, EV user behavior profiles, and EVSE accessibility. The

defined methodology comprises three major stages: data preprocessing, clustering application, and

validation of results. A use case considering both open and private EV charging data (Caltech Univer-

sity and the publicly operated EVSEs in Greece, respectively) has been utilized to test the proposed

methods, closing the gap verified in the literature. The experimental results demonstrated that Cal-

tech features highly flexible charging sessions with routine users, while Greece exhibits more frequent

EV users and quick-stay sessions. Additionally, there is an excellent opportunity to expand the charging

network in Greece at specific locations. This information unlocks the potential for future studies, enabling

distribution system operators and charge point operators to intelligently and successfully integrate EVs

into the energy system.
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Resumo

O crescimento contı́nuo dos veı́culos elétricos (VEs) tem sido impulsionado pela necessidade de atingir

os objetivos de descarbonização da sociedade. A adoção em massa de VEs introduz novos desafios

no planeamento e operação de sistemas de energia. O clustering tornou-se uma ferramenta poderosa

para ajudar a compreender e categorizar melhor o comportamento incerto dos utilizadores de VEs e as

necessidades dos equipamentos de abastecimento de veı́culos elétricos (EAVEs). No entanto, os estu-

dos anteriores carecem de dados empı́ricos de carregamento europeus e de relevância para aplicações

práticas. Nesta tese, diferentes técnicas de clustering foram avaliadas para identificar grupos tı́picos de

processos de carregamento e ajudar na caraterização de perfis de carregamento de VEs, de compor-

tamento do utilizador de VEs e a acessibilidade de EAVEs. A metodologia definida compreende três

etapas principais: pré-processamento dos dados, aplicação de clustering e validação dos resultados.

Para testar os métodos propostos, foram utilizados dados de carregamento de livre acesso (Universi-

dade Caltech) e também privados (EAVEs públicos na Grécia), colmatando a lacuna identificada na

literatura. Os resultados experimentais demonstraram que a Caltech apresenta sessões de carrega-

mento altamente flexı́veis com utilizadores regulares, enquanto a Grécia apresenta utilizadores mais

frequentes com sessões de estadia rápida. Além disso, existe uma excelente oportunidade para ex-

pandir a rede de carregamento na Grécia em locais especı́ficos. Esta informação revela o potencial

para estudos futuros, permitindo que os operadores de sistemas de distribuição e os operadores de

pontos de carregamento integrem de forma inteligente e com sucesso os VEs no sistema de energia.
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1.1 Motivation

The world is an ever-changing place, but in between this revolution, one thing seems well-defined: fight

climate change. People are facing a dramatic transformation in their lifestyle to become carbon neu-

tral, with the United Nations (UN) placing the fight against climate change under one of the goals of

Sustainable Development [1]. At the 2015 UN Climate Change Conference (COP 21), 196 countries

reached the first-ever universal and legally binding climate change agreement that sets out a worldwide

action plan to “limit global warming to well below 2◦C, preferably to 1.5◦C, compared to pre-industrial

levels” [2]. This ambitious plan requires a significant reduction in Greenhouse Gas (GHG) emissions.

Transport is the only sector where GHG emissions have increased in the past three decades in

Europe [3]. This sector was responsible for more than a quarter of Europe’s total GHG emissions in

2019, of which approximately 71% came from road transportation, increasing 33% between 1990 and

2019, according to a 2022 report by the European Environment Agency [4]. In addition to GHG, burning

fossil fuels, whether in power plants or in Internal Combustion Engine Vehicles (ICEVs), releases harmful

pollutants that can significantly degrade air quality.

In this context, the adoption of Electric Vehicles (EVs) is increasing rapidly in the 21st century due

to the urgency for global energy demand to shift away from fossil fuels, particularly in the last decade.

Even though the production and disposal of EVs are currently less eco-friendly than those of an ICEV

(mainly due to the production of its batteries [5]), an analysis of the entire life cycle of an EV shows that

it is still cleaner than an ICEV, as revealed by Zhang et al. [6]. Their study demonstrated that EVs could

potentially provide a 45% reduction in GHG emissions compared to ICEVs, considering the energy cost

of production, assembly, transportation, and usage (the authors assumed 300 000 km as the average

lifetime of a passenger vehicle).

As the share of electricity from Renewable Energy Sources (RES) is set to increase in the future,

as well as making batteries more sustainable, EVs should become even less harmful to the environ-

ment [7]. According to the World Energy Transitions Outlook 2023 [8], the share of RES in electricity

generation should increase from 28% in 2020 to 91% in 2050. With that in mind, car manufacturers and

governments have been investing in new models and tax incentives for the purchase and adoption of

EVs, whose popularity has significantly increased over the past five years [9].

The European Union (EU) aims to be carbon-neutral by 2050. This objective is the heart of the

European Green Deal and in line with the EU’s commitment to global climate action under the Paris

Agreement [10]. To achieve this goal, in 2022 the EU’s environment ministers approved a new “Fit

for 55 in 2030” package [11], which orders that only zero-emission vehicles can be sold in Europe from

2035 [12]. The United States of America (USA) and the United Kingdom (UK) are also targeting net-zero

emissions by 2050, China and Russia by 2060, and India by 2070 [13], together with the EU, the biggest

polluters in the world.
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Due to all these factors, the number of EVs will certainly increase in the upcoming years. However,

the EV rise poses several challenges in the power systems, mainly at the distribution level [14]. Uncon-

trolled EV charging has negative impacts on the existing power grid, including high load peaks, voltage

instabilities, higher energy use, and degradation of power quality, among others [15]. Therefore, reliable

control and understanding of the EV charging process will be essential.

Utilities, Distribution System Operators (DSOs), and Charge Point Operators (CPOs) need to quan-

tify the impacts on grid infrastructure and network reinforcement demands to address future challenges

and opportunities associated with EV mass adoption. EV batteries also represent a flexibility potential

that may become increasingly valuable to the energy system as RES increase in prevalence. The iden-

tification of typical profiles is of great relevance for these entities to perform a successful and intelligent

integration of EVs in the energy system.

1.2 Objectives

The main aim of this work is to investigate the possibility of identifying different groups of EV charging

processes, through clustering, to provide support in characterizing EV charging profiles, EV user be-

havior profiles, and Electric Vehicle Supply Equipment (EVSE) accessibility, based on comprehensive

datasets of empirical charging processes. A detailed insight into the complexity of EV charging behavior

has enormous significance for the future sizing of distribution grids and charging infrastructures. It can

also be helpful in future studies, particularly in the coordination of EVs with solar and wind renewable

energies. Beyond this goal, this thesis aims to answer the following research questions:

• Can EVSEs and EV users be classified according to their charging behavior?

• What are the most suitable clustering methods to classify the EV charging and EV user behavior?

• Which applications can benefit from the information extracted through clustering methods?

1.3 Related Projects and Scientific Outputs

The work carried out as part of this thesis was developed under the scope of the following research

project:

• Horizon Europe EV4EU – Electric Vehicles Management for carbon neutrality in Europe, funded

by the European Union under grant agreement no. 101056765. Views and opinions expressed are

however those of the authors only and do not necessarily reflect those of the European Union or

CINEA. Neither the European Union nor the grating authority can be held responsible for them.
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The developed work resulted in the following outputs:

Scientific articles:

• M. Forte, C. P. Guzman, and H. Morais, “A Comprehensive Review of Clustering Methods Applica-

tions in Electric Mobility”, submitted to Renewable and Sustainable Energy Reviews, under review

since Jul. 2023;

• M. Forte, C. P. Guzman, A. Lekidis, P. M. S. Carvalho, and H. Morais, “Clustering Methodologies

for Electric Vehicles Supply Equipment Flexibility Characterization”, submitted to Electric Power

Systems Research, Special Issue 23rd Power Systems Computation Conference (PSCC 2024),

under review since Oct. 2023.

Others:

• Participation in the Workshop “The Consumer’s Role in the Energy Transition” organized by Uni-

versidade Federal de Juiz de Fora, Brasil, on July 21st, 2023, with the presentation “Clustering

Methodologies for the Identification of EV Patterns”;

• Participation in EV cluster analysis, writing of content, and scientific review of the Horizon Europe

Project EV4EU Deliverable D3.3 - EVs use Clustering results report (under internal review).

1.4 Organization of the Document

This document is structured as follows. The present chapter introduces the main motivation and ob-

jectives of this thesis. Chapter 2 addresses the background history and current state of EVs with some

insights into the charging process. Chapter 3 starts by exploring the definition of clustering, followed by a

state-of-the-art review of the clustering applications in EV-related data. Additionally, the main objectives

of the thesis are outlined along with their differences. Chapter 4 presents the definition and proposal

of methodologies to achieve the intended objectives, along with a complete description of the chosen

datasets, clustering methods, and evaluation metrics. Chapter 5 details the obtained results for each

objective and summarizes the main findings of the work. It also proposes practical applications. Finally,

Chapter 6 contains the conclusions and possible future work.
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2.1 History & Current State of EVs

It is hard to pinpoint the invention of the electric car to one inventor or country. Instead, it was a series

of breakthroughs (from the battery to the electric motor) in the 1800s that led to the first EV on the road.

Around 1832, Robert Anderson developed the first crude EV, but it wasn’t until 1881 that Gustave Trouve,

a French electrical engineer, reportedly created the first battery-powered EV, a tricycle. It weighed

160 kg and was powered by lead-acid batteries [16]. The taxi “Electroboat” was the first EV in the USA,

introduced by William Morris in 1889. It had a top speed of 32 km/h and 40 km range, which was a

significant advance over earlier models. In 1900, 22% of the 4200 vehicles sold in the USA were ICEVs,

while 38% were EVs [17]. But EVs began to lose some relevance and their use declined as Henry

Ford decided to mass-produce the Model T, which made gasoline-powered cars broadly accessible and

reasonably priced in 1908, dominating the market.

However, the 1973 Arab oil crisis encouraged the development of alternative energy sources, and

the interest in EVs returned [18]. Even NASA contributed to increasing awareness of EVs when, in

1971, its electric Lunar rover became the first piloted vehicle to drive on the moon. The invention of

more powerful and durable motors, Direct Current (DC) to Alternating Current (AC) inverters, and effec-

tive battery management systems, together with the breakthrough in microprocessors in the 1980s and

1990s, all helped to revive interest in EVs. Since then, automakers have been developing prototypes

in response to new transportation emissions restrictions. First-generation EVs from this modern era in-

clude Toyota Prius (1997 Plug-in Hybrid Electric Vehicle (PHEV)), Tesla Roadster (2008 Battery Electric

Vehicle (BEV)), and Nissan Leaf (2011 BEV). Moreover, with the Paris Agreement [2], reducing GHG

emissions has been a priority, and EVs became part of the solution.

Following the nomenclature of the International Energy Agency [19], in this thesis, the term “EV”

includes BEVs and PHEVs unless otherwise specified. Recent reports reveal that the EV stock has

increased exponentially in recent years, as shown by Figure 2.1, especially BEVs.

Figure 2.1: Global sales and market share of EVs, 2012-2022 (Data from [19]).
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In 2022, global EV sales achieved 10.2 million units (up 55% relative to 2021), representing around

14% of the market share, and the EV car stock represented 2.1% of the global fleet [19]. More than USD

425 billion were spent on EVs globally in 2022, a rise of around 50% from 2021, with a strong focus on

SUVs (or Sports Utility Vehicles) and big cars, similar to the pattern seen in ICEV markets.

EV sales in Europe follow the worldwide trend. In 2022, 2.7 million EVs were sold, an increase of

more than 15% compared with 2021. The European market for EVs represented 2.4% (7.8 million) of the

global automobile stock [19]. Despite the slower growth in 2022 (63.5% growth in 2021 compared with

2020), EV sales are still increasing in the context of continued contraction in the European car market.

In Stated Policies Scenario (STEPS) [20], it is foreseen a high growth in EV sales, possibly reaching

36% sales share and 15% stock market share in 2030 [19].

Although there are different technologies to power electric motors, battery packs are the primary

power source for this new EVs [17]. Nowadays, BEVs can travel up to 700 km on a single charge, unlike

early models that would often last less than 100 km due to battery constraints. The capacity of the

batteries, the overall efficiency of the EV, and the management strategies directly impact the range [21].

Figure 2.2 presents the Top-5 best-selling EVs in 2022 with their respective maximum ranges.

Figure 2.2: Range of best-selling EVs worldwide in 2022 (Data from [21] and [22]).

The battery pack of these BEVs needs to be recharged. Thus, there is an urgent demand to build

Charging Stations (CSs) to meet the needs of drivers. According to [23], the number of public EVSEs

reached more than 2.7 million in 2022, of which around one-third were fast chargers (Figure 2.3).

The EU had 13 EVs per EVSE in 2022, above the 2014 Alternative Fuel Infrastructure Directive [24]

suggestion of 10 EVs/EVSE by 2020. The “Fit for 55 in 2030” package [11] includes a proposal to repeal

this directive and turn it into a regulation, the Alternative Fuels Infrastructure Regulation. Article 3 [25]

mandates 1 kW of publicly available charger per BEV and 0.66 kW per PHEV by 2030.

In addition to light-duty personal vehicles, electrification is reaching other categories, including two

or three-wheelers, commercial and heavy-duty vehicles [26]. In fact, 27 nations (including the USA and

EU) have committed to achieving 100% sales of zero-emission buses and trucks by 2040 [27].
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Figure 2.3: Evolution of public EVSEs worldwide, 2012-2022 (Data from [23]).

2.2 EV Charging Process

In the context of EV charging, the terms EVSE and CS are often used interchangeably. This thesis

follows the terminology outlined by the EU - Sustainable Transport Forum [28]. While commonly referred

to as a “charger” or a “charging point”, an EVSE is technically the equipment that provides electricity

to an EV. On the other hand, a CS is a physical object that includes one or more EVSEs sharing a

common user identification interface (similar to a gas pump with multiple refueling hoses for ICEVs).

These definitions collide with the general idea of an EV charging station as the equivalent of an ICEV

gas station. However, according to [28], a site with one or more CSs and the associated parking lots is

known as a Charging Pool (CP) and is operated and managed by a CPO.

Regarding the charging process, conductive EV charging can be divided into three categories:

Level 1 (slow process, uses a regular 120-volt wall plug, found in all houses and garages), Level 2

(requires a dedicated 240-volt charger, but it’s 15 times faster than Level 1), and Level 3 (mostly known

as DC fast charging, uses 480+ volts, found in public places). An EV receives AC from Level 1 and

Level 2 chargers, which is then converted to DC internally by the EV (slow process). EV batteries only

support DC power. In contrast, no conversion is necessary when using a DC fast EVSE. Level 1 and

Level 2 chargers use Type 1 connectors typically in America (SAE J1772), and for European and Asian

vehicles, Type 2 connectors are standard. Dimitriadou et al. [29] present an overview of the current

status of the infrastructure utilized for the realization of both conductive and wireless charging of an

EV battery, presenting a detailed exposition of the respective standards and charging levels, as well as

future challenges and opportunities.
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The present chapter starts by exploring the definition of clustering, followed by a literature review of

clustering applications in EV-related data. Additionally, the main objectives of the thesis are outlined, as

well as their differences and characteristics.

3.1 Clustering Methods

In the literature, cluster analysis has received a lot of attention and has been researched extensively.

There are papers such as [30], published in 1969, that helped to investigate and develop various

mathematical and classification techniques. Nevertheless, it is important to first give a brief introduction.

Cluster analysis, often known as clustering, is not a specific algorithm, but rather the general prob-

lem of partitioning a dataset into natural subgroups called clusters [31]. Objects within the same group

should be as similar as possible (based on a similarity measure), while objects between different groups

should be as dissimilar as possible. Clustering uses almost no information to evaluate the data and

does not require a separate training dataset to determine the model parameters (unsupervised learning

approach). It is the main objective of exploratory data analysis, a popular statistical analysis technique

that is applied in a variety of domains, including pattern recognition, image analysis, bioinformatics, and

Machine Learning (ML) [32]. Figure 3.1 provides a simple illustration of clustering.

Figure 3.1: Simple illustration of clustering in two dimensions (Adapted from [33]).

Since there is no clear definition of the term “cluster”, numerous clustering methods for distinct strate-

gies have been developed, further discussed in the following sections. In this document, the notation

and nomenclature follow the ones defined by Zaki and Meira [31], presented in Figure 3.2.

Figure 3.2: A summary of clustering methods (Based on [31]).
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3.1.1 Representative-based Clustering

Representative-based clustering aims to divide a dataset into k clusters. Each cluster is characterized

by a representative point (called centroid), commonly chosen as the mean of within-cluster points. The

K-means and Expectation-Maximization (EM) algorithms are examples of representative-based cluster-

ing approaches:

• K-means [34] is a greedy technique that minimizes the squared distance between points and their

corresponding cluster means. It also conducts hard clustering, meaning that each point is assigned

to only one cluster;

• EM [35] generalizes K-means by modeling the data as a mixture of normal distributions (Gaussian

Mixture Model (GMM)) and maximizing the likelihood of the data to find the cluster parameters (the

mean and covariance matrix). It is a soft clustering approach since it returns the probability of a

point belonging to each cluster. EM is the algorithm utilized by the GMM clustering method.

3.1.2 Hierarchical Clustering

Hierarchical clustering techniques create a sequence of nested partitions, which can be visualized as a

tree, also called dendrogram, indicating the merging process and the intermediate clusters. The highest

level (root) of the tree consists of all points in one single cluster, whereas the lowest level (leaves)

consists of clusters of individual points, each point in its cluster. If the desired number of clusters is

known, one can graphically see the level at which k clusters exist. There are two algorithmic approaches

to get Hierarchical clusters [36]:

• Agglomerative: Start with the points as individual clusters and, at each step, merge (or agglomer-

ate) the most similar or closest pair of clusters until the desired number of clusters has been found.

This requires a definition of cluster similarity or distance;

• Divisive: Start with one cluster (all points), and at each step, divide a cluster until only clusters of

individual points remain. In this case, it is required to decide, at each stage, which cluster to split

and how to perform it. It works just the opposite of the Agglomerative approach.

3.1.3 Density-based Clustering

Density-based clustering methods use the density or connectedness properties to find nonconvex

clusters. This type of clustering employs the local density of points to determine the clusters rather

than using only the distance between points, such as in K-means or EM. The most popular methods

are Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [37] and Ordering Points To

Identify Cluster Structure (OPTICS) [38].
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3.1.4 Spectral/Graph Clustering

The goal of Graph clustering is to cluster the nodes by using the edges and their weights, which

represent the similarity between the incident nodes. Graph clustering can be viewed as an optimization

problem over a k-way cut in a graph, with different objectives represented as spectral decompositions of

various graph matrices, derived from the original graph data or the kernel matrix, such as the adjacency

matrix and Laplacian matrix [39]. The graph can then be split into connected components using a

specific graph cut method, and those components are referred to as clusters.

3.2 Applications of Clustering in EV Data

EV charging data has been submitted to clustering to identify the most common and recurrent profiles

[40–42]. The literature often considers EV charging and EV user behavior profiles synonyms. Authors

name their work depending on the dataset and the chosen fields. The same does not happen for EVSE

accessibility, whose studies utilize EVSE location data and not EV charging data.

For example, Shen et al. [43] grouped the charging sessions by each user and then performed clus-

tering, naming his work EV user charging behavior identification. Shahriar and Al-Ali [44] also utilized the

same dataset but clustered the features without grouping the data by user, naming it charging behavior

clusters. Ultimately, the two studies found groups with similar charging behavior characteristics. Thus,

this section presents the most relevant work done in each of these areas, divided into the subsections

EV Charging & User Behavior Profiles, EVSE Accessibility, and Summary of Literature Review.

3.2.1 EV Charging & User Behavior Profiles

Working with a large dataset from metropolitan areas of the Netherlands, Helmus et al. [45] carried out

a two-step, bottom-up data clustering approach that first employs GMM to cluster charging sessions

and then portfolios of charging sessions per user using K-Medoids (comparable to K-means clustering).

The study considers starting time, connection duration, the distance between two sessions, and hours

between sessions as features. From the first step, thirteen clusters were found: 7 types of daytime

and 6 types of nighttime charging sessions. The second step resulted in nine distinct clusters: 3 clusters

contained daytime users, 3 nighttime, and the other 3 featured unusual users. The study is well-detailed,

yet perhaps too complex. It requires careful reading and prior knowledge of some of the methods.

On the other hand, Märtz et al. [46] claim they used the most extensive (private) dataset on charging

patterns from an EV perspective known in the literature, containing approximately 21 000 BMW i3 BEVs

and about 2.6 million charging processes during one year (2019). The authors performed GMM cluster-

ing on the EV charging behavior, utilizing plug-in time and duration as features, and discovered seven

distinct clusters: 3 overnight and 4 daytime. The authors conducted a second analysis with K-means
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clustering to identify switching EV users between clusters. They also made known the flexibility potential

of the EV charging processes, concluding that there was a huge potential: on average, the temporal

flexibility was 8 hours. The methods are well described, and the decisions are thoroughly justified, lead-

ing to outstanding illustration and understanding of the characteristics of the clusters found, turning this

analysis into one of the most complete in the literature.

Shahriar and Al-Ali [44] conducted one of the most interesting analyses found. They performed

cluster analysis with K-means, Hierarchical clustering, and GMM to identify similar groups of charging

behavior, based on arrival and departure times, on real public EV charging activity during the COVID-19

pandemic. K-means produced the best results, followed by Hierarchical clustering. The authors only

discovered three clusters corresponding to the knee of the elbow method curve. The study’s drawbacks

include only employing a single method for establishing the appropriate number of clusters and selecting

only two features to group the data (arrival and departure times), resulting in generic results.

The K-means technique was employed by Shen et al. [43] to identify charging behavior clusters.

The authors supervised the clustering results and adjusted them to achieve the best possible outcomes,

something fundamental when data is sparse and/or irregular. To obtain typical user behavior, the data

was grouped by user, leading to the average charging time, the standard deviation of charging time,

and the standard deviation of connection time as the basis for the clustering. Three clusters were

discovered. Two groups were identified as stable and predictable users, but the third cluster comprised

unexpected users. Similarly, Xiong et al. [47] attempted to find EV user behavior by organizing the data

by the user. Thus, the tuple (average arrival time, average departure time, standard deviation of arrival

time, standard deviation of departure time) represented each user. In addition to these, the authors

also incorporated another field, the so-called Pearson correlation coefficient, between stay duration and

energy consumption. With this data, they performed clustering with K-means, obtaining four profiles.

Van Kriekinge et al. [48] proposed a methodology to simulate the charging demand for different types

of drivers. Typical EV driver profiles with similar charging habits are needed to accomplish this goal. All

charging sessions from a private dataset were replaced by one specific theoretical charging session

per EV driver (average value of the plug-in times, parking times, and charged energy) with the goal of

obtaining user behavior profiles. The result is a mean behavior for each driver. The clustering proposed

in this study works in two stages: cluster the average characteristics per EV user and then analyze the

frequency of charging, always with the K-means algorithm. The results indicated five clusters, with big

differences in behavior between the EV drivers. In addition, the Kernel Density Estimation (KDE) process

allows capturing the details of each cluster, helping in the final simulation stage, which demonstrated a

strong impact on power and energy demand when adding new EV users to the population.

Gerossier et al. [49] employed Hierarchical clustering to identify four groups of EV charging behavior.

The authors received data in time-series format, which they processed to extract individual sessions
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categorized by start-up time (initial plug-in time) and duration of the charging process, following a method

well described and presented in the study. Most customers belonged to the first group, where charging

was typically performed during the evening and morning.

3.2.2 EVSE Accessibility

Given the previously mentioned studies, it may seem that clustering is only applied to EV charging data.

However, the focus of the literature goes beyond charging patterns. As EV sales increase, the location

and accessibility of EVSEs may become an issue, which clustering can help to address.

Carlton and Sultana [50] performed spatial clustering of public EVSEs to analyze the characteris-

tics of their land use, and how these characteristics impact EVSE accessibility. The authors applied

DBSCAN to identify spatially clustered Level 1, Level 2, and DC fast-charging infrastructures in the

Chicago Metropolitan Area. The results indicated that access to EVSEs is unequal between suburban

and urban neighborhoods, bringing social inequalities into view and preventing the widespread of EVs.

Similarly, Borlaug et al. [51] conducted an extensive study on the accessibility and utilization of 3 705

public Level 2 and Level 3 EVSEs in the USA over 2.5 years (2019-2022), observing usage patterns

over time. They also performed a regression analysis to evaluate the correlation between CS utilization

and various contextual and environmental factors. The study concluded that the presence of DC fast

chargers resulted in decreased utilization of Level 2 EVSEs. Furthermore, as of March 2022, EVSE

utilization was still below pre-pandemic levels.

Finding the most appropriate location to place EVSEs is a big problem. Most research papers con-

centrate on building placement models and positioning CSs based on objective functions and restric-

tions [52]. To prove that clustering can produce more accurate and understandable results, Li et al. [53]

proposed a technique for finding EVSE locations in Qingdao, China, in response to the expanding de-

mand for electric taxis. Electric taxi information and charging needs are derived from the extensive GPS

trajectories of gasoline taxis. To find the ideal site for the CSs, the Qingdao area is subjected to multiple

same-type clustering and multi-type clustering methods. The K-means and Agglomerative Hierarchical

clustering revealed that the positioning results of the multi-type clustering are more credible.

Kalakanti and Rao [54] addressed two main problems related to EVSE: the EVSE location and the

EVSE need estimation. This work investigated different explainable solutions based on ML and simu-

lation. For the problem of EVSE location, the authors utilized a geolocation dataset of EV households

to perform a comprehensive analysis with different classes of clustering methods, namely K-means,

GMM, OPTICS (similar to DBSCAN), and Spectral clustering. The results were compared with the

existing EVSE location in Austin, USA (to show the improvement over the existing setup), and with a

greenfield area like Bengaluru, India, where synthetic EVSE data were used. Silhouette coefficient,

Calinski-Harabasz, and Davies-Bouldin index were the chosen metrics to evaluate the clustering results.
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3.2.3 Summary of Literature Review

As previously mentioned, there are some recent studies conducted with the specific intent of obtaining

typical profiles for EV data. However, most of these studies lack practical relevance to help DSOs

and CPOs with grid management, and due to the uncertainty of the charging data and the employed

methods, it is difficult to achieve a generalized result across all the analyzed studies. It is also important

to note that most of these (few) studies utilized datasets from countries outside of Europe. Thus, there

is an opportunity to conduct studies that close this gap. Table 3.1 summarizes the analyzed studies.

Table 3.1: Summary of the most relevant EV and EVSE clustering papers reviewed.

Study Brief summary Clustering method Dataset Conclusions

Helmus et al. [45]
Amsterdam,
Netherlands
2020

Provides a realistic analysis of
charging behavior and EV user
types based on clustering,
differing from the typical
literature that is frequently
oversimplified

GMM for clustering
and Partition Around
Medoids to find
portfolios of charging
sessions per user

5.82 million charging
transactions (January
2017- March 2019)
from the Dutch
metropolitan area

13 clusters were found: 7
types of daytime charging
sessions (4 short, 3
medium duration) and 6
types of overnight charging
sessions

Märtz et al. [46]
Germany
2022

Investigates the possibility of
identifying different clusters
of EV charging processes,
validating the results against
synthetic load profiles and
the original data

GMM and K-means

2.6 million private
charging processes
of 21 000 BMW’s i3
model from 2019 in
Germany

High number of charging
opportunities during day,
as well as user exchange
between charging clusters,
to reduce localized energy
demand. Found 7 clusters

Shahriar and Al-Ali [44]
UAE
2022

Investigates the impacts of
COVID-19 on EV charging
behavior by analyzing the
charging activity during the
pandemic

K-means, Hierarchical
clustering, and GMM

ACN dataset, from
Caltech University
Campus

Identified 3 groups of char-
ging behavior. The best
clustering was obtained
using K-means followed by
Hierarchical clustering

Shen et al. [43]
USA & Canada
2020

To manage (dis)charging
behavior of EVs in the smart
grid, proposes a communica-
tion network for analysis and
prediction of user behavior

HITL-based K-means
clustering and K-NN
algorithm for predic-
tion

ACN dataset, from
Caltech University
Campus

Identified 2 clusters of
stable, predictable users,
but the third cluster was
found to be unexpected
users

Xiong et al. [47]
Los Angeles, USA
2018

Proposes an EV user behavior
technique, using unsupervised
and deep learning techniques,
applied to historical EV data
to make the day-ahead park-
ing and charging prediction

K-means for clustering,
multilayer perceptron
for classification

More than 4 years
data of the UCLA
SMERC smart
charging network
infrastructure

Identified 4 clusters, with
3 relatively predictive
behavior, but one cluster
represented random
traveling schedule and
energy consumption

Kriekinge et al. [48]
Brussels, Belgium
2023

Proposes a methodology to
simulate charging demand for
different EV driver types. The
identification of similar profiles
is performed using clustering

K-means for clustering
and KDE to better
capture details for the
simulation stage

8 755 private EV
charging sessions
(Jul 2018 - Jan 2022)

Identified 5 clusters, with
distinct and different
characteristics, showing
good clustering results

Gerossier et al. [49]
Texas, USA
2019

Models the consumption
profile of EVs from raw power
measurements. The charging
habits model is then used for
forecasting short-term (1 day
ahead) and long-term (2030)

Hierarchical clustering
with Ward’s method

46 private EV char-
ging data recorded
every minute of the
year 2015 in Texas

Identified 4 clusters.
Simulating the projected
demand in 2030, it
appears that the growth in
EVs will have little effect
on the load curve’s shape

Carlton et al. [50]
North Carolina, USA
2022

Performs spatial clustering of
public EVSE to analyze their
associated land use tendency,
and how these can impact
EVSE accessibility

Hierarchical clustering
based on DBSCAN

Public EVSE location
data from the
Alternative Fuel Data
Center (AFDC)

Majority of level 2 EVSE,
only 26% of clusters with
mixed land uses
(residential, commercial
and recreational)

Kalakanti and Rao [54]
India
2022

Aims to solve two problems:
the EVSE placement and the
EVSE need estimation, to
guide the urban planners in
making better decisions

K-means, GMM,
OPTICS, Spectral
clustering, and
other ML methods

Austin Charging
Station Network real
geolocations

K-means and GMM consis-
tently yielded the best
results, with OPTICS and
Spectral clustering often
wrong or nonsense
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3.3 EV Charging profiles vs EV User Behavior profiles vs EVSE

Accessibility

The literature often considers EV charging and EV user behavior profiles synonyms, as previously dis-

cussed in Section 3.2. However, in this thesis, the two types of profiles are not synonymous as they

represent and characterize different information.

An EV charging profile aims to characterize the times of day when more or fewer charging sessions

occur, whether the sessions are high energy, low energy, long or short-term, with high or low flexibility

potential. On the other hand, an EV user behavior profile intends to give an understanding of whether

the user’s behavior is recurrent, routine, or, on the other hand, random and without a typical charging

frequency. For these studies, it is necessary to use a dataset of charging information about the EVSEs

and the users. Regarding EVSE accessibility , the required information is the location of the EVSEs

since the aim is to understand the geographic distribution of the corresponding CPs, whether the current

supply is in line with the demand, and whether there are inequalities in access to EVSEs that prevent

the widespread use of EVs.
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This chapter presents the defined methodology and the proposed solution. The main characteristics

of the chosen datasets are presented, followed by a description of each of the defined stages necessary

to achieve the objectives of this thesis.

4.1 Solution Proposal

Few studies investigate EV real-world charging sessions due to the lack of this open data, resulting in

typical EV profiles with high uncertainty. In this thesis, only real-world data will be used to avoid these

uncertainties when performing clustering. Additionally, the goal is to find EV charging profiles, EV user

behavior profiles, and the overall EVSE accessibility (Section 3.3). The overview of the methodological

approach for the proposed solution is illustrated in Figure 4.1.

Stage 1 – Preprocessing 

Deal with Missing Data

Remove
correspondent row 

Replace entries 
using interpolation

methods

IQR Isolation 
Forest 

Deal with Outliers 

Elliptic 
Envelope

Dataset Preparation

Choose desired 
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available datasets 

Create new      
datasets with               

functional entries 

Thresholds for data removal 

Stage 2 – Clustering 

Apply Clustering Methods

K-means Agglomerative 
Hierarchical Clustering
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kWTime …

⋮
⋮

GMM DBSCAN
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Cluster Validation
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Davies - Bouldin Index

Calinski - Harabasz Index

Identify EV Charging profiles,

EV User Behavior profiles, and
EVSE Accessibility

Determine optimal no. of clusters

Goal

Figure 4.1: Overview of methodological approach.

Starting with the data, a thorough description of the selected datasets is provided in Section 4.2. The

data preprocessing and cleaning approaches are explained in Section 4.3 and Section 4.4 describes,

in detail, the chosen clustering algorithms to perform EV data analysis. Finally, the selected cluster

validation techniques are described in Section 4.5.

4.2 Data Description and Analysis

There is no cluster analysis without a dataset. Therefore, it is essential to have an adequate EV charging

dataset. Amara-Ouali et al. [55] perform an outstanding study of the best EV open data available,

providing the community with a structured and carefully selected list of open datasets ready to be used

to foster data-driven research in this field. Furthermore, Calearo et al. [56] present a review of data

sources for EVs, categorized into different classes by the type of data and its availability.
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Based on these papers, an open dataset was found and will be utilized: ACN-Data, to identify EV

charging profiles and EV user behavior profiles. In addition to open data, this thesis had access to private

datasets from several European partners in the context of the EV4EU project [57], from countries like

Denmark, Greece, Slovenia, and Portugal. Thus, by performing deep analyses of this data, this thesis

contributes to filling the lack of European studies identified in Section 3.2. The private dataset of public

EVSEs in Greece (GR-Data) is one of the most complete and was therefore chosen to be studied to find

EV charging profiles, EV user behavior profiles, and the EVSEs’ accessibility. Both datasets are in the

charging event format (1 row of the dataset, 1 EVSE transaction). Table 4.1 presents a summary of the

characteristics of the chosen datasets.

Table 4.1: Summary of the main characteristics and available fields in the chosen datasets.

Datasets ACN-Data GR-Data

File Format Charging Event JSON file Charging Event CSV file

Time Interval 25 Apr 2018 - 14 Sep 2021 01 Jul 2021 - 05 May 2022

Total Sessions 31 424 22 412

Number of different EVSEs 55 312

EVSE ID and Location Only Identification Both

Plug-in and Plug-out Times Yes Yes

Start and End Charging Times Yes Only Start Charging Time

Charging Duration No No

Energy Consumed Yes Yes

EVSEs’ Max Power No Yes

Customer ID Yes Yes

4.2.1 ACN-Data Dataset

Zachary J. Lee, Tongxin Li, and Steven H. Low are responsible for the public release of the ACN-Data

dataset [58]. In [59], they describe the characteristics of the dataset, how they manage to get the data

and prove that it has several possible applications, including clustering of EV charging data using GMM.

ACN-Data was collected from two Adaptive Charging Networks (ACNs) located in California, USA,

namely in Caltech and in NASA’s Jet Propulsion Laboratory (JPL). The ACN on the Caltech campus is

located in a parking garage, containing 54 EVSEs Level 2 with rated 6.656 kW and one 50 kW DC fast

charger. The JPL campus is closed to visitors, and only employees are permitted to use the EVSEs,

unlike the Caltech ACN, which is accessible to everyone and frequently used by drivers not affiliated

with Caltech. Caltech is a cross between workplace and public use charging, whereas the JPL site is an

example of workplace charging. Thus, only the Caltech ACN dataset is going to be used in this thesis,

as it presents more comprehensive data that does not solely focus on workplace behavior. At the time

of writing, ACN-Data has 31 424 EV charging sessions. The first session was Apr 2018 and the last was

Sep 2021. The monthly evolution of charging sessions is presented in Figure 4.2.
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Figure 4.2: Charging activity per month in the ACN-Data dataset.

High charging activity can be observed at the beginning of the data recording period, with a peak of

sessions from August to October 2018, with 2350 sessions per month on average during these months.

In fact, until September 2018, there was a regular increase in EV charging sessions, which gradually

decreased during the rest of the year. This behavior may indicate a higher number of users who attend

this CP because it was a new and innovative space open to the general public. In 2019, there was a

stabilization in the number of sessions, with an average of around 900 per month. This value remained

constant in January and February of 2020, after which there was a significant drop in charging activity

due to COVID-19, multiple electricity blackouts, and forest fires during this time [44]. EV charging activi-

ties resumed in November 2020, gradually growing from there. The number of sessions was already at

pre-COVID levels in the last week of accessible data, in September 2021.

4.2.2 GR-Data Dataset

The private GR-Data dataset is courtesy of one of the Greek EV4EU project partners. This dataset was

chosen since it is one of the most complete EV4EU datasets available in the charging event format,

allowing for equal comparison with the ACN-Data dataset. It has a total of 22 412 charging sessions.

The GR-Data dataset was collected from public EVSEs in Greece, mainly located in high-traffic

and quick-stay areas such as highways, gas stations, supermarkets, and stores. There are a total of

312 EVSEs with registered sessions in the dataset, of which only eight are Level 3: six EVSEs with

50 kW, one with 60 kW, and one with 120 kW. All the remaining chargers have 22 kW maximum power.

Figure 4.3 illustrates the monthly and weekly evolution of session numbers, from which one sees an

increase until the end of November 2021, reaching a maximum around this time. However, there was a

sharp decline in December 2021 and January 2022, coinciding with Greece’s highest peak of COVID-19

cases due to the Omicron variant. The session numbers remain consistent throughout the remainder of

2022, with an increasing trend.
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(a) Monthly activity.
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(b) Weekly activity.

Figure 4.3: Charging activity in the GR-Data dataset.

4.3 Stage 1: Data Preprocessing and Cleaning

According to earlier research [44,46,60], data cleaning and preprocessing are two key processes in ob-

taining interpretable results from cluster analysis, including handling missing data and outliers, creating

new fields, and normalizing the data before applying any method.

4.3.1 Deal with Outliers and Missing Data

Some datasets’ entries might have missing information, including the plug-in/plug-out times or energy

consumed, for example, that prevents the correct implementation of clustering methods and the desired

outcomes. Interpolation using nearby entries can be used to replace these absent values. Another

possibility would be to remove the datasets’ rows corresponding to missing entries, resulting in a dataset

with solely accurate and unaltered data. The optimal alternative should be studied and evaluated for

each dataset. On the other side, there might also be inaccurate information in some entries, such

as an abnormal energy supply, or EV drivers with an excessive number of sessions. These points,

known as outliers, should be handled and eliminated using, for instance, techniques like Interquartile

Range (IQR), Elliptic Envelope, Isolation Forest, or by defining thresholds for data removal.

IQR [61] is the range between the first (Q1) and the third (Q3) quartiles: IQR = Q3 −Q1. The data

points which fall below Q1− 1.5IQR or above Q3+1.5IQR are considered outliers. Elliptic Envelope’s

algorithm [62] creates an imaginary elliptical area around the given dataset. Values that fall outside

the envelope are returned as outliers. This model performs best when the dataset has a Gaussian

distribution. Isolation Forest [63] is based on the Decision Tree algorithm. It isolates the outliers by

randomly selecting a feature from the given dataset and then selecting a split value between the max

and min values of that feature. This random partitioning of features will produce shorter paths in trees

for the anomalous data points, thus distinguishing them from the rest of the data.
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The preprocessing stages of Shahriar and Al-Ali [44] included converting the arrival (plug-in) and

departure (plug-out) values to a suitable numeric structure. The minute was divided by 60, converting, for

instance, 10h17 to 10.28h. Furthermore, the length of charging sessions was calculated by subtracting

the arrival time from the departure time since the ACN-Data dataset does not have the charging duration

field. This may be a crucial and essential preprocessing step since this dataset will also be employed in

this thesis’ cluster analysis. Märtz et al. [46] found that the continuous values used to represent the date

and time of EV plug-in and plug-out are difficult to cluster, as they are scattered throughout the year.

Thus, the BMW i3 dataset was adjusted to allow useful clustering. The first step was to set all charging

activities to start on the same day while maintaining the plug-in time instant. However, this approach

had a drawback related to plug-in and plug-out spatial proximity loss. Consequently, adjustments had to

be made to recover the spatial proximity, considering the period of lower charging activity.

One of the most crucial steps corresponds to the normalization of the data before clustering, es-

pecially when working with several fields/features. Clustering algorithms are sensitive to the scale of

the data. These methods work with distances, densities, or both, and if distinct features have different

scales, then some features may dominate over others. Normalizing the data ensures that each entry

contributes equally to the distance calculation between data points, helping to improve the accuracy of

the clustering algorithms and generate good-quality clusters. Consequently, each dataset field (column)

should range from 0 to 1, allowing an overall normalization of the data. To achieve this, the MinMaxScaler

method from the scikit-learn Python library [64] can be applied.

4.3.2 Feature Engineering

Another relevant step comprises creating features not previously included in the dataset that help to

analyze and obtain more meaningful clustering, the so-called feature engineering [65].

As previously mentioned and presented in Table 4.1, the two datasets do not provide all the required

fields to obtain EV charging profiles and EV user behavior profiles. Therefore, additional fields must be

created, and their calculation adjusted according to the information provided in the datasets.

Two periods can be obtained, based on the study from Develder et al. [66]: the time (t) the EV was

parked and plugged into the EVSE (Sojourn Time), and the fraction thereof that is effectively spent on

charging (Charging Time). With these two indicators, the Idle Time can be determined, as a measure of

flexibility of the charging process. More formally, these new features can be defined as

Sojourn Time = t plug-out − t plug-in, (4.1)

Charging Time = tend charging − tstart charging, (4.2)

Idle Time = Sojourn Time− Charging Time. (4.3)
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ACN-Data contains all the necessary information required to compute expressions (4.1) and (4.2),

with the start charging time equal to the plug-in time field. However, GR-Data does not provide access

to the session’s end of charging, and consequently (4.2) cannot be employed. Instead, GR-Data offers

information on the maximum power capacity of the EVSEs. As a result, it is possible to obtain an

estimated value of the charging time for each session through (4.4). An adjustment factor (equal to 0.8)

guarantees a more realistic charging time since this process is not carried out at a constant power rate; it

depends on external factors such as temperature, high loads on the grid, and the State of Charge (SoC)

(as the battery becomes fully charged, the charging rate decreases), among others [67]. Thus, this

factor ensures a 20% safety margin for the maximum power value.

Average Charging Timesession i =
Energy Deliveredi

(maxPower EV SE)i ×AdjustmentFactor
(4.4)

Regarding the EV user behavior profiles, the datasets’ sessions should be grouped by customer ID

to obtain characteristic average values for each EV user, based on the papers reviewed in Section 3.2.

Defining standard deviations for temporal fields, including plug-in time, charging time, or sojourn time,

can offer valuable details into the variability and dispersion of these fields. For instance, a high standard

deviation for plug-in time suggests that the driver usually starts charging at no specific time of day.

Additionally, since the main goal is to get insights into the frequency of charging, a new field must be

associated with the users to differentiate regular EV drivers from occasional ones, defined by

Frequencyuseri
=

number of sessionsi
Period, inweeks

, (4.5)

where the period in the denominator comprises the number of weeks between the first and last session

the EV user attended the Caltech or Greek EVSEs. Thus, the frequency values indicate the average

number of days the driver charged its EV, per week.

4.4 Stage 2: Selected Clustering Methods

Three well-known clustering methods are the choice for identifying groups of similar charging patterns

and EV user behavior: K-means, GMM, and Hierarchical clustering. To analyze the distribution and

accessibility of public EVSEs, DBSCAN will be employed to perform spatial clustering.

These clustering methods are frequently employed in applications related to charging behavior, as

revealed in Table 3.1. Moreover, Al-Ogaili et al. [40] and Shahriar et al. [41] precisely suggest the use of

these methods for the analysis of EV charging patterns (their studies provide a comprehensive overview

of the application of supervised and unsupervised ML techniques in EV and EVSE deployment data).
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4.4.1 K-means Clustering

The goal of K-means [34] is to find a clustering that minimizes the Sum of Squared Errors (SSE) score,

which measures the accuracy or goodness of the clustering, defined as

SSE(C) =

k∑
i=1

∑
xj∈Ci

∥xj − µi∥2, (4.6)

where xj ∈ Rd is a point from a given dataset Dn×d and µi ∈ Rd is the centroid of the cluster Ci.

As stated in the pseudo-code given in Algorithm 4.1, the points are initially assigned to the clusters

at random, with the integer k being the number of clusters. The elbow method is typically used to

determine the optimal k [68]. The points are then iteratively assigned to new centroids based on how

close they are (line 4). In each iteration, the centroids are updated based on the mean of the assigned

points (line 6). The process repeats until the centroids stop changing (defined by a threshold), and the

algorithm converges.

Algorithm 4.1: K-means
Input: (D, k, ϵ)

1 Initialize the cluster centroids µ1,µ2, . . . ,µk ∈ Rd randomly
2 repeat
3 foreach data point xj do
4 calculate distance and assign each xj to the closest µi:

Ci := argmin
i
∥xj − µi∥2

5 foreach cluster Ci do
6 compute and update centroids for each cluster:

µi :=
1

|Ci|
∑

xj ∈Ci

xj

7 until
∑k

i=1∥µt
i − µt−1

i ∥2 ≤ ϵ ;

K-means is typically run multiple times, with the run with the lowest SSE value being selected to

report the final clustering. This happens because the method begins with a random guess for the initial

centroids. In terms of computational complexity, from Algorithm 4.1 and assuming t iterations, the total

time for K-means is given as O(tnkd).

4.4.2 GMM Clustering

Given n points xj in a d−dimensional space, let X = (X1, X2, . . . , Xd) be the vector random variable

across the d−attributes, with xj being a data sample from X. The EM algorithm [35] assumes that each

cluster Ci is characterized by a multivariate normal distribution

f(x |µi,Σi) =
1

(2π)(d/2)|Σi|1/2
exp

{
−1

2
(x− µi)

T
Σi

−1 (x− µi)

}
, (4.7)
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where the cluster Ci centroid µi ∈ Rd and the covariance Σi ∈ Rd×d are both unknown parameters and

f(x |µi,Σi) is the probability density at x attributable to cluster Ci.

A Gaussian Mixture Model over all k clusters defines the probability density function of X, given as

f(x) =

k∑
i=1

f(x |µi,Σi)P (Ci), (4.8)

where the prior probabilities P (Ci) satisfy
∑k

i=1 P (Ci) = 1.

Thus, the Gaussian Mixture Model is characterized by the mean µi, the covariance Σi, and the

mixture parameters for each of the k clusters, written compactly as

θ = {µ1,Σ1, P (Ci), . . . ,µk,Σk, P (Ck)}. (4.9)

After all the key points described, moving forward is thus doable. The goal of EM is to find the

maximum likelihood estimates for the parameters θ. To achieve that, EM executes a two-step iterative

algorithm (Algorithm 4.2) that starts from an initial guess for the parameters θ.

Algorithm 4.2: Expectation-Maximization (EM)
Input: (D, k, ϵ)

1 Initialize the cluster centroids µ1, µ2, . . . , µk ∈ Rd randomly
2 Σi ← I, P (Ci)← 1

k , ∀i = 1, . . . , k
3 repeat
4 for i = 1, . . . , k and j = 1, . . . , n do
5 Expectation Step (calculate posterior probability):

wij :=
fi(xj)P (Ci)∑k

a=1 fa(xj)P (Ca)
6 for i = 1, . . . , k do
7 Maximization Step (recalculate θ):
8

µi :=

∑n
j=1 wij · xj∑k

j=1 wij

Σi :=

∑n
j=1 wij(xj − µi)(xj − µi)

T∑k
j=1 wij

P (Ci) :=

∑n
j=1 wij

n

9 until
∑k

i=1∥µt
i − µt−1

i ∥2 ≤ ϵ ;

In the Expectation Step, given the current estimates for θ, EM computes the cluster posterior prob-

abilities through the Bayes theorem

wij = P (Ci|xj) =
P (xj |Ci)P (Ci)∑k

a=1 P (xj |Ca)P (Ca)
=

fi(xj)P (Ci)∑k
a=1 fa(xj)P (Ca)

, (4.10)

since each cluster is modeled as a multivariate normal distribution [31]. Therefore, P (Ci|xj) can be

considered the weight contribution of xj to cluster Ci.
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Next, in the Maximization Step, EM recalculates θ using the weights wij . The algorithm ends when∑k
i=1∥µ

t
i − µt−1

i ∥2 ≤ ϵ, where ϵ is the convergence threshold, and t denotes the iteration.

For the Expectation Step, inverting Σi and computing its determinant takes O(kd3), and evaluating

the density fi(x) takes O(nkd2). For the Maximization Step, the time is dominated by the Σi update.

Assuming t iterations, the computational complexity of the EM method is O(t(kd3 + nkd2)).

4.4.3 Agglomerative Hierarchical Clustering

Agglomerative Hierarchical clustering starts with each of the n points in a separate cluster. Then, the two

closest clusters are repeatedly merged until all points are members of the same cluster, as shown in the

pseudo-code given in Algorithm 4.3. Given a set of clusters C = {C1, C2, . . . , Cm}, first, the closest pair

of clusters Ci and Cj are found and merged into a new cluster, Cij . Next, the set of clusters is updated,

removing Ci and Cj and adding Cij . This process is repeated until C contains exactly k clusters.

Algorithm 4.3: Agglomerative Hierarchical Clustering
Input: (D, k)

1 Initialize each cluster with a single point C ← Ci = {xi},∀i = 1, . . . , n
2 Compute the distance matrix ∆← ∥xi − xj∥,∀i = 1, . . . , n ; ∀j = 1, . . . , n
3 repeat
4 Find the closest pair of clusters: Ci, Cj ∈ C
5 Merge clusters Cij ← Ci ∪ Cj

6 Update C ← (C \ {Ci, Cj} ∪ {Cij} and ∆ to reflect new clustering
7 until |C| = k;

Finding the closest pair of clusters is the algorithm’s key step. For this, a variety of distance measures

can be employed [69] (see Figure 4.4), including:

• Single link: The distance between two clusters is defined as the minimum distance between a

point in Ci and a point in Cj . First developed by Florek et al. [70] and then independently by

McQuitty (1957) and Sneath (1957) [71];

• Complete link: The distance between two clusters is defined as the maximum distance between

a point in Ci and a point in Cj . Developed by Sørenson in 1948 [72];

• Average link: The distance between two clusters is defined as the average pairwise distance

between points in Ci and Cj . Developed by Sokal and Michener (1958) [73] to avoid the extremes

introduced by either single or complete link;

• Mean distance: The distance between two clusters is defined as the distance between the cen-

troids of the two clusters. The earliest use known of this strategy is that of Sokal and Michener

(1958) [73].
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But, possibly the most employed measure is Ward’s Method, introduced by Joe H. Ward, Jr. in

1963 [74]. The distance between two clusters is defined as the increase in the sum of squared errors

when the two clusters are merged. The objective is to minimize the total within-cluster variance. It can be

seen as a weighted version of the mean distance measure, as it weights the distance between centroids

by half of the harmonic mean of the cluster size.

Figure 4.4: Different distance measures for Agglomerative Hierarchical clustering (Adapted from [75]).

When two clusters Ci and Cj combine to form Cij , the distances between Cij and each of the

remaining clusters Cr(r ̸= i, r ̸= j) must be updated in the matrix ∆. For all of the cluster proximity

measures, the Lance-Williams [76] formula offers a general equation to recompute the distances:

δ(Cij , Cr) = αi · δ(Ci, Cr) + αj · δ(Cj , Cr) + β · δ(Ci, Cj) + γ · |δ(Ci, Cr) − δ(Cj , Cr)|, (4.11)

where the parameters αi, αj , β and γ differ from one measure to another [76].

In terms of computational complexity, Agglomerative Hierarchical clustering initially takes O(n2) time

to create the distance matrix ∆, and updating/deleting distances from it takes O(log(n)) time for each

operation, leading to a total of O(n2 log(n)).

4.4.4 Density-based Clustering (DBSCAN)

DBSCAN [37], being a density-based clustering technique, can discover nonconvex clusters, unlike

representative-based techniques that can only find Ellipsoid-shaped or convex clusters. DBSCAN uses

the local density of points to determine the clusters, rather than using only the distance between points.

The neighborhood of x ∈ Rd is defined as

Nϵ(x) = δ(x,y) ≤ ϵ , (4.12)

where δ(x,y) represents the distance between points x and y (usually Euclidean distance, but it might

be a different metric). The threshold ϵ needs to be specified.

In order to fully understand the algorithm, it is first necessary to define some important concepts:

• x is a core point if there are at least minpts points in its ϵ-neighbourhood (Nϵ(x) ≥ minpts, with

minpts a user-defined threshold);
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• A border point does not meet the minpts threshold, but it belongs to the ϵ-neighbourhood of

another point z, x ∈ Nϵ(z);

• A noise point is neither a core nor a border point (outlier);

• x is density reachable from y if there is a set of core points leading from y to x;

• Two points x and y are density connected if there exists a core point z such that both x and y are

density reachable from z.

Having the key concepts defined, understanding the pseudo-code for the DBSCAN method shown

in Algorithm 4.4 is thus possible.

Algorithm 4.4: DBSCAN
1 DBSCAN (D, ϵ,minpts):

2 Core← ∅, k ← 0 // initialize core points and cluster id

3 foreach xi ∈ D do // find core points

4 Compute Nϵ(xi)
5 id(xi)← ∅
6 if Nϵ(xi) ≥ minpts then Core← Core ∪{xi}
7 foreach xi ∈ Core, with id(xi) = ∅ do
8 k ← k + 1

9 id(xi)← k // assign xi to cluster id k

10 DENSITYCONNECTED(xi, k)

11 C ← {Ci}ki=1, Ci ← {x ∈D | id(x) = i} // define clusters

12 Noise← {x ∈D | id(x) = ∅}
13 Border ←D \ {Core ∪Noise}

14 DENSITYCONNECTED (x, k):

15 foreach y ∈ Nϵ(x) do // density connected points to x

16 id(y)← k // assign y to cluster k

17 if y ∈ Core then DENSITYCONNECTED (y, k)

First, DBSCAN computes the ϵ-neighborhood for each point xi in the dataset, checks if it is a core

point (lines 3–6) and sets the cluster id null for all points. Next, starting from each unassigned core

point, the method finds all its density-connected points recursively, which are assigned to the same

cluster (line 11). Some border points may be accessible from core points in more than one cluster. As

DBSCAN is a sequential algorithm, they will be arbitrarily assigned to the first created cluster that can

incorporate that specific border point.

Regarding the computational complexity, it takes O(n2) to compute the neighborhood for each point

when the dimensionality is high. With Nϵ(x) computed, the algorithm needs only a single pass over all

points to find the density connected clusters, leading to the overall complexity O(n2).
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4.5 Stage 3: Clustering Validation Techniques

Since no ground truth is available, internal validation should be used to quantify the performance of the

clustering [31]. Three internal validation metrics, Silhouette coefficient [77], Davies-Bouldin index [78],

and Calinski-Harabasz index [79] can be employed, based on the studies presented and reviewed in

Section 3.2.

4.5.1 Silhouette Coefficient

For each point xi, the silhouette coefficient is

si =
µmin
out (xi)− µin(xi)

max{µmin
out (xi), µin(xi)}

, (4.13)

where µmin
out (xi) is the mean of the distances from xi to points in the closest cluster, and µin(xi) is the

mean distance from xi to points in its own cluster.

The total Silhouette coefficient [77] is defined as the mean si value across all points, given by

(4.14), where a value close to +1 denotes good clustering.

SC =
1

n

n∑
i=1

si (4.14)

4.5.2 Davies-Bouldin Index

The Davies-Bouldin measure for a pair of clusters Ci and Cj is defined as

DBij =
σµi

+ σµj

δ(µi, µj)
, (4.15)

where µi denotes the centroid of cluster Ci, σµi
=

√
var(Ci) represents the dispersion of the points

around the respective centroid (square root of the total variance) and δ(µi, µj) is the distance between

the centroids.

The Davies-Bouldin index [78] is thus defined as

DB =
1

k
·

k∑
i=1

max
i ̸=j
{DBij}, (4.16)

meaning that for each cluster Ci it is chosen the cluster Cj that returns the largest DBij ratio. Therefore,

smaller DB values, closer to zero, mean better clustering (clusters are well separated and each one is

well represented by its centroid).
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4.5.3 Calinski-Harabasz Index

Given the dataset D = {xi}ni=1, the Calinski-Harabasz index [79] is given by

CH(k) =
tr(SB)

tr(SW )
· n− k

k − 1
, (4.17)

where tr(SB) is the trace of the within-cluster scatter matrix, and tr(SW ) is the trace of the between-

cluster scatter matrix. Those matrices are defined by (4.18) and (4.19), respectively, where µ is the

dataset’s mean and µi is the mean for cluster Ci.

SB =

k∑
i=1

ni (µi − µ)(µi − µ)T , (4.18)

SW =

k∑
i=1

∑
xj∈Ci

(xj − µi)(xj − µi)
T , (4.19)

A good value k (number of clusters) should result in a high CH(k). The intuition is to determine the

value of k for which CH(k) is higher than CH(k − 1) and there is a slight improvement or a decrease in

the CH(k + 1) value. This way, the Calinski-Harabasz index can be also used to choose the number of

clusters that maximize CH(k), an alternative to the elbow method typically used for K-means [68].
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This chapter is divided into several sections, which are equally relevant to this study. Starting with

the datasets’ preprocessing steps, it follows the presentation of EV charging profiles, EV user behavior

profiles, and EVSE accessibility. It ends with a description of possible practical applications for this

thesis’s results. The code was written in Python 3.10.11 on a Jupyter Notebook using the Google

Colab platform, and mainly the scikit-learn library [64] for the preprocessing, clustering, and evaluation

methods (most parameters were left at default, while those modified are mentioned throughout the text).

5.1 Data Preprocessing

5.1.1 ACN-Data dataset

5.1.1.A Dataset preparation and feature engineering

The first step in obtaining superior clustering results is data preprocessing, according to the schematic

in Figure 4.1. Since the dataset is provided in a JSON file, several conversions were necessary to obtain

each field in the required format. With the help of the DateTime method of Pandas library [80], the fields

connectTime, disconnectTime, and doneChargingTime were converted into DateTime values to allow

further data processing, namely obtaining the sojournTime, chargingTime, and idleTime fields based

on (4.1), (4.2) and (4.3), respectively. The kWhDelivered, stationID, and userID were converted to float

format. All the additional fields were redundant or unnecessary for the work and thus discarded.

After determining the extra fields, the entries in DateTime format needed to be converted into a

suitable numeric structure, as mentioned by Shahriar and Al-Ali [44] and by Märtz et al. [46]. The

connectionTime, disconnectTime, doneChargingTime, sojournTime, chargingTime, and idleTime fields

were therefore transformed into float format: the DateTime values were converted to seconds and then

divided by 3 600, to get the instant of the day only in an hour scale, and not in date, hours and minutes.

For example, 10h17 (10 hours and 17 minutes) becomes 10.28h (10.28 hours), consequently allowing

full use of outlier removal approaches, clustering methods, and graphical representations. It is worth

noting that it is necessary to choose only a subset of the available fields to obtain interpretable results.

5.1.1.B Deal with Missing Data

There were no missing entries in the preprocessed dataset, except in the userID and doneChargingTime

fields. The absence of these doneChargingTime entries indicates that the charging time was insufficient

to obtain a fully charged battery. Thus, this field was assigned with the value of the disconnectTime

entry in these sessions, leading to an idle time of zero. Regarding the userID, the lack of this information

makes it impossible to discover or predict the corresponding session user. Hence, for the characteriza-

tion of user behavior (presented in Section 5.3), only sessions with a userID will be considered.
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5.1.1.C Outlier Detection

With a fully functional dataset, the next step involved setting thresholds to remove unwanted data. The

limit defined allowed removing sessions with a sojournTime or chargingTime greater than 48 hours and

less than 1 minute. Another threshold was also set to clear sessions with energy-supplied values greater

than 100 kWh, selected considering the period of the data (2018-2021) and the characteristics of EVs

available on the market during these years. All negative entries were also removed.

Figure 5.1 presents the distribution of the clean ACN-Data sessions regarding the Sojourn Time

and Plug-in Time, demonstrating roughly three main groups of data: one from 00h00 to 03h00, with

scattered sojourn times; another from 06h00 to the end of the day, with longer sojourn times when

connecting in the morning; and finally, another between 17h00 and 23h59, with higher sojourn times.

For better visualization of the data distribution, Figure 5.1(b) illustrates the density of the points.

(a) Scatter plot. (b) Density Scatter plot.

Figure 5.1: Clean ACN-Data distribution regarding Sojourn Time and Plug-in Time.

Observing Figure 5.1, some points are more scattered and distant from the three main groups iden-

tified previously. These points are the so-called outliers. However, when analyzing the data, one can

see that these points represent behavior that could have happened and are not errors in the data, even

though they are distant from most sessions. The grosser errors, effectively outliers, have already been

identified and eliminated when defining the fields’ thresholds. Therefore, no outlier removal method will

be employed for the identification of the ACN-Data EV charging profiles and EV user behavior profiles.

5.1.1.D Data Adjustment

The plug-in time with day and hours became plug-in time at the hour of the day when the DateTime

variables were converted into float values. The drawback of this strategy is that the time frame under

consideration was 00h00 to 23h59. Due to their loss of spatial proximity, early and late plug-in times

might be clustered separately. As shown in Figure 5.1, there is an instant when charging activity is at

its lowest, fluctuating throughout the night and early morning, reaching its lowest point around 03h00.

To restore the spatial proximity, all charging sessions with plug-in times less than this minimum were
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relocated to the right side to continue the timeframe after 23h59. Figure 5.2(a) presents the adjusted

distribution in terms of Sojourn Time and Plug-in Time, while Figure 5.2(b) displays the adjusted data

distribution from a different perspective, regarding the Plug-out Time and Plug-in Time.

(a) Distribution regarding Sojourn and Plug-in Time. (b) Distribution regarding Plug-out and Plug-in Time.

Figure 5.2: Final adjusted ACN-Data scatter plot distribution regarding different fields.

From Figure 5.2(b), it is possible to see more noticeably the existence of sessions that start and end

on different days. A limit indicating the defined threshold of 48 hours maximum sojourn time is also

present, verifying that, in fact, no sessions surpass this threshold in the final adjusted dataset. Table 5.1

summarizes the final available fields present in the clean and preprocessed dataset.

Table 5.1: Summary of the final usable fields in the ACN-Data dataset.

Field name Non-Null count Dtype

connectionTime (Plug-in Time) 31318 float64
disconnectTime (Plug-out Time) 31318 float64
doneChargingTime (End Charging Time) 31318 float64
kWhDelivered 31318 float64
stationID 31318 float64
userID 16355 float64
chargingTime 31318 float64
sojournTime 31318 float64
idleTime 31318 float64

5.1.2 GR-Data dataset

5.1.2.A Dataset preparation and feature engineering

Since this dataset had the same format as the ACN-Data, the steps followed for the conversion of the

entries were identical, only changing the fields’ names according to the GR-Data’s specific character-

istics. The sojournTime is present in this dataset, unlike the chargingTime field. Consequently, it was

necessary to determine the latter, utilizing the expression (4.4) previously mentioned. With the average

charging time defined, it was then possible to obtain the idle time through (4.3). The entries in DateTime

format were converted to float values according to the process previously described in Section 5.1.1.A.
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The final dataset fields Start datetime, End datetime, kWhDelivered, stationID, maxPowerEVSE, userID,

sojournTime, averageChargingTime, and idleTime are all available in float format (see Table 5.2).

5.1.2.B Deal with Missing Data

There were no missing entries in the dataset, except in the kWhDelivered and maxPowerEVSE, making

it impossible to determine the average charging time and idle time. Thus, these sessions were discarded.

Additionally, some sessions presented an average charging time higher than the sojourn time, indicating

that the EV was effectively charging during the entire parking period and that the adjustment factor was

too harsh for these particular sessions. Accordingly, the averageChargingTime was assigned with the

value of the sojournTime entry in these sessions, leading to a corresponding idle time of zero.

5.1.2.C Outlier Detection

The defined thresholds match those specified for the previous dataset, with slight differences: 24-hour

charging time and sojourn time limit, only sessions with more than 1 minute of sojourn time, and max-

imum energy delivered of 100 kWh (considering the 2021-2022 EV sales in Europe). There are only

32 sessions with more than 24 hours of parking stay, which does not correspond to an actual profile.

Consequently, by removing these 32 sessions, the clustering results will be improved, yielding more

meaningful clusters. All negative entries were also removed.

5.1.2.D Data Adjustment

Due to their loss of spatial proximity, early and late plug-in times might be clustered separately, as

previously discussed. Similarly to the ACN-Data dataset, there is an instant when charging activity is at

its lowest, around 04h00. To restore the spatial proximity, all charging sessions with plug-in time less

than this minimum were relocated to the right side to continue the timeframe after 23h59. The final clean

and preprocessed dataset is illustrated in Figure 5.3 regarding Sojourn Time and Plug-in Time. Table 5.2

contains all the usable fields from the final preprocessed GR-Data dataset.

Table 5.2: Summary of the final usable fields in the GR-Data dataset.

Field name Non-Null count Dtype

Start datetime (Plug-in Time) 21801 float64
End datetime (Plug-out Time) 21801 float64
kWhDelivered 21801 float64
stationID 21801 object
maxPowerEVSE 21081 float64
userID 21801 object
sojournTime 21801 float64
averageChargingTime 21801 float64
idleTime 21801 float64
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(a) Scatter plot. (b) Density Scatter plot.

Figure 5.3: Final adjusted GR-Data distribution regarding Sojourn Time and Plug-in Time.

5.2 EV Charging profiles

5.2.1 ACN-Data dataset

5.2.1.A Chosen fields and normalization of the data

Based on the paper by Shahriar and Al-Ali [44], analyzed in Section 3.2, the first step consisted of only

choosing connectionTime and disconnectTime for the same period to verify if the obtained outcomes

were identical. With three clusters, the results were, in fact, very similar to those presented in the study,

indicating a correct use and handling of the code and the data processing tools. However, these clusters

are far from representing the real behavior of users or EVSEs. Each cluster suggests a wide range

of values, with no information about the energy consumed in each session. Therefore, the next step

consisted of carrying out several studies to obtain more accurate and less generic clusters, even as

suggested by the authors. Figure 5.4 presents the heatmap of the correlation between the features. The

created correlation matrix reveals the single correlation between each field on the dataset. Positive and

negative values indicate whether the features are directly or inversely related; e.g., a correlation of -0.7

between two fields denotes that if one variable increases, the other decreases strongly.

connectionTime disconnectTime doneChargingTime kWhDelivered stationID userID chargingTime sojournTime idleTime

connectionTime

disconnectTime

doneChargingTime

kWhDelivered

stationID

userID

chargingTime

sojournTime

idleTime

1.0 0.6 0.5 0.0 0.0 0.1 -0.2 -0.3 -0.2

0.6 1.0 0.3 0.2 -0.1 -0.1 0.3 0.6 0.5

0.5 0.3 1.0 0.0 -0.0 0.0 0.1 -0.2 -0.3

0.0 0.2 0.0 1.0 0.2 0.1 0.4 0.3 -0.0

0.0 -0.1 -0.0 0.2 1.0 0.3 -0.1 -0.1 -0.1

0.1 -0.1 0.0 0.1 0.3 1.0 -0.1 -0.2 -0.1

-0.2 0.3 0.1 0.4 -0.1 -0.1 1.0 0.6 -0.1

-0.3 0.6 -0.2 0.3 -0.1 -0.2 0.6 1.0 0.8

-0.2 0.5 -0.3 -0.0 -0.1 -0.1 -0.1 0.8 1.0 0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.4: Correlation matrix of the fields in the clean ACN-Data dataset.
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By analyzing the covariance matrix between the available features, interesting patterns arise. The

highly correlated connectionTime, disconnectTime, and doneChargingTime fields are redundant, so

only one is required (connectionTime provides intelligible information, and thus it must be chosen). The

same reasoning applies to kWhDelivered and chargingTime. The sojournTime strongly correlates with

disconnectTime, chargingTime, and idleTime (redundant, as expected), so only one should be selected.

However, connectionTime exhibits an inverse relationship with sojournTime, so choosing the latter is a

viable option to capture more diversity of the data. Additionally, the positive correlation between userID

and stationID suggests that users may have favorite EVSEs they attend more frequently. Ultimately, it is

crucial to select complementary, non-redundant features that align with the current objective.

Based on the multiple papers reviewed in Section 3.2 and the analysis on the correlation matrix,

the connectionTime, sojournTime, and kWhDelivered fields were chosen to obtain EV charging profiles

since this triplet yielded the best results in a first cluster analysis. The remaining fields were eliminated,

and the data were normalized using the MinMaxScaler method [64] to obtain the best possible results.

The final dataset is thus ready to perform clustering. Several methods were applied, and the optimal

number of clusters was determined for each. The obtained results are detailed in the following sections.

5.2.1.B K-means Clustering

The number of clusters, k, was chosen based on the elbow method [68], applied using the inertia

values from the K-means method of Python’s scikit-learn library [64]. Inertia is the sum of the squared

distances of samples to their closest cluster center. It is also known as the Within-Cluster Sum-of-

Squares (WCSS). A study was also conducted to determine the values of the Silhouette, Davies-Bouldin,

and Calinski-Harabasz scores based on the number of clusters. This approach enables the identification

of the optimal k that leads to the highest scores. Figure 5.5 illustrates the different scores as a function

of k, indicating that k=2 originates the best scores. However, as previously mentioned, a higher k is

necessary to obtain interpretable and meaningful EV charging profiles. Table A.1 reveals the precise

values of the Silhouette, Davies-Bouldin, and Calinski-Harabasz scores, according to k.
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(b) Silhouette Coefficient.
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(c) Davies-Bouldin Index.

Figure 5.5: Different scores as a function of k for the ACN-Data K-means clustering.
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The elbow method does not effectively display an elbow, making it insufficient for determining the

ideal number of clusters. Nevertheless, the knee of the curve suggests k from 5 to 8. Within this range,

by performing a more in-depth analysis, the best results are thus found for k=5 or k=8, with higher

Silhouette and lower Davies-Bouldin scores, as seen in Figure 5.5(b) and 5.5(c), respectively. The

Calinski-Harabasz scores behave similarly to inertia (elbow method), not helping in this study. For k=9,

both scores are worse, indicating that the optimal value is indeed in the range previously defined.

Analyzing the profiles with 5 and 8 clusters, one realizes that choosing k=5 yields still quite generic

profiles that comprise relatively different behaviors within the same clusters. With k=8, on the other

hand, the clusters are better defined and identifiable. Figure 5.6 presents the distribution of the adjusted

EV charging profiles regarding the Plug-in Time, Sojourn Time, and kWh (energy delivered) fields.

(a) Azimuth = -115◦. (b) Azimuth = 115◦.

Figure 5.6: 3D distribution of the adjusted K-means EV Charging profiles for the ACN-Data dataset.

From Figure 5.6, one can see that the profiles are well-defined and have little overlap. An intriguing

result that is immediately apparent is the separation of the high consumption profiles (clusters 1 and 5),

which are virtually divided by the plane defined by kWh ≈ 30, from the low and medium consumption

profiles (clusters 2, 3, 4, 6, 7, and 8). Additionally, there are more short/medium-term sessions, which

impacts the number of profiles. The longer sojourn time sessions are comprised in clusters 3 and 8.

Table 5.3 lists the mean quantitative characteristics of the eight profiles, from which one can see that

cluster 5 behaves slightly differently from the others, with a plug-out time close to 05h00 and around

600 sessions, indicating that this profile is the least common, as it contains sessions that start in the

late afternoon and finish the following day (early morning). To get a better perspective on this behavior,

Figure 5.7 illustrates two distinct representations of cluster 5 sessions. Roughly half of them start and

end on the same day (late afternoon). The remaining sessions only end the next day, with a higher

incidence in the morning, suggesting that EVs stay connected to the EVSE during the night. Since

cluster 5 comprises two distinct behaviors, the average plug-out time does not fully reflect all sessions.
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Table 5.3: Mean quantitative characteristics of the K-means EV Charging profiles for the ACN-Data dataset.

Cluster
ID

No. of
Sessions

Plug-in
Time

Plug-out
Time

Energy
[kWh]

Sojourn
Time

Charging
Time Idle Time Profile*

1 1174 10h12 16h51 34.735 6h 38min 5h 28min 1h 10min Morning to afternoon,
high energy, long-term

2 5420 19h14 21h05 7.215 1h 51min 1h 28min 22min Evening short-term stay,
low energy

3 6305 09h30 18h22 4.765 8h 52min 3h 12min 5h 41min Morning to afternoon
long-term, low energy

4 6588 14h05 17h11 6.165 3h 06min 1h 52min 1h 15min Afternoon medium-term
stay, low energy

5 609 19h51 04h33 39.390 8h 42min 5h 16min 3h 26min Evening to next morning,
high energy, long-term

6 4671 09h15 11h43 4.987 2h 28min 1h 43min 45min Morning medium-term
stay, low energy

7 5399 09h12 17h11 14.322 7h 59min 4h 55min 3h 05min Morning to afternoon,
medium energy

8 1152 19h51 10h49 12.777 14h 58min 6h 01min 8h 57min Evening to next morning,
medium energy

*Note: “Low energy”: below 10 kWh; “Medium energy”: between 10 kWh and 30 kWh; “High energy”: over 30 kWh.
“Short-term”: sojourn time below 2h; “Medium-term”: between 2h and 4h; “Long-term”: over 4h.

The problem with cluster 5 does not occur with the remaining profiles, as they are more uniform

and well-defined. For instance, despite the apparent spatial proximity verified in Figure 5.6 (high energy

clusters), cluster 1 corresponds to sessions from the beginning until the end of the same day. Regarding

the lower energy clusters with similar plug-in times, cluster 2 only contains sessions that start and end

on the same day, and cluster 8 only contains sessions that start in the late afternoon and end on the

following day (as confirmed by the high sojourn time in Table 5.3).

(a) Scatter plot of sessions. (b) Distribution of sessions.

Figure 5.7: Deep examination of K-means ACN-Data cluster 5, regarding the Plug-in and Plug-out times.

5.2.1.C GMM Clustering

According to the scikit-learn website [64], the GMM method includes four choices for the covariance type:

full covariance (each component has its own overall covariance matrix), tied covariance (all components

share the same overall covariance matrix), diagonal covariance (each component has its own diagonal

covariance matrix), and spherical covariance (each component has its own unique variance).
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Consequently, in addition to the number of clusters, it was also necessary to understand which

type of covariance provides the best profiles and scores. Thus, a preliminary cluster analysis proved

that tied covariance originates meaningful profiles, achieving the best Silhouette, Davies-Bouldin, and

Calinski-Harabasz scores, regardless of the number of clusters. Figure 5.8 illustrates the plots of the

different scores as a function of the number of clusters.
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(a) Silhouette Coefficient.
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(c) Calinski-Harabasz Index.

Figure 5.8: Different scores as a function of k for the ACN-Data GMM clustering, considering tied covariance.

According to the scores and considering the previous K-means study (Section 5.2.1.B), the optimal

number of clusters should also be 5 or 8 since these k’s have higher Silhouette and lower Davies-Bouldin

scores than the k’s immediately below or above (Figures 5.8(a) and 5.8(b), respectively). The Calinski-

Harabasz scores did not assist in determining k since they exhibit hyperbolic behavior (Figure 5.8(c)).

Analyzing the results with 5 and 8 clusters, one realizes that choosing 5 clusters yields profiles that

are still quite generic and comprise relatively different behaviors within the same cluster, just like seen

with the K-means clustering. With k=8, on the other hand, the clusters are better defined and better

identifiable. Figure 5.9 presents the distribution of adjusted EV charging profiles regarding the Plug-in

Time, Sojourn Time, and kWh (energy delivered) fields.

(a) Azimuth = -115◦. (b) Azimuth = 115◦.

Figure 5.9: 3D distribution of the adjusted GMM EV Charging profiles for the ACN-Data dataset, considering tied
covariance.
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From Figure 5.9, one can see that the profiles are well-defined and have little overlap. A separation

between high-energy and low-energy sessions is also present here. However, unlike K-means clus-

tering, GMM cluster 3 contains most of the high-energy short sessions, regardless of the plug-in time.

Cluster 8, on the other hand, contains only high-energy nighttime sessions. Consequently, with GMM

clustering, the problem of K-means cluster 5 (Figure 5.7) does not occur, which is a good achievement.

Another intriguing result corresponds to cluster 7. This cluster contains all the most different ses-

sions, characterized by high sojourn times, regardless of the plug-in time. These sessions would be the

ones considered outliers, and the GMM method was able to group them all in a single cluster, allow-

ing the remaining clusters to reveal typical average values more adjusted to the sessions they contain.

Cluster 5 maintains roughly the same behavior as K-means cluster 4, which comprises the afternoon

and low-energy sessions. Table 5.4 lists the mean quantitative characteristics of the eight profiles.

Table 5.4: Mean quantitative characteristics of the GMM EV Charging profiles for the ACN-Data dataset.

Cluster
ID

No. of
Sessions

Plug-in
Time

Plug-out
Time

Energy
[kWh]

Sojourn
Time

Charging
Time Idle Time Profile*

1 5047 09h10 11h36 6.304 2h 26min 1h 49min 37min Morning medium-term
stay, low energy

2 1110 20h14 09h13 13.136 12h 59min 5h 37min 7h 22min Evening to next morning,
medium energy

3 1191 10h48 16h44 35.512 5h 56min 5h 08min 48min Morning to afternoon
high-term, high energy

4 11779 09h32 18h02 8.547 8h 30min 3h 55min 4h 34min Morning to afternoon
high-term, low energy

5 6281 14h14 16h57 6.134 2h 44min 1h 46min 57min Afternoon medium-term
stay, low energy

6 5393 19h17 21h13 8.267 1h 55min 1h 34min 22min Evening short-term stay,
low energy

7 197 15h00 21h57 15.867 30h 57min 10h 16min 20h 41min Extreme sojourn times,
medium energy

8 320 20h58 09h04 44.606 12h 06min 7h 11min 4h 56min Evening to next morning,
high energy

*Note: “Low energy”: below 10 kWh; “Medium energy”: between 10 kWh and 30 kWh; “High energy”: over 30 kWh.
“Short-term”: sojourn time below 2h; “Medium-term”: between 2h and 4h; “Long-term”: over 4h.

According to Table 5.4, cluster 4 comprises more than one-third of the total number of sessions,

characterized by morning plug-in time and late afternoon plug-out time. K-means clustering distributed

these sessions across clusters 3 and 7, while GMM clustering grouped all these sessions into a single

profile. This merging of the clusters enabled the creation of the GMM cluster 7 with the most different

sessions while maintaining the remaining profiles similar to those discovered in the K-means clustering.

Another noteworthy point concerns idle times. Specifically, cluster 4 exhibits an average idle time that

surpasses the average charging time, meaning that the EVs spend more time parked without charging

than actually charging. This indicates a high flexibility potential. Such flexibility characterization can

provide significant insight to DSOs and CPOs seeking innovative approaches to integrate EVs into the

power system (refer to Section 5.5 for further details). Table A.2 reveals the precise values of the

Silhouette, Davies-Bouldin, and Calinski-Harabasz scores, according to the type of covariance and k.
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5.2.1.D Agglomerative Hierarchical Clustering

According to the scikit-learn website [64], the Agglomerative Hierarchical clustering method allows the

choice of the distance (linkage) measure, namely between Ward’s method, complete-link, average-link,

and single-link measures (remember Section 4.4.3). Consequently, in addition to the number of clusters,

it was also necessary to understand which distance measure yields the best profiles and scores.

The results revealed that no metric performs consistently well across all scores. For instance,

average-link produces higher Silhouette scores, whereas single-link obtains the lowest Davies-Bouldin

scores. Concerning Calinski-Harabasz, Ward’s method is the best. Thus, a more comprehensive analy-

sis was necessary to determine which measure achieves a suitable balance between meaningful profiles

and good scores. Complete-link, average-link, and single-link generate high scores since they tend to

assign most sessions to one or two clusters while leaving the remaining clusters with fewer sessions.

Conclusively, Ward’s method undoubtedly achieved the best balance. Figure 5.10 illustrates the plots of

the different scores as a function of the number of clusters, from which it is evident that k=6 yields the

highest Silhouette and the lowest Davies-Bouldin scores, besides k=2. The Calinski-Harabasz scores

did not assist since they display hyperbolic behavior (Figure 5.10(c)). Similarly, the dendrogram did not

specify an optimal number of clusters other than k=2. Therefore, k=6 was selected.
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(c) Calinski-Harabasz Index.

Figure 5.10: Different scores as a function of k for the ACN-Data Hierarchical clustering, with Ward’s method as
distance measure.

Figure 5.11 presents the distribution of the adjusted EV charging profiles regarding the Plug-in Time,

Sojourn Time, and kWh (energy delivered) fields, from which is clear that the profiles exhibit more overlap

and less distinctness compared to the K-means (Section 5.2.1.B) or GMM clustering (Section 5.2.1.C)

results. Specifically, cluster 3 is more irregular, with several points overlapping the clusters around it.

However, the grouping of high and low-energy sessions into different clusters is also present, although

with less visual separation than in the previously established profiles. Regarding the most different

sessions, with higher sojourn time, they are distributed across the clusters instead of isolated as found

in GMM clustering. Nevertheless, most of these sessions fall within cluster 2, which is characterized by

plug-in times in the late afternoon or early evening, and low energy.
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(a) Azimuth = -115◦. (b) Azimuth = 115◦.

Figure 5.11: 3D distribution of the adjusted Hierarchical EV Charging profiles for the ACN-Data dataset, with Ward’s
method as distance measure.

Table 5.5 lists the mean quantitative characteristics of the six profiles. From the results in Figure 5.11

and Table 5.5, one can see that cluster 6 includes multiple sessions during the late afternoon that end

on the same day or the next with high energy delivered, yielding the same problem as K-means cluster 5

(recall Figure 5.7). Additionally, cluster 1 comprises most of the sessions that in GMM clustering were

grouped into clusters 1 and 4 (remember Figure 5.9), resulting in a more generic and less distinctive

cluster. Given that there are only six clusters, this merging of profiles was expected. A higher k would

lead to the emergence of new meaningless clusters in terms of EV charging profiles, so k=6 is effectively

the best number of clusters for this method, which proved inadequate in identifying meaningful profiles.

K-means and GMM methods yielded superior outcomes and are more probable to be employed in real-

world applications (refer to Section 5.5 for further details).

Table A.3 reveals the precise values of the Silhouette, Davies-Bouldin, and Calinski-Harabasz scores,

according to the distance measure and the number of clusters.

Table 5.5: Mean quantitative characteristics of the Hierarchical EV Charging profiles for the ACN-Data dataset.

Cluster
ID

No. of
Sessions

Plug-in
Time

Plug-out
Time

Energy
[kWh]

Sojourn
Time

Charging
Time Idle Time Profile*

1 13033 08h56 16h15 8.965 7h 20min 3h 40min 3h 40min Morning to afternoon
high-term, low energy

2 1178 19h20 10h51 11.893 15h 31min 6h 13min 9h 18min Evening to next morning,
medium energy

3 9888 12h53 16h24 5.847 3h 31min 1h 59min 1h 32min Afternoon medium-term
stay, low energy

4 5571 19h04 20h58 7.343 1h 54min 1h 32min 22min Evening short-term stay,
low energy

5 822 10h01 16h06 37.854 6h 05min 5h 19min 46min Morning to afternoon
high-term, high energy

6 826 19h24 03h57 35.356 8h 33min 4h 54min 3h 40min Evening to next morning,
high energy

*Note: “Low energy”: below 10 kWh; “Medium energy”: between 10 kWh and 30 kWh; “High energy”: over 30 kWh.
“Short-term”: sojourn time below 2h; “Medium-term”: between 2h and 4h; “Long-term”: over 4h.
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5.2.2 GR-Data dataset

5.2.2.A Chosen fields and normalization of the data

The analysis described in Section 5.2.1.A for the ACN-Data dataset was also performed with the private

dataset GR-Data, yielding highly similar results. Consequently, the chosen fields were Start datetime,

sojournTime, and kWhDelivered, allowing a comparable analysis between the profiles found in both

datasets. The remaining features were removed, and the data were normalized using the MinMaxScaler

method [64] to obtain the best possible outcomes, presented in more detail in the following sections.

5.2.2.B K-means Clustering

The number of clusters, k, was chosen based on the elbow method and the values obtained for the

Silhouette, Davies-Bouldin, and Calinski-Harabasz scores, also considering the resulting profiles.

Figure 5.12 illustrates the plots of the different scores as a function of k. The elbow method does not

effectively display an elbow, making it insufficient for determining the ideal k. Nevertheless, the knee of

the curve suggests k from 5 to 8. Within this range, by performing a more in-depth analysis, the best

results are thus found for k=6, supported by the scores in Figures 5.12(b) and 5.12(c). However, both

plots indicate a turning point at k=10, with interesting scores compared with the remaining k’s. Selecting

k=6 yields quite generic profiles that comprise relatively different behaviors within the same cluster. With

k=10, on the other hand, the clusters are better defined and identifiable. Table A.6 reveals the precise

values of the Silhouette, Davies-Bouldin, and Calinski-Harabasz scores, according to k.
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(c) Davies-Bouldin Index.

Figure 5.12: Different scores as a function of k for the GR-Data K-means clustering.

Figure 5.13 presents the distribution of the adjusted EV charging profiles regarding the Plug-in Time,

Sojourn Time, and kWh (energy delivered) fields, from which one sees that the results are relatively sim-

ilar to those obtained for the ACN-Data dataset (Section 5.2.1.B). There is, however, greater separation

between the sessions as five clusters were found with plug-in times in the morning (clusters 1, 3, 4, 7,

and 10) and only three with plug-in times in the evening (clusters 6, 8 and 9). There are also two clusters
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during the middle/late afternoon (clusters 2 and 5). Therefore, one can conclude that, in this dataset, the

sessions during the day differ significantly from each other, translating into a higher number of daily pro-

files when compared to ACN-Data. Additionally, the reduced number of clusters in the evening suggests

that the sessions during this period exhibit more similar behavior than those during the day.

(a) Azimuth = -115◦. (b) Azimuth = 125◦.

Figure 5.13: 3D distribution of the adjusted K-means EV Charging profiles for the GR-Data dataset.

Another interesting point is that the most different sessions (higher sojourn times and, thus, higher

flexibility potential) fall into distinct clusters: cluster 8 contains the sessions that only end the next day, re-

gardless of the plug-in time, while cluster 4 comprises the sessions that start in the morning and only end

in the afternoon of the same day. Table 5.6 lists the mean quantitative characteristics of the ten profiles.

Table 5.6: Mean quantitative characteristics of the K-means EV Charging profiles for the GR-Data dataset.

Cluster
ID

No. of
Sessions

Plug-in
Time

Plug-out
Time

Energy
[kWh]

Sojourn
Time

Charging
Time Idle Time Profile*

1 704 11h39 16h33 49.497 4h 54min 2h 23min 31min Morning to afternoon high
energy, long-term stay

2 4297 18h25 19h07 3.957 42min 13min 29min Early evening low energy,
short-term stay

3 1500 11h49 14h20 26.807 2h 31min 1h 17min 1h 15min Early afternoon medium
energy, medium-term stay

4 1384 10h35 15h51 12.187 5h 16min 41min 4h 34min Morning to afternoon
medium energy, long-term

5 2520 17h05 19h18 14.759 2h 13min 45min 1h 28min Afternoon to evening medi-
um energy, medium-term

6 1154 19h58 22h43 35.992 2h 45min 1h 35min 1h 10min Evening to night high en-
ergy, medium-term stay

7 4529 13h42 14h40 5.3141 58min 17min 41min Early afternoon low en-
ergy, short-term stay

8 419 20h43 09h51 33.445 13h 08min 1h 54min 11h 14min Evening to next morning
medium energy, long-term

9 1888 21h45 23h06 9.788 1h 21min 29min 52min Night low energy, short-
term stay

10 3406 09h43 10h54 6.835 1h 10min 21min 49min Morning low energy, short-
term stay

*Note: “Low energy”: below 10 kWh; “Medium energy”: between 10 kWh and 30 kWh; “High energy”: over 30 kWh.
“Short-term”: sojourn time below 2h; “Medium-term”: between 2h and 4h; “Long-term”: over 4h.
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According to Table 5.6, one verifies that clusters 2 and 7 are the most typical profiles, as they com-

prise the highest number of sessions, meaning that the short and low-energy sessions are the most

frequent, and the later the drivers plug in, the more energy they consume. Morning and afternoon pro-

files are generally lower energy. Additionally, compared to cluster 5 of ACN-Data K-means clustering,

cluster 8 of GR-Data is better defined since it effectively only contains sessions that end the next day

(remember Figure 5.7). Consequently, the mean flexibility potential (idle time) of this profile is even

greater, with more than eleven hours of parking stay without charging. To get a better perspective on

this behavior, Figure 5.14 illustrates the distribution of the corresponding sessions.

(a) Scatter plot of sessions. (b) Distribution of sessions.

Figure 5.14: Deep examination of K-means GR-Data cluster 8, regarding the Plug-in and Plug-out times.

5.2.2.C GMM Clustering

For the GR-Data dataset, it was also found that the tied covariance originates meaningful profiles and

the best Silhouette, Davies-Bouldin, and Calinski-Harabasz scores, regardless of the k value. However,

contrary to the K-means study (Section 5.2.2.B), the obtained scores do not indicate a clear choice for

the optimal k (Figure 5.15). Still, the best options are k={6,8,10}. Further analyses revealed that k=8 is

the best choice, yielding a good balance between scores and meaningfulness. Figure 5.16 presents the

distribution of the adjusted EV charging profiles regarding the Plug-in Time, Sojourn Time, and kWh.
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Figure 5.15: Different scores as a function of k for the GR-Data GMM clustering, considering tied covariance.

46



(a) Azimuth = -115◦. (b) Azimuth = 125◦.

Figure 5.16: 3D distribution of the adjusted GMM EV Charging profiles for the GR-Data dataset, considering tied
covariance.

Figure 5.16 reveals a clear division concerning the energy delivered: profiles up to 20 kWh (clusters

5, 6, and 7), up to 40 kWh (clusters 1 and 2), and finally above 40 kWh (cluster 4). In fact, contrary to

K-means, GMM groups all the highest energy sessions in cluster 4, without differentiating the plug-in

time. Although fewer in number, the clusters differentiate the sessions with higher sojourn time, namely

clusters 3 and 8. Cluster 3 contains the sessions with the highest sojourn times, most of which do not

finish until the following day. However, it also includes some sessions with a plug-in time of around

07h00 that end on the same day, unlike K-means cluster 8 (remember Figure 5.13). Table 5.7 lists

the quantitative mean characteristics of the eight profiles, demonstrating that profile 4, which has the

highest energy delivered and relatively fast charging, contains few sessions and is the second least

usual. Cluster 3 is the least common, corresponding to highly flexible night-time charging sessions.

Table 5.7: Mean quantitative characteristics of the GMM EV Charging profiles for the GR-Data dataset.

Cluster
ID

No. of
Sessions

Plug-in
Time

Plug-out
Time

Energy
[kWh]

Sojourn
Time

Charging
Time Idle Time Profile*

1 1241 20h01 23h01 33.414 2h 59min 1h 35min 1h 24min Evening to midnight high
energy, medium-term stay

2 1521 11h57 14h58 31.430 3h 01min 1h 32min 1h 29min Morning to afternoon high
energy, medium-term stay

3 392 20h02 09h33 29.090 13h 32min 1h 39min 11h 52min Evening to next morning
medium energy, long-term

4 491 14h13 17h21 55.446 3h 08min 2h 04min 1h 04min Afternoon high energy,
medium-term stay

5 6093 10h38 12h06 7.771 1h 28min 25min 1h 04min Morning low energy, short-
term stay

6 3661 14h35 15h50 6.746 1h 15min 22min 53min Afternoon low energy,
short-term stay

7 7724 19h04 20h16 7.397 1h 12min 23min 48min Evening low energy, short-
term stay

8 678 10h56 18h01 15.367 7h 05min 52min 6h 13min Morning to evening medi-
um energy, long-term

*Note: “Low energy”: below 10 kWh; “Medium energy”: between 10 kWh and 30 kWh; “High energy”: over 30 kWh.
“Short-term”: sojourn time below 2h; “Medium-term”: between 2h and 4h; “Long-term”: over 4h.
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As seen for K-means, the short duration and low energy profiles are the most frequent (clusters

5, 6, and 7). Clusters 3 and 8 offer significant flexibility potential due to their high idle times resulting

from fast charging. This suggests that using such high charging power does not make sense since EV

drivers tend to park longer than the car is effectively charging. Reducing the charging rate (maximum

EVSE power) during those sessions would result in fewer power peaks on the grid. Table A.4 reveals

the precise values of the Silhouette, Davies-Bouldin, and Calinski-Harabasz scores.

5.2.2.D Agglomerative Hierarchical Clustering

The values presented in detail in Table A.5 reveal very similar behavior to that observed in Section

5.2.1.D, in which no metric performs consistently well across all scores. Nevertheless, further analysis

revealed that Ward’s method also leads to meaningful profiles, proving to be the best choice among

the optional linkage measures. Figure 5.17 illustrates the plots of the different scores as a function of

k. According to the scores and considering the previous clustering results, it is clear that k=7 gives the

highest Silhouette score (Figure 5.29(a)) and the lowest Davies-Bouldin score (Figure 5.29(b)) compared

with the k’s immediately below or above. The Calinski-Harabasz score (Figure 5.29(c)) did not contribute

to determining the number of clusters since it displays a hyperbolic behavior for k > 6.

2 4 6 8 10 12
Number of clusters, k

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

Si
lh

ou
et

te
 sc

or
e

(a) Silhouette Coefficient.

2 4 6 8 10 12
Number of clusters, k

0.95

1.00

1.05

1.10

1.15

Da
vi

es
-B

ou
ld

in
 S

co
re

(b) Davies-Bouldin Index.

2 4 6 8 10 12
Number of clusters, k

10000

10500

11000

11500

12000

12500

13000

Ca
lin

sk
i-H

ar
ab

as
z S

co
re

(c) Calinski-Harabasz Index.

Figure 5.17: Different scores as a function of k for the GR-Data Hierarchical clustering, with Ward’s method as
distance measure.

Figure 5.18 presents the distribution of the adjusted EV charging profiles regarding the Plug-in Time,

Sojourn Time, and kWh fields, from which one sees that the profiles exhibit more overlap and less clear

definition than those found with the K-means (Section 5.2.2.B) or GMM clustering (Section 5.2.2.C), sim-

ilar to the outcomes found for the ACN-Data Hierarchical clustering. Despite several overlapped points

with neighboring clusters and the absence of GMM cluster 8, the obtained profiles visually resemble the

results of the GMM clustering. As a result, clusters 5 and 6 contain sessions with differing behaviors

due to the grouping of short and long morning sessions. Furthermore, cluster 1 includes some sessions

that end the following day, affecting the profile characterization. Overall, the clusters are poorly defined,

resulting in less accurate and reliable identification of typical profiles.
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(a) Azimuth = -115◦. (b) Azimuth = 125◦.

Figure 5.18: 3D distribution of the adjusted Hierarchical EV Charging profiles for the GR-Data dataset, with Ward’s
method as distance measure.

Table 5.8 lists the mean quantitative characteristics of the seven profiles. The results confirm that

Hierarchical clustering produced significantly different results when compared with the K-means or GMM

studies. The clustering method did not differentiate short-term sessions, which were grouped with ses-

sions of longer duration, as seen in clusters 5 and 6, for example. Profile 4, typical of nighttime charging

that only ends the next day, includes a reduced number of sessions, with a large part of these next-

morning sessions incorporated in clusters 1 and 2. Nevertheless, the average characteristic values of

each profile are still relevant. Increasing the number of clusters to solve these shortcomings is not viable

since a higher k results in the emergence of new meaningless clusters in terms of EV charging profiles.

Thus, k=7 is effectively the best number of clusters for this method, which proved to be the weakest

method for identifying meaningful profiles. The K-means and GMM methods obtained superior results,

in line with the analysis of the ACN-Data dataset.

Table 5.8: Mean quantitative characteristics of the Hierarchical EV Charging profiles for the GR-Data dataset.

Cluster
ID

No. of
Sessions

Plug-in
Time

Plug-out
Time

Energy
[kWh]

Sojourn
Time

Charging
Time Idle Time Profile*

1 6515 19h25 20h38 6.750 1h 13min 21min 51min Evening low energy, short-
term stay

2 913 15h09 19h15 50.102 4h 06min 2h 11min 1h 55min Afternoon to evening high
energy, long-term stay

3 6172 14h20 15h39 6.711 1h 19min 21min 58min Afternoon low energy,
short-term stay

4 298 20h14 9h48 33.137 13h 34min 1h 53min 11h 41min Evening to next-morning
high energy, long-term stay

5 4787 09h57 12h00 8.007 2h 03min 26min 1h 37min Morning low energy,
medium-term stay

6 1604 11h18 14h45 28.635 3h 26min 1h 26min 2h Morning to afternoon medi-
um energy, medium-term

7 1512 19h56 22h15 27.923 2h 20min 1h 18min 1h 02min Evening to midnight medi-
um energy, medium-term

*Note: “Low energy”: below 10 kWh; “Medium energy”: between 10 kWh and 30 kWh; “High energy”: over 30 kWh.
“Short-term”: sojourn time below 2h; “Medium-term”: between 2h and 4h; “Long-term”: over 4h.

49



5.2.3 Summary of Results

The K-means and GMM methods delivered consistent and effective results for identifying meaningful

EV charging profiles with practical applications. The K-means method produced the highest overall

scores, performing better in GR-Data. GMM yielded more specific and extreme profiles (which can be

particularly interesting for analyzing the most different sessions), achieving superior results in ACN-Data.

On the other hand, Hierarchical clustering produced more generic, overlapped, and less visually defined

clusters (better scores for fewer clusters). Nevertheless, it achieved the best values in some scores, but

these did not translate into better typical profiles.

The ACN-Data’s charging sessions tend to last longer, starting in the morning and ending in the

evening. This allows for greater flexibility since EVs spend more time parked without charging than

actually being charged. On the other hand, the GR-Data dataset is characterized by shorter charging

sessions with less energy supplied and, therefore, less flexibility potential. Table 5.9 summarizes the

metrics and parameters selected for each clustering method applied to both datasets.

Table 5.9: Summary of the selected metrics for each ACN-Data and GR-Data clustering method.

ACN-Data K-means GMM Hierarchical

Best number of clusters 8 8 6

Parameters - Tied Covariance Ward’s Method

Elbow Method k={5, 6, 7, 8} - -

Silhouette Coefficient 0.329 0.313 0.325

Davies-Bouldin Index 1.006 1.007 1.097

Calinski-Harabasz Index 17561.08 15226.62 15496.63

GR-Data K-means GMM Hierarchical

Best number of clusters 10 8 7

Parameters - Tied Covariance Ward’s Method

Elbow Method k={7, 8, 9, 10} - -

Silhouette Coefficient 0.326 0.309 0.322

Davies-Bouldin Index 0.983 1.061 1.036

Calinski-Harabasz Index 10715.45 9259.41 11777.57

5.3 EV User Behavior profiles

In the context of this thesis, EV user behavior profiles differ from EV charging profiles, as previously

discussed in Section 3.3. Now, it is intended to understand the typical user behavior for charging an EV.

Due to the similarity in data preprocessing, Section 5.3.1 presents the steps performed for the two

datasets under analysis. Then, the obtained results are detailed for each dataset separately.
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5.3.1 ACN-Data & GR-Data: Chosen fields and normalization of the data

The first step consisted of creating new datasets from the previous preprocessed and clean ones, fo-

cusing solely on sessions with a userID (remember Tables 5.1 and 5.2). Based on the findings from

Section 3.2, the sessions were grouped by user, replacing all individual driver sessions with a single

theoretical charging session composed by the mean of the plug-in times, mean of the sojourn times,

standard deviation of plug-in times, and standard deviation of sojourn times.

Then, a threshold was defined to eliminate users with less than three recorded sessions, which were

random and unsuitable for finding behavior patterns. As a result, the ACN-Data dataset dropped from

571 to 338 users, and the GR-Data dataset from 3184 to 1228 users. The purpose is to represent each

EV user with a single theoretical charging session consisting solely of mean values.

In addition to these fields, a new feature must be associated with the users to differentiate regular

EV drivers from occasional ones: the frequency field, obtained through (4.5). A summary of the usable

fields from the new user behavior datasets is presented in Table 5.10.

Table 5.10: Summary of the usable fields in the ACN-Data and GR-Data user behavior datasets.

Field name ACN-Data
Non-Null count

GR-Data
Non-Null count Dtype

mean Plug-in Time 338 1228 float64
mean standard deviation (Std) of Plug-in Time 338 1228 float64
mean sojournTime 338 1228 float64
mean standard deviation (Std) of sojournTime 338 1228 float64
frequency 338 1228 float64

The following stage involved selecting fields for clustering, a comparable but more time-consuming

process than the selection for EV charging profiles, mainly due to the subjectivity of user behavior in the

literature. Nevertheless, in this thesis, the fields std of plug-in time, std of sojourn time, and frequency

were chosen, as this triplet yielded the most interpretable profiles among the available fields, allowing

deep insight into the typical behavior of EV users. The remaining fields were eliminated, and the data

were normalized to obtain the best possible results, detailed next.

5.3.2 ACN-Data dataset

5.3.2.A K-means Clustering

Figure 5.19(a) represents the inertia’s value as a function of the number of clusters. The elbow method

does not effectively display an elbow, making it insufficient for determining the ideal k (similar to the

previous studies). Nevertheless, the knee of the curve suggests k from 4 to 6. Within this range, by per-

forming a more in-depth analysis, the best results are thus found for k=4, with higher Silhouette and lower

Davies-Bouldin scores, as seen in Figures 5.19(b) and 5.19(c), respectively. Also, the Calinski-Harabasz

score results in a high value for k=4.
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Selecting k=5 or k=6 produces profiles that are perhaps too closely fitted to the data (overfit problem)

since the number of users per cluster reduces. Therefore, k=4 is the best option. Table B.1 reveals the

precise values of the Silhouette, Davies-Bouldin, and Calinski-Harabasz scores, according to k.
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Figure 5.19: Different scores as a function of k for the ACN-Data user behavior K-means clustering.

Figure 5.20 presents the distribution of the EV user behavior profiles regarding the standard deviation

of the Plug-in Time, the standard deviation of the Sojourn Time, and the Frequency fields, from which one

sees that the profiles are well-defined and have minimal overlap. An interesting result is the separation

of high-frequency users (cluster 1), which are virtually divided by the plane defined by Frequency ≈ 1.5

from the low and medium frequency profiles. Additionally, most users exhibit relatively low standard

deviations of plug-in and sojourn times. However, there are also users with high standard deviations,

mainly present in cluster 4, indicating that their charging behavior is indeed random and lacks routine.

(a) Azimuth = -115◦. (b) Azimuth = 115◦.

Figure 5.20: 3D distribution of the K-means EV User Behavior profiles for the ACN-Data dataset.

Table 5.11 lists the quantitative characteristics of the four profiles. Cluster 3 comprises most users,

characterized by routine behavior without high deviations. Therefore, the typical Caltech EV users start

charging in the morning and only end in the late afternoon, with reduced deviations.
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Table 5.11: Mean quantitative characteristics of the K-means EV User Behavior profiles for the ACN-Data dataset.

Cluster
ID

No. of
users

Plug-in
Time: Mean

Plug-in
Time: Std

Sojourn
Time: Mean

Sojourn
Time: Std Frequency Profile

1 34 11h11 2h 05 min 6h 23min 2h 47min 2.47
Morning to afternoon charging, with
some deviation in sojourn time.
Recharge more than 2 times per week

2 99 14h49 4h 14min 2h 34min 1h 36min 0.41 No specific time to recharge, with short
sojourn time and low frequency

3 181 12h47 1h 50min 4h 28min 1h 48min 0.58
Morning to afternoon charging, with low
deviations. Recharge more than once
every 2 weeks approximately

4 24 15h16 5h 24min 11h 12min 8h 22min 0.55 Random behavior, recharge more than
once every 2 weeks approximately

Clusters 1, 2, and 4 ultimately differentiate the most extreme users in each field. Another aspect

worth mentioning concerns the frequency field. Clusters 2, 3, and 4 have values close to 0.5, indicating

that users attend Caltech EVSEs approximately once every two weeks, while users from cluster 1 visit,

on average, two times per week. However, one user stands out from the rest by utilizing the EVSEs

about six times a week, visible in Figure 5.20.

5.3.2.B GMM Clustering

Similarly to the previous studies (Sections 5.2.1.C and 5.2.2.C), it was necessary to select the most

suitable type of covariance for the data. Thus, in the first approach, it was verified that the tied covari-

ance originates meaningful profiles and at the same time with the best Silhouette, Davies-Bouldin, and

Calinski-Harabasz scores, regardless of the k value. Figure 5.21 illustrates the plots of the different

scores as a function of the number of clusters. The optimal number of clusters should also be k=4 since

it yields higher Silhouette and lower Davies-Bouldin scores than the k’s immediately below or above,

seen in Figures 5.21(a) and 5.21(b), respectively. Furthermore, the Calinski-Harabasz scores (Figure

5.21(c)) also follow this behavior. Table B.2 reveals the precise values of the Silhouette, Davies-Bouldin,

and Calinski-Harabasz scores, according to the type of covariance and k.
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(c) Calinski-Harabasz Index.

Figure 5.21: Different scores as a function of k for the ACN-Data user behavior GMM clustering, considering tied
covariance.
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Figure 5.22 presents the distribution of the EV user behavior profiles regarding the standard deviation

of the Plug-in Time, the standard deviation of the Sojourn Time, and the Frequency fields. It is visible

that the separation between high-frequency and low-frequency users is also present here. However,

unlike K-means clustering, GMM cluster 1 contains most of the low-frequency users, regardless of the

standard deviation of the plug-in time. Cluster 3 includes users with random plug-in times and relatively

low standard deviations of the sojourn time, while cluster 2 comprises only users with high standard

deviations of plug-in and sojourn times, a profile not found in the K-means results (Section 5.3.2.A).

These users would be the ones considered outliers, and GMM clustering successfully grouped them

into a single cluster, similar to the results obtained in Section 5.2.1.C.

(a) Azimuth = -115◦. (b) Azimuth = 115◦.

Figure 5.22: 3D distribution of the GMM EV User Behavior profiles for the ACN-Data dataset, considering tied
covariance.

Table 5.12 lists the quantitative characteristics of the four profiles, from which one sees that cluster 1

effectively comprises most lower frequency users, approximately 80% of the total drivers, resulting in a

profile with a higher standard deviation of plug-in time. The remaining clusters have a smaller number

of users, resulting in higher average frequencies and more fitted EV user behavior profiles.

Table 5.12: Mean quantitative characteristics of the GMM EV User Behavior profiles for the ACN-Data dataset.

Cluster
ID

No. of
users

Plug-in
Time: Mean

Plug-in
Time: Std

Sojourn
Time: Mean

Sojourn
Time: Std Frequency Profile

1 269 13h19 2h 25min 4h 04min 1h 50min 0.56
Morning to afternoon charging, with low
deviations. Recharge more than once
every 2 weeks approximately

2 19 15h28 4h 38min 12h 22min 9h 37min 0.64 Random behavior, recharge more than
once every 2 weeks approximately

3 25 15h08 6h 20min 2h 14min 1h 30min 0.52 No specific time to recharge, with short
sojourn time and low frequency

4 25 10h57 2h 15min 6h 24min 2h 38min 2.72
Morning to afternoon charging, with
some deviation in sojourn time.
Recharge more than 2 times per week
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5.3.2.C Agglomerative Hierarchical Clustering

As previously discussed, it is necessary to choose the most suitable distance (linkage) measure for the

data. The values detailed in Table B.3 reveal very similar behavior to that observed in Section 5.2.1.D,

in which no metric performs consistently well across all scores. However, further analysis revealed that

Ward’s method also leads to meaningful profiles, proving to be the best choice among the options.

Figure 5.23 illustrates the plots of the different scores as a function of the number of clusters. Ac-

cording to the scores, one can see that k=4 gives the highest Silhouette score (Figure 5.23(a)) and the

lowest Davies-Bouldin score (Figure 5.23(b)), in the range of k from 4 to 6. Also, the Calinski-Harabasz

score (Figure 5.23(c)) agrees with this value for the number of clusters. Thus, k=4 was chosen.
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(c) Calinski-Harabasz Index.

Figure 5.23: Different scores as a function of k for the ACN-Data user behavior Hierarchical clustering, with Ward’s
method as distance measure.

Figure 5.24 presents the distribution of the EV user behavior profiles regarding the standard deviation

of the Plug-in Time, the standard deviation of the Sojourn Time, and the Frequency fields, from which one

verifies that the profiles are more overlapped and less precisely defined than in other clustering methods.

(a) Azimuth = -115◦. (b) Azimuth = 115◦.

Figure 5.24: 3D distribution of the Hierarchical EV User Behavior profiles for the ACN-Data dataset, with Ward’s
method as distance measure.
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In fact, some low-frequency users are included in cluster 1 due to the poor cluster definition. Cluster 2

contains the most distant users from the remaining clusters (with higher standard deviations), allowing

cluster 4 to be better defined. Table 5.5 lists the quantitative characteristics of the four profiles, indicating

that the findings align with those validated by the previous studies with minimal cluster discrepancies,

despite the overlapped clusters. Perhaps the most notable difference is precisely cluster 4, which in-

cludes the users with the lowest mean and standard deviation of sojourn time, an interesting result not

achieved by K-means or GMM clustering.

Table 5.13: Mean quantitative characteristics of the Hierarchical EV User Behavior profiles for the ACN-Data
dataset.

Cluster
ID

No. of
users

Plug-in
Time: Mean

Plug-in
Time: Std

Sojourn
Time: Mean

Sojourn
Time: Std Frequency Profile

1 225 12h55 2h 06min 4h 25min 1h 56min 0.60
Morning to afternoon charging, with low
deviations. Recharge more than once
every 2 weeks approximately

2 27 15h35 5h 48min 10h 03min 7h 29min 0.51 Random behavior, recharge more than
once every 2 weeks approximately

3 28 11h35 2h 16min 6h 15min 2h 50min 2.64
Morning to afternoon charging, with
some deviation in sojourn time.
Recharge more than 2 times per week

4 58 15h04 4h 29min 1h 48min 1h 05min 0.36 No specific time to recharge, with short
sojourn time and low frequency

5.3.3 GR-Data dataset

5.3.3.A K-means Clustering

Figure 5.25(a) represents the inertia’s value as a function of the number of clusters. The elbow method

does not effectively display an elbow, but the knee of the curve suggests k from 4 to 7. Within this range,

by performing a more in-depth analysis, the best results are thus found for k=5, with higher Silhouette

and lower Davies-Bouldin scores compared to the k’s immediately before and after, as seen in Fig-

ures 5.25(b) and 5.25(c), respectively. Also, the Calinski-Harabasz score results in a high value for k=5.
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(c) Davies-Bouldin Index.

Figure 5.25: Different scores as a function of k for the GR-Data user behavior K-means clustering.
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Figure 5.26 presents the distribution of the EV user behavior profiles regarding the standard deviation

of the Plug-in Time, the standard deviation of the Sojourn Time, and the Frequency fields. Comparing

the results to those obtained for the ACN-Data (Section 5.3.2.A), there is an increase in users that led

to a growth in the number of clusters with distinct standard deviations of plug-in time (clusters 1-3). One

profile with the most frequent users (cluster 4) remains, while cluster 5 consists of the users with the

highest standard deviations of sojourn time (which do not follow a charging routine).

(a) Azimuth = -115◦. (b) Azimuth = 125◦.

Figure 5.26: 3D distribution of the K-means EV User Behavior profiles for the GR-Data dataset.

Table 5.14 lists the quantitative characteristics of the five profiles, from which one can verify that the

mean value of the plug-in time does not change over the different clusters, all of them lying at the 14h00

mark. This means that K-means did not find a correlation between the plug-in time’s standard deviation

and the plug-in time’s mean value. The Greek users do not demonstrate a specific routine of only

charging in the morning or the evening, for example. Nonetheless, cluster 2 contains the most routine

users who recharge at lunchtime, with minor deviations regarding the plug-in time and sojourn time fields.

Table 5.14: Mean quantitative characteristics of the K-means EV User Behavior profiles for the GR-Data dataset.

Cluster
ID

No. of
users

Plug-in
Time: Mean

Plug-in
Time: Std

Sojourn
Time: Mean

Sojourn
Time: Std

No. of
EVSEs Frequency Profile

1 83 14h16 7h 06min 1h 31min 1h 05min 4 1.145
No specific time to recharge, with
low deviation of short sojourn time,
recharge once per week approximately

2 388 14h52 1h 45min 1h 32min 51min 3 0.755
Lunchtime charging, with low deviation
of short sojourn time. Recharge at spe-
cific EVSEs once every week and a half

3 581 15h00 3h 43min 1h 33min 1h 01min 5 0.837
Morning or afternoon charging of short
sojourn time. Recharge more than
once every week and a half

4 80 14h37 3h 36min 1h 48min 1h 08min 7 4.074
Morning or afternoon charging, medi-
um sojourn time. Recharge at different
EVSEs more than four times per week

5 96 14h41 4h 34min 5h 03min 4h 49min 4 1.305
No specific time to recharge, with
high deviation of long sojourn time.
Recharge more than once per week
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One noteworthy aspect is that the charging frequency in GR-Data user profiles is higher than in

the profiles obtained for ACN-Data (recall Table 5.11). Further examination reveals that GR-Data user

profiles demonstrate an overall higher frequency but a lower sojourn time, while ACN-Data user profiles

demonstrate precisely the opposite behavior: low frequency but long sojourn times. This is justified by

the location of the EVSEs and the consequent user behavior since the GR-Data’s EVSEs are either

situated along highways, gas stations, or in quick-stay areas like supermarkets. On the other hand, the

ACN-Data’s EVSEs are located in a garage, thus allowing for longer sojourn times.

Additionally, the GR-Data dataset contains EVSEs across Greece, which enables the introduction of

a new feature to characterize the profiles: the number of different EVSEs attended by the users. The

analysis of this information reveals that routine EV drivers (cluster 2) typically attend the lowest number

of EVSEs (three, on average), while the most frequent users (cluster 4) rely on more EVSEs (seven,

on average). One possible explanation for this trend is that these users travel extensively throughout

the country and require recharging from distinct locations. Table B.6 reveals the precise values of the

Silhouette, Davies-Bouldin, and Calinski-Harabasz scores, according to the number of clusters.

5.3.3.B GMM Clustering

Similarly to the previous analyses, GMM clustering delivered meaningful profiles and most often the

best Silhouette, Davies-Bouldin, and Calinski-Harabasz scores with the tied covariance parameter.

Figure 5.27 illustrates the plots of the different scores as a function of the number of clusters.

According to the scores and considering the K-means study (Section 5.3.3.A), the optimal number

of clusters should be k=4 since it produces high Silhouette and low Davies-Bouldin scores, with the

Calinski-Harabasz score (Figure 5.27(c)) also following this behavior. Table B.4 reveals the precise

values of the Silhouette, Davies-Bouldin, and Calinski-Harabasz scores, according to the type of covari-

ance and k. Figure 5.28 presents the distribution of the EV user behavior profiles regarding the standard

deviation of the Plug-in Time, the standard deviation of the Sojourn Time, and the Frequency fields.
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(c) Calinski-Harabasz Index.

Figure 5.27: Different scores as a function of k for the GR-Data user behavior GMM clustering, considering tied
covariance.
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Based on Figure 5.28, it is evident that the GMM clustering demonstrates similar results on both the

GR-Data and ACN-Data datasets (remember Section 5.3.2.B). Cluster 1 in both datasets comprises pre-

dominantly low-frequency users, regardless of the standard deviation of the plug-in time. The remaining

clusters consist of extreme users in each field: cluster 2 comprises the highest charging frequency users,

cluster 3 contains users with the highest standard deviation of sojourn time, and cluster 4 includes users

with the highest standard deviation of plug-in time. These clusters explain the observed high scores but

do not provide meaningful information regarding user behavior profiles.

(a) Azimuth = -115◦. (b) Azimuth = 125◦.

Figure 5.28: 3D distribution of the GMM EV User Behavior profiles for the GR-Data dataset, considering tied co-
variance.

Table 5.15 lists the quantitative characteristics of the four profiles, revealing that cluster 1 comprises

most low-frequency users, approximately 85% of the total users. This profile exhibits a higher standard

deviation in plug-in time since it includes the users present in clusters 2 and 3 of K-means (recall Fig-

ure 5.26). Interestingly, GMM cluster 3 and K-means cluster 5 exhibit very similar mean characteristic

values (remember Table 5.14). If k=5, the new cluster would consist of about 50 low-frequency users

with extremely low standard deviations, i.e., another extreme profile that leads to worse overall scores.

Table 5.15: Mean quantitative characteristics of the GMM EV User Behavior profiles for the GR-Data dataset.

Cluster
ID

No. of
users

Plug-in
Time: Mean

Plug-in
Time: Std

Sojourn
Time: Mean

Sojourn
Time: Std

No. of
EVSEs Frequency Profile

1 1041 14h58 3h 03min 1h 34min 58min 4 0.905
Morning or afternoon charging of short
sojourn time. Recharge less than once
per week

2 41 13h44 3h 22min 1h 44min 1h 15min 6 5.213
Morning or afternoon charging, medi-
um sojourn time. Recharge at different
EVSEs more than five times per week

3 96 14h40 4h 41min 5h 03min 4h 48min 4 1.242
No specific time to recharge, with
high deviation of long sojourn time.
Recharge more than once per week

4 50 13h53 7h 46min 1h 19min 57min 4 1.020
No specific time to recharge, with
low deviation of short sojourn time,
recharge once per week approximately
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5.3.3.C Agglomerative Hierarchical Clustering

The resulting scores detailed in Table B.5 demonstrate that no distance measure consistently performs

best across all scores. However, further analysis revealed that Ward’s method leads to the best balance

between meaningful profiles and relevant scores, similar to previous studies. Figure 5.29 illustrates

the plots of the different scores as a function of the number of clusters. Based on the scores, k=5

yields one of the highest Silhouette scores (Figure 5.29(a)) and one of the lowest Davies-Bouldin scores

(Figure 5.29(b)), while achieving the highest Calinski-Harabasz score (Figure 5.29(c)). This value for the

number of clusters aligns with the previous studies, thus, k=5 was chosen.
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Figure 5.29: Different scores as a function of k for the GR-Data Hierarchical clustering, with Ward’s method as
distance measure.

Figure 5.30 presents the distribution of the EV user behavior profiles regarding the standard deviation

of the Plug-in Time, the standard deviation of the Sojourn Time, and the Frequency fields. The results

are consistent with prior Hierarchical clustering studies: more overlapped and less precise profiles. For

instance, the most frequent users are grouped with lower frequency users in cluster 5, influencing the

remaining clusters.

(a) Azimuth = -115◦. (b) Azimuth = 125◦.

Figure 5.30: 3D distribution of the Hierarchical EV User Behavior profiles for the GR-Data dataset, with Ward’s
method as distance measure.
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An intriguing observation relates to cluster 3. Unlike the K-means or GMM methods, Hierarchical

clustering successfully grouped the most regular users (i.e., those with the lowest standard deviation of

plug-in time and standard deviation of sojourn time) into one single cluster. This outcome holds great

potential for practical applications (refer to Section 5.5). The remaining clusters, 1 and 4, resemble those

obtained using the previous methods without noticeable dissimilarities.

Table 5.8 lists the quantitative characteristics of the five profiles. One can confirm that the results

match those verified with the K-means clustering (Section 5.3.3.A), despite the slight differences in the

characteristic values due to the higher number of users in cluster 5 (high-frequency profile) and the

consequent loss of definition in the remaining clusters. Specifically, the profiles maintain a high standard

deviation of plug-in time and a low standard deviation in sojourn time, except for cluster 1, which is

representative of random users.

Table 5.16: Mean quantitative characteristics of the Hierarchical EV User Behavior profiles for the GR-Data dataset.

Cluster
ID

No. of
users

Plug-in
Time: Mean

Plug-in
Time: Std

Sojourn
Time: Mean

Sojourn
Time: Std

No. of
EVSEs Frequency Profile

1 126 14h09 4h 31min 4h 43min 4h 21min 4 1.403
No specific time to recharge, with
high deviation of long sojourn time.
Recharge more than once per week

2 562 15h09 3h 43min 1h 22min 52min 5 0.679
Morning or afternoon charging of short
sojourn time. Recharge once every 2
weeks approximately

3 312 14h52 1h 41min 1h 44min 1h 3 0.645
Lunchtime charging, with low deviation
of short sojourn time. Recharge at spe-
cific EVSEs once every 2 weeks approx.

4 61 14h10 7h 24min 1h 15min 54min 4 1.148
No specific time to recharge, with low
deviation of short sojourn time,
recharge once per week approximately

5 167 14h37 3h 06min 1h 35min 56min 6 2.972
Morning or afternoon charging, medi-
um sojourn time. Recharge at different
EVSEs about 3 times per week

5.3.4 Summary of Results

The study on EV charging profiles concluded that GMM can identify the most extreme points. However,

in the context of EV user behavior, this feature proved inadequate, as the method consistently grouped

most users into a single cluster to identify the most extreme profiles despite achieving the best scores.

Nonetheless, these profiles can be valuable for specific applications. K-means was the most consensual

method, achieving the best results in terms of meaningful profiles, followed by Hierarchical clustering,

whose clusters were similar but less defined for both datasets.

ACN-Data drivers exhibit predictable behaviors. Most users start charging in the morning and con-

clude in the evening. The Caltech EV drivers prefer longer charging sessions, typically every two weeks.

On the other hand, Greek drivers demonstrate a preference for faster, lower energy, and more frequent

charging sessions. The users lack a charging routine as they charge their EVs at varying times through-

out the day, approximately once per week, and at different EVSEs.
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Table 5.17 summarizes the metrics and parameters selected for each clustering method applied to

the ACN-Data and GR-Data user behavior datasets.

Based on the analysis of Tables 5.9 and 5.17, it can be concluded that the Tied covariance (for

GMM) and Ward’s method (for Hierarchical clustering) were consistently the most effective options for

achieving the best balance between meaningful profiles and relevant scores, across all studies and

despite the varying characteristics of the datasets.

Table 5.17: Summary of the selected metrics for each ACN-Data and GR-Data user behavior clustering method.

ACN-Data K-means GMM Hierarchical

Best number of clusters 4 4 4

Parameters - Tied Covariance Ward’s Method

Elbow Method k={4, 5, 6} - -

Silhouette Coefficient 0.362 0.421 0.333

Davies-Bouldin Index 0.922 0.800 0.927

Calinski-Harabasz Index 175.08 131.72 151.62

GR-Data K-means GMM Hierarchical

Best number of clusters 5 4 5

Parameters - Tied Covariance Ward’s Method

Elbow Method k={4, 5, 6, 7} - -

Silhouette Coefficient 0.324 0.471 0.285

Davies-Bouldin Index 0.964 0.870 1.042

Calinski-Harabasz Index 558.37 391.75 483.32

5.4 EVSE Accessibility

One of the barriers noted for massifying EVs is the scarcity of Charging Pools (CPs), especially publicly

available infrastructures for those who cannot recharge in apartments. This problem is not felt as much

by families living in private homes, where they can install an EVSE. However, these are usually low-

powered and take a long time to recharge the EVs. The lack of charging infrastructure is a major barrier

to EV adoption [19]. Thus, it becomes imperative to build a public EVSE network to accommodate the

increasing demands of EV drivers and enable travel without range anxiety.

This study precisely aims to analyze the geographical distribution and accessibility of EVSEs and

understand whether the current supply is in line with the demand or whether there are inequalities that

prevent the widespread use of EVs. The GR-Data dataset was chosen to conduct an in-depth study

on this topic as it provides the locations of the publicly-operated Greek CPs, spread across Greece.

Since no address field is present in the ACN-DATA dataset, no study of this kind can be conducted.

Additionally, even if that information were available, analyzing distribution and location would be useless

since all EVSEs are placed in a parking garage at Caltech University.
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5.4.1 GR-Data dataset

The GR-Data dataset provides details on the location of the EVSEs, namely information on address,

zip code, city (and country). However, the geographic coordinates are needed to analyze the spatial

distribution of the EVSEs, i.e., in the format (latitude, longitude). Therefore, it was necessary to modify

the preprocessed dataset (recall Table 5.2) by creating a new column with the location of the EVSEs

in the format “address, zip code, city, country ” for each session (row of the dataset). By removing the

remaining fields and the duplicated entries, a new dataset was created with 124 unique CPs.

Then, the OpenCageGeocode API [81] was employed to obtain the geographic coordinates of each

address. It is a service that provides geocoding and geosearch options through open data sources, re-

turning the corresponding geographic coordinates accurately by inputting an address. Different geocod-

ing techniques were evaluated, including Nominatim from the Python library GeoPy [82] and the Google

Maps API [83]. The results revealed the poor performance of the previous tools in locating coordinates

based on addresses, frequently producing null or undefined outputs. In contrast, OpenCageGeocode

consistently yielded non-null outcomes. Nevertheless, a deeper analysis revealed that the API occasion-

ally failed to retrieve the coordinates of the indicated street, giving the city center or region as output,

resulting in some overlapped locations. Consequently, these outputs had to be manually modified to

reflect the most accurate coordinates, obtained through individual web searches.

DBSCAN is particularly interesting for studying the accessibility and location of EVSEs as it allows

finding irregularly shaped clusters. Specifically, it can find data points that do not fit into any group,

labeling them for cluster -1. A small number of clusters indicates a uniform distribution over the territory

of Greece, ideally equal to one for a perfectly uniform distribution.

5.4.2 Density-based Clustering (DBSCAN)

As previously mentioned (remember Section 4.4.4), the threshold ϵ and the minpts value must be de-

fined a priori. In the literature, the Haversine distance metric - a metric option in scikit-learn’s DBSCAN

method [84] - is often employed to calculate the distance between coordinate pairs (latitude, longitude).

However, to meet the requirements of this metric, the degree-based coordinates from the OpenCage-

Geocode API must be converted to radians. Consequently, the threshold ϵ must also be in radians.

Considering the studies reviewed in Section 3.2 and the number of existing EVSEs, minpts = 1

was defined, meaning that at least two different CPs (1 core point + 1 neighbor) are needed to form a

cluster. The threshold ϵ was selected considering the size of the Greek cities. The Athens urban area,

the largest in the country, spreads across 50 km from Agios Stefanos in the north to Varkiza in the south.

Accordingly, ϵ was set to 5 km (converted to radians by dividing it by the Earth’s radius, both in meters),

meaning that a CP belongs to the neighborhood of another if it is less than 5 km away. Figure 5.31

illustrates the spatial distribution of the DBSCAN clusters, where black triangles indicate non-clustering.
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Figure 5.31: DBSCAN results on the location of CPs in Greece, from the GR-Data dataset.

Four clusters are in the Athens region, the most populous Greek urban area (about three million res-

idents). Cluster 0, which has 26 CP locations, is the largest cluster and belongs to this area. Cluster 3 is

the second-largest cluster, with 12 CP locations, found in Greece’s second-largest region, Thessaloniki,

with a population of over one million people. Figure 5.32 presents a closer look at these regions. The

largest cluster outside Athens and Thessaloniki is cluster 10, which contains 7 CPs in Heraklion, on the

Crete (or Krı́ti) island. The remaining comprise less than 4 CPs and are concentrated in city centers

(areas with higher population density [85]). Cluster -1 corresponds to 49 non-clustered sites, located on

highways or in areas with a reduced EVSE network despite the significant population density.

This concentration of CPs in city centers is an excellent representation of the disparity of EVSE

accessibility. Smaller towns and even suburban areas lack a sufficient charging infrastructure for the

imminent rise in EV sales (recall Chapter 2). However, it is worth noting that these locations are from

2021-2022 and solely correspond to publicly-operated EVSEs. According to the Global EV Outlook

2023 [19], Greece has seen an exponential increase in the deployment of public EVSEs since 2020.
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Most people living in large cities inhabit apartments that lack private EVSEs. Therefore, it is logical to

prioritize the most densely populated areas in the implementation of a more complete EVSE network.
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Figure 5.32: Cluster distribution in the highest density areas of CPs, from the GR-Data dataset.

Nevertheless, it is possible to conduct further analysis on the EVSE use according to the obtained

results. Table 5.18 reveals the most relevant information for each cluster, including the total number of

sessions, the most popular EVSE per cluster, and its utilization rate (number of sessions divided by the

number of weeks with recorded sessions).

Table 5.18: Key characteristics of the DBSCAN clusters on the GR-Data dataset.

Cluster ID Region No. of CPs Total no. of
sessions Most popular EVSE Max Power

[kW]
Utilization rate
[sessions/week]

-1 - 49 3118 A06211502136 22 6

0 Athens 26 9356 T54HU11021001 50 21

1 Athens 7 1475 T54HU11221001 50 11

2 Athens 2 1062 2067 22 7

3 Thessaloniki 12 2649 DC-IKEA-THES 50 31

4 Athens 10 2990 2193 22 11

5 Chania 2 74 2127 22 7

6 Ioannina 2 116 1775 22 3

7 Patras 3 335 2281 22 5

8 Kalamata 2 90 2337 22 2

9 Larissa 2 172 2291 22 3

10 Heraklion 7 364 2163 22 3

Table 5.18 reveals that the utilization rate of the most popular EVSE in each cluster is often low,

regardless of the size of the areas they serve. Most sessions occur in cluster 0; however, the most

requested EVSE is found in cluster 3. The “DC-IKEA-THES” experiences approximately 31 charging

sessions per week, displaying significantly higher demand compared to other EVSEs in the same CP and
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cluster. Its popularity may derive from its convenient placement within a large multinational retailer, IKEA,

and its maximum power capacity of 50 kW, surpassing the 22 kW maximum capacity of the remaining

EVSEs in the cluster. Expansion of the EVSE network within this location represents a potentially

advantageous strategy regarding demand and economics.

Although they cost more, fast chargers are attended more frequently than 22 kW EVSEs in CPs

with these facilities. Users seeking the convenience of fast charging seem undeterred by its utilization

price. In fact, seen as a loss leader in the past, EV charging is expected to overtake fuel pumps in the

profitability race as early as 2025, according to BP’s head of customers [86]. Also, Wedbush Securities’

Dan Ives estimates that the Supercharger business might contribute up to six percent (20 billion USD)

of Tesla’s total revenues by 2030 [87]. This indicator encourages CPOs and DSOs to install more fast

chargers at high-demand CPs.

Table 5.19 reveals the Top-5 Greek EVSEs in the most relevant topics: utilization, energy delivered,

and profitability, corroborating the previously stated points. For instance, “DC-IKEA-THES” stands out as

the most utilized EVSE, supplying the most energy and generating the highest profits. The most attended

EVSEs correspond to quick-stay locations, specifically restaurants and supermarkets. In contrast, the

second and third most profitable EVSEs (with a significant lead over the fourth and fifth place) are located

in parking lots and offer fast charging of up to 50 kW and 120 kW, respectively.

Table 5.19: GR-Data EVSE rankings by key metrics: Utilization, Energy Delivered, and Profitability.

Top 5 Most Utilized EVSEs

EVSE ID Max Power [kW] Location Type Cluster ID Profit [C] Total no. of sessions

DC-IKEA-THES 50 Retail Store (IKEA) 3 2938.36 1360

2487 22 Restaurant/Urban Park 0 1045.60 736

1969 22 Supermarket 0 1318.27 531

2253 22 Supermarket 0 1252.61 466

2193 22 Supermarket 4 710.68 458

Top 5 EVSEs with Highest Energy Delivered

EVSE ID Max Power [kW] Location Type Cluster ID Profit [C] Energy Delivered [kWh]

DC-IKEA-THES 50 Retail Store (IKEA) 3 2938.36 28453.296

T54HU10321015 50 Parking Lot 3 2364.02 7907.409

2487 22 Restaurant/Urban Park 0 1045.60 7613.991

T124IT10521065 120 Parking Lot 1 2326.19 7398.797

1969 22 Supermarket 0 1318.27 6784.318

Top 5 Most Profitable EVSEs

EVSE ID Max Power [kW] Location Type Cluster ID Profit [C] Profit/session [C]

DC-IKEA-THES 50 Retail Store (IKEA) 3 2938.36 2.16

T54HU10321015 50 Parking Lot 3 2364.02 6.42

T124IT10521065 120 Parking Lot 1 2326.19 6.48

1969 22 Supermarket 0 1318.27 2.48

2253 22 Supermarket 0 1252.61 2.69
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5.5 Practical Applications

The study conducted in this thesis provides various practical applications. The EV charging profiles,

EV user behavior profiles, and EVSE accessibility yield valuable information for CPOs and DSOs that

assists in grid management and the correct insertion of EVs into the energy system, providing powerful

insights into the typical charging process, user behavior, and utilization and accessibility of the EVSEs.

In the literature, these outcomes have been exploited for various practical applications, as briefly

mentioned in Section 3.2. For instance, Xiong et al. [47] discovered EV user behavior profiles and

used them as input for a model that can apply to different scheduling EV charging algorithms. Nespoli

et al. [88] also relied on clustering to identify typical charging profiles, a fundamental step in obtaining the

forecast results. The authors focused on forecasting and reconstructing the aggregated power profile of

the Caltech parking lot (ACN-Data), employing OPTICS with the connection time and charging duration

fields. Similarly, Gerossier et al. [49] utilized the typical profiles obtained through clustering to forecast

the consumption profile of EVs in the short-term (one day ahead) and in the long-term (2030).

Additionally, this thesis’s results may lead to further applications not yet extensively explored in the

literature. EV charging profiles provide valuable information about flexibility. The analysis of this in-

formation can be helpful in future projects, particularly in the coordination of EVs with solar and wind

renewable energies to balance the network during wind curtailment or solar power gaps. Specifically, the

EV4EU research project by Jerónimo et al. [89] could benefit from utilizing empirical profiles rather than

relying on simulation algorithms for the generation of flexibility profiles for the ACN-Data EVSEs. The au-

thors propose a new flexibility model for CPOs that requires the characterization of EVSE charging and

occupancy rates as inputs to the model. The model is then incorporated into the network planning prob-

lem by defining a new flexibility cost function. Following the representation in [89], Figure 5.33 illustrates

the temporal characterization of the typical profiles found, presented in a lattice format. In particular, this

representation visually demonstrates the longer duration and greater flexibility of the ACN-Data sessions

compared to the GR-Data sessions.
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Figure 5.33: Flexibility characterization of the EV Charging profiles for each dataset.
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Regarding the EV user behavior profiles, one further application not yet seen in the literature is to

utilize these profiles to help create customized charging tariffs. These tariffs can impact the charging

behavior and result in advantages for the user, environment, and grid management [90]. User benefits

may include adjusted tariffs that promote cost efficiency, while environmental advantages can be gained

from collaboration with RES, resulting in reduced carbon emissions. Grid management can also be

improved through adjusting prices to mitigate high peak loads. For instance, each EV user behavior

profile can lead to an adjusted tariff based on the cluster’s characteristics. Frequent users who utilize

multiple EVSEs could have discounts by attending CPs with less demand, consequently increasing the

availability of the most popular locations. Alternatively, regular users with longer sojourn times can

receive incentives to adjust their charging power to avoid high load peaks and to help with solar gaps

and wind curtailment. Additionally, this application would solve one of the main problems with the current

charging tariffs: not considering the driver’s needs [90].

Finally, the EVSE accessibility analysis can assist CPOs in the appropriate EVSE placement by

providing practical details about their distribution and location. As previously discussed (remember

Section 5.4.2), identifying the ideal sites for installing public EVSEs remains a significant concern in

electric mobility. By analyzing information such as the total number of sessions, profit per session, and

the location of the most frequently used EVSE in each cluster, CPOs can make informed decisions on

where to install new public infrastructures, considering both geographic and economic factors.
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6.1 Conclusions

This thesis performed a robust assessment of the possible applications of clustering in EV-related data.

In particular, EV charging profiles, EV user behavior profiles, and the EVSE’s accessibility were found

by applying clustering methods to datasets of empirical charging processes: ACN-Data (open data)

and GR-Data (private data from one of the Greek EV4EU project partners). The experimental results

demonstrated the feasibility of utilizing clustering techniques to extract comprehensive insights into the

EV charging process, the behavior of EV drivers, and the accessibility of EVSEs, confirming all the

objectives and research questions. The EV charging and EV user behavior profiles were obtained using

K-means, GMM, and Hierarchical clustering, with subsequent comparison of methods and approaches.

DBSCAN was employed to obtain information about the accessibility and distribution of Greek EVSEs.

The EV charging profiles provide information about the times of day when more or fewer charging

sessions occur, whether the sessions are high energy, low energy, with high or low flexibility potential.

GMM yielded more specific and superior profiles in ACN-Data, whereas K-means performed better in

GR-Data. ACN-Data is characterized by highly flexible profiles since EVs spend more time parked than

charging. GR-Data, on the other hand, predominantly contains quick-stay sessions, in line with the

EVSE locations (publicly available infrastructures). The analysis of this information can be helpful in

future activities related to power systems planning and in the coordination of EVs with RES.

EV user behavior profiles determine whether the user’s behavior is routine, or random and without

a typical charging frequency. K-means generated the most consensual profiles for the two datasets.

Most ACN-Data users choose infrequent, long charging routines, typically every two weeks. In contrast,

GR-Data includes more frequent users without a specific charging routine, as they prefer short sessions

at no particular time of the day, about once a week, on different EVSEs. This information can be applied

to create personalized charging tariffs that benefit the user, the environment, and the grid.

Furthermore, studying the accessibility of EVSEs revealed the geographic distribution of the cor-

responding publicly-operated Greek CPs, whether the current supply is in line with the demand, and

whether there are inequalities in access to EVSEs that prevent the widespread use of EVs. Results

confirmed that the most densely populated cities had the most extensive charging networks during the

2021-2022 data period and indicated the possibility for additional EVSEs in strategic locations.

It was necessary to perform an extensive study on the number of clusters that provided the opti-

mal balance between best scores (Silhouette, Davies-Bouldin, and Calinski-Harabasz) and meaningful

profiles to obtain the results of this thesis. The best scores often led to meaningless typical profiles,

requiring a more in-depth analysis. Selecting the ideal covariance type for GMM clustering and distance

measure for Hierarchical clustering was also crucial. Tied covariance and Ward’s Method were consis-

tently the most appropriate options for the different studies. Additionally, it was verified that the seed

affects the results and their reproducibility since K-means and GMM are sensitive to the initialization
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of their algorithms (the seed is responsible for these initializations in the scikit-learn library, defined

through the parameter random state [64]). As a result, multiple analyses were conducted to determine

the optimal random state for each study.

Governments throughout the world have already stated their commitment to lowering GHG emis-

sions. EVs have become part of the solution, with record-breaking sales in 2022 and perspectives for

growing market share in the upcoming years. Therefore, the results of this thesis seek to help Utilities,

DSOs, and CPOs to perform a successful and intelligent integration of EVs into the energy system,

providing them with valuable information about the charging behavior of EVs and EVSEs.

6.2 System Limitations and Future Work

The conducted study presents some limitations due to the available data. The EV charging profiles

from ACN-Data and GR-Data exhibit similarities and differences, reflecting the data’s nature since it

only depicts charging patterns in a specific region/country. Moreover, obtaining a generalized result

across all the analyzed studies is challenging due to the uncertainty of the data and employed methods.

Hence, future work may include further clustering studies with newly available datasets from different

regions/countries to increase knowledge about EVs and EVSEs.

Additionally, it is worth mentioning that the user behavior profiles found are limited since only EVSE

data was utilized. Users may attend EVSEs beyond those in the current datasets, making it unclear

whether the profiles found correspond to the total user behavior. For a more comprehensive analysis, it

is recommended to use data from EVs or users instead of only from EVSEs.

Finally, in an era characterized by large volumes of data, smart cities, and an increasingly connected

future, clustering has emerged as a powerful ally for processing and extracting valuable information for

forthcoming studies. By seamlessly integrating simulated studies with real-world data enhanced through

clustering (as suggested in Section 5.5), a giant leap can be made toward understanding and guiding a

sustainable future that we aspire to share with everyone.
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Vehicle charging stations: Current development and future prospect review,” Renewable

and Sustainable Energy Reviews, vol. 169, p. 112862, Nov. 2022. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S1364032122007444

[8] IRENA, World Energy Transitions Outlook 2023: 1.5°C Pathway; Preview. International

Renewable Energy Agency, Abu Dhabi., Mar. 2023. [Online]. Available: https://www.irena.org/

Publications/2023/Mar/World-Energy-Transitions-Outlook-2023

[9] M. Kane, “Global Plug-In Electric Car Sales Increased 61% In July 2022 To 778,000,” Sep. 2022.

[Online]. Available: https://insideevs.com/news/607856/global-plugin-car-sales-july2022/

73

https://unstats.un.org/sdgs/indicators/indicators-list/
https://unstats.un.org/sdgs/indicators/indicators-list/
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://www.eea.europa.eu/themes/climate/eu-greenhouse-gas-inventory
https://www.eea.europa.eu/publications/transport-and-environment-report-2022
https://earth.org/environmental-impact-of-battery-production/
http://link.springer.com/10.1007/978-981-13-0158-2_75
https://linkinghub.elsevier.com/retrieve/pii/S1364032122007444
https://www.irena.org/Publications/2023/Mar/World-Energy-Transitions-Outlook-2023
https://www.irena.org/Publications/2023/Mar/World-Energy-Transitions-Outlook-2023
https://insideevs.com/news/607856/global-plugin-car-sales-july2022/


[10] E. Union, “ EU Action: 2050 long-term strategy,” n.d. [Online]. Available: https:

//climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy en

[11] European Council, “Fit for 55: towards more sustainable transport,” Jun. 2023, publisher: General

Secretariat of the European Council. [Online]. Available: https://europa.eu/!yfBkpH

[12] E. Parliament, “Fit for 55: MEPs back objective of zero emissions for cars and

vans in 2035 | News | European Parliament,” Aug. 2022. [Online]. Available: https:

//www.europarl.europa.eu/news/en/press-room/20220603IPR32129

[13] Z. Liu, Z. Deng, S. J. Davis, C. Giron, and P. Ciais, “Monitoring global carbon emissions in 2021,”

Nature Reviews Earth & Environment, vol. 3, no. 4, pp. 217–219, Mar. 2022. [Online]. Available:

https://www.nature.com/articles/s43017-022-00285-w.pdf

[14] D. B. Richardson, “Electric vehicles and the electric grid: A review of modeling approaches,

Impacts, and renewable energy integration,” Renewable and Sustainable Energy Reviews, vol. 19,

pp. 247–254, Mar. 2013. [Online]. Available: https://doi.org/10.1016/j.rser.2012.11.042

[15] C. B. Jones, M. Lave, W. Vining, and B. M. Garcia, “Uncontrolled Electric Vehicle Charging

Impacts on Distribution Electric Power Systems with Primarily Residential, Commercial

or Industrial Loads,” Energies, vol. 14, no. 6, p. 1688, Jan. 2021. [Online]. Available:

https://www.mdpi.com/1996-1073/14/6/1688

[16] R. Massey, “We test a replica of Trouve’s 1881 rechargeable electric vehicle,”

Apr. 2021. [Online]. Available: https://www.thisismoney.co.uk/money/cars/article-9512103/

We-test-replica-Gustave-Trouves-1881-rechargeable-electric

[17] M. Chandran, K. Palanisamy, D. Benson, and S. Sundaram, “A Review on Electric and

Fuel Cell Vehicle Anatomy, Technology Evolution and Policy Drivers towards EVs and FCEVs

Market Propagation,” The Chemical Record, vol. 22, no. 2, Feb. 2022. [Online]. Available:

https://onlinelibrary.wiley.com/doi/10.1002/tcr.202100235

[18] U. D. of State, “Milestones: 1969–1976 - Office of the Historian,” n.d. [Online]. Available:

https://history.state.gov/milestones/1969-1976/oil-embargo

[19] I. E. A. (IEA), “Global EV Outlook 2023,” IEA, Paris, Tech. Rep., 2023. [Online]. Available:

https://www.iea.org/reports/global-ev-outlook-2023

[20] ——, “Stated Policies Scenario (STEPS) – Climate Model,” 2023. [Online]. Available:

https://www.iea.org/reports/global-energy-and-climate-model/stated-policies-scenario-steps

[21] E. Database, “Range of full EVs,” 2023. [Online]. Available: https://bit.ly/45VQ28P

74

https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en
https://europa.eu/!yfBkpH
https://www.europarl.europa.eu/news/en/press-room/20220603IPR32129
https://www.europarl.europa.eu/news/en/press-room/20220603IPR32129
https://www.nature.com/articles/s43017-022-00285-w.pdf
https://doi.org/10.1016/j.rser.2012.11.042
https://www.mdpi.com/1996-1073/14/6/1688
https://www.thisismoney.co.uk/money/cars/article-9512103/We-test-replica-Gustave-Trouves-1881-rechargeable-electric
https://www.thisismoney.co.uk/money/cars/article-9512103/We-test-replica-Gustave-Trouves-1881-rechargeable-electric
https://onlinelibrary.wiley.com/doi/10.1002/tcr.202100235
https://history.state.gov/milestones/1969-1976/oil-embargo
https://www.iea.org/reports/global-ev-outlook-2023
https://www.iea.org/reports/global-energy-and-climate-model/stated-policies-scenario-steps
https://bit.ly/45VQ28P


[22] Statista, “Worldwide electric vehicle sales by model 2022,” Feb. 2023. [Online]. Available:

https://www.statista.com/statistics/960121/sales-of-all-electric-vehicles-worldwide-by-model/

[23] IEA, “Trends in charging infrastructure - Global EV Outlook 2023,” 2023. [Online]. Available:

https://www.iea.org/reports/global-ev-outlook-2023/trends-in-charging-infrastructure

[24] European Commission , “European Alternative Fuels Observatory,” 2023. [Online]. Available:

https://alternative-fuels-observatory.ec.europa.eu/

[25] European Parliament and Council, “Proposal for a REGULATION OF THE EUROPEAN

PARLIAMENT AND OF THE COUNCIL,” 2021. [Online]. Available: https://eur-lex.europa.eu/

legal-content/en/TXT/?uri=CELEX:52021PC0559

[26] J. A. Manzolli, J. P. Trovão, and C. H. Antunes, “A review of electric bus vehicles research topics

– Methods and trends,” Renewable and Sustainable Energy Reviews, vol. 159, p. 112211, May

2022. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1364032122001344

[27] Drive to Zero, “The Program,” 2023. [Online]. Available: https://globaldrivetozero.org

[28] European Commission, “Recharging systems | European Alternative Fuels Observatory,”

2019. [Online]. Available: https://alternative-fuels-observatory.ec.europa.eu/general-information/

recharging-systems

[29] K. Dimitriadou, N. Rigogiannis, S. Fountoukidis, F. Kotarela, A. Kyritsis, and N. Papanikolaou,

“Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in

Wireless Charging Integration,” Energies, vol. 16, no. 4, p. 2057, Feb. 2023. [Online]. Available:

https://www.mdpi.com/1996-1073/16/4/2057

[30] E. H. Ruspini, “A new approach to clustering,” Information and Control, vol. 15, no. 1, pp. 22–32,

Jul. 1969. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0019995869905919

[31] M. J. Zaki and W. Meira, Jr, Data Mining and Machine Learning: Fundamental Concepts and Algo-

rithms, 2nd ed. Cambridge University Press, 2020.

[32] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er, W. Ding, and C.-T. Lin,

“A review of clustering techniques and developments,” Neurocomputing, vol. 267, pp. 664–681,

Dec. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231217311815

[33] T. Amestoy, “Clustering basics and a demonstration in clustering infrastructure path-

ways,” Mar. 2022. [Online]. Available: https://waterprogramming.wordpress.com/2022/03/16/

clustering-basics-and-a-demonstration-in-clustering

75

https://www.statista.com/statistics/960121/sales-of-all-electric-vehicles-worldwide-by-model/
https://www.iea.org/reports/global-ev-outlook-2023/trends-in-charging-infrastructure
https://alternative-fuels-observatory.ec.europa.eu/
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52021PC0559
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52021PC0559
https://linkinghub.elsevier.com/retrieve/pii/S1364032122001344
https://globaldrivetozero.org
https://alternative-fuels-observatory.ec.europa.eu/general-information/recharging-systems
https://alternative-fuels-observatory.ec.europa.eu/general-information/recharging-systems
https://www.mdpi.com/1996-1073/16/4/2057
https://linkinghub.elsevier.com/retrieve/pii/S0019995869905919
https://linkinghub.elsevier.com/retrieve/pii/S0925231217311815
https://waterprogramming.wordpress.com/2022/03/16/clustering-basics-and-a-demonstration-in-clustering
https://waterprogramming.wordpress.com/2022/03/16/clustering-basics-and-a-demonstration-in-clustering


[34] L. M. L. Cam and J. Neyman, Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability: Weather modification. University of California, 1967, google-Books-ID:

IC4Ku 7dBFUC.

[35] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data via the

EM Algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, no. 1,

pp. 1–38, 1977. [Online]. Available: http://www.jstor.org/stable/2984875

[36] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison of Document Clustering Techniques,”

University of Minnesota Digital Conservancy, Report, May 2000. [Online]. Available: http:

//conservancy.umn.edu/handle/11299/215421

[37] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters

in large spatial Databases with Noise,” Knowledge Discovery and Data Mining, pp. 226–231, Jan.

1996. [Online]. Available: https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf

[38] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: ordering points to identify

the clustering structure,” in Proceedings of the 1999 ACM SIGMOD international conference on

Management of data. Philadelphia Pennsylvania USA: ACM, Jun. 1999, pp. 49–60. [Online].

Available: https://dl.acm.org/doi/10.1145/304182.304187

[39] H. Jia, S. Ding, X. Xu, and R. Nie, “The latest research progress on spectral clustering,” Neural

Computing and Applications, vol. 24, no. 7-8, pp. 1477–1486, Jun. 2014.

[40] Al-Ogaili, T. J. Tengku Hashim, N. A. Rahmat, A. K. Ramasamy, M. B. Marsadek, M. Faisal, and

M. A. Hannan, “Review on Scheduling, Clustering, and Forecasting Strategies for Controlling

Electric Vehicle Charging: Challenges and Recommendations,” IEEE Access, vol. 7, pp.

128 353–128 371, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8825773/

[41] S. Shahriar, A. R. Al-Ali, A. H. Osman, S. Dhou, and M. Nijim, “Machine Learning Approaches

for EV Charging Behavior: A Review,” IEEE Access, vol. 8, pp. 168 980–168 993, 2020. [Online].

Available: https://ieeexplore.ieee.org/document/9194702/

[42] M. Nazari, A. Hussain, and P. Musilek, “Applications of Clustering Methods for Different

Aspects of Electric Vehicles,” Electronics, vol. 12, no. 4, p. 790, Feb. 2023. [Online]. Available:

https://www.mdpi.com/2079-9292/12/4/790

[43] Y. Shen, W. Fang, F. Ye, and M. Kadoch, “EV Charging Behavior Analysis Using Hybrid

Intelligence for 5G Smart Grid,” Electronics, vol. 9, no. 1, p. 80, Jan. 2020. [Online]. Available:

https://www.mdpi.com/2079-9292/9/1/80

76

http://www.jstor.org/stable/2984875
http://conservancy.umn.edu/handle/11299/215421
http://conservancy.umn.edu/handle/11299/215421
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://dl.acm.org/doi/10.1145/304182.304187
https://ieeexplore.ieee.org/document/8825773/
https://ieeexplore.ieee.org/document/9194702/
https://www.mdpi.com/2079-9292/12/4/790
https://www.mdpi.com/2079-9292/9/1/80


[44] S. Shahriar and A. R. Al-Ali, “Impacts of COVID-19 on Electric Vehicle Charging Behavior: Data

Analytics, Visualization, and Clustering,” Applied System Innovation, vol. 5, no. 1, p. 12, Jan. 2022.

[Online]. Available: https://www.mdpi.com/2571-5577/5/1/12

[45] J. R. Helmus, M. H. Lees, and R. van den Hoed, “A data driven typology of

electric vehicle user types and charging sessions,” Transportation Research Part C:

Emerging Technologies, vol. 115, p. 102637, Jun. 2020. [Online]. Available: https:

//linkinghub.elsevier.com/retrieve/pii/S0968090X19315414
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A
Appendix A - EV Charging profiles

Table A.1: Detailed results for the ACN-Data K-means clustering, according to the number of clusters.

No. of clusters Silhouette Davies-Bouldin Calinski-Harabasz

2 0.47357 0.86186 28574.51

3 0.48246 0.92243 21892.78

4 0.36035 0.92501 20569.21

5 0.36134 0.98913 19588.04

6 0.31514 1.05453 18528.65

7 0.32717 1.02194 17926.27

8 0.32897 1.00647 17561.08

9 0.30136 1.04497 17070.46

10 0.30430 1.00262 16916.17

11 0.31370 0.92487 16804.79

12 0.31838 0.94807 16565.86
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Table A.2: Detailed results for the ACN-Data GMM clustering, according to the no. of clusters and covariance type.

Covariance Type Full Tied Diagonal Spherical

No. of clusters Silhouette Coefficient

2 0.41251 0.48143 0.41536 0.43424

3 0.26984 0.48708 0.29609 0.44138

4 0.25661 0.34126 0.27398 0.32045

5 0.20343 0.35130 0.18475 0.34143

6 0.15032 0.30105 0.15702 0.30324

7 0.12251 0.31011 0.15753 0.25442

8 0.09940 0.31271 0.05926 0.22970

9 0.13783 0.31580 0.18210 0.25840

10 0.05792 0.29622 0.11346 0.27802

11 0.14120 0.27210 0.10384 0.28234

12 0.14202 0.24740 0.10932 0.27222

No. of clusters Davies-Bouldin Index

2 1.7801 0.84502 1.70151 1.01159

3 1.53589 0.88985 1.49403 1.40486

4 1.94109 0.94227 1.97802 1.27881

5 2.24157 0.93662 2.15110 1.12440

6 2.09343 1.09557 1.85613 1.16216

7 3.06487 1.04670 1.73417 1.25671

8 5.12387 1.00700 2.70676 1.28011

9 2.67068 1.04412 2.81587 1.18493

10 2.76541 1.03229 2.52624 1.04683

11 2.30663 1.06427 2.35165 1.29935

12 2.26651 1.11045 2.23481 1.15738

No. of clusters Calinski-Harabasz Index

2 4352.18 28070.54 4158.26 22183.52

3 9362.63 21155.34 10566.51 17549.73

4 6823.52 19147.85 7464.81 14927.15

5 6087.19 17479.96 5578.93 16791.32

6 5599.10 17052.13 6844.71 15248.35

7 3746.01 16480.51 6787.40 12251.94

8 4250.03 15226.62 4142.44 11151.71

9 3948.06 14264.09 4703.44 11726.81

10 3790.44 14036.52 5144.84 14354.09

11 6043.51 13999.08 4883.66 12652.41

12 5559.72 10790.71 4908.84 12403.60
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Table A.3: Detailed results for the ACN-Data Agglomerative Hierarchical clustering, according to the no. of clusters
and distance measure.

Distance measure Ward’s method Complete-link Average-link Single-link

No. of clusters Silhouette Coefficient

2 0.46838 0.45748 0.71146 0.69274

3 0.28815 0.45845 0.69039 0.69039

4 0.29674 0.46232 0.55039 0.68689

5 0.31595 0.46254 0.52369 0.66590

6 0.32528 0.44501 0.43899 0.62566

7 0.26605 0.44176 0.43643 0.23637

8 0.23424 0.43608 0.40813 0.23278

9 0.25205 0.41690 0.40746 0.10077

10 0.25477 0.40847 0.39773 0.10088

11 0.24934 0.40846 0.34130 0.02158

12 0.24532 0.23787 0.33384 0.02137

No. of clusters Davies-Bouldin Index

2 0.89629 1.05526 0.56043 0.22550

3 1.14471 0.93233 0.29283 0.29283

4 1.19966 0.78233 0.64574 0.21800

5 1.09765 0.73445 0.72318 0.22100

6 1.09692 0.73987 0.77087 0.23361

7 1.16480 0.74012 0.75920 0.45237

8 1.23580 0.79069 0.73081 0.42916

9 1.15374 0.90221 0.71403 0.41300

10 1.09326 0.89850 0.71409 0.41120

11 1.06595 0.86438 0.72149 0.43642

12 1.05788 0.96564 0.75121 0.44275

No. of clusters Calinski-Harabasz Index

2 23001.49 19062.53 44.93 15.25

3 18725.57 10881.13 24.94 24.94

4 16801.9 12035.46 454.16 16.78

5 16663.67 9079.93 383.41 16.28

6 15496.63 7687.98 997.31 15.27

7 14835.33 6519.69 832.82 13.26

8 14395.74 5692.03 734.19 12.92

9 14016.14 5569.92 645.90 11.35

10 13799.17 5631.02 577.21 23.02

11 13614.26 5082.67 903.27 20.88

12 13533.4 6717.94 831.61 22.31
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Table A.4: Detailed results for the GR-Data GMM clustering, according to the no. of clusters and covariance type.

Covariance Type Full Tied Diagonal Spherical

No. of clusters Silhouette Coefficient

2 0.26540 0.38150 0.27053 0.29178

3 0.01088 0.41154 0.11608 0.38189

4 0.02765 0.41811 0.11217 0.38925

5 0.09537 0.40764 0.11762 0.32026

6 0.02366 0.30298 0.06055 0.25645

7 0.02577 0.29001 0.03653 0.24752

8 0.02710 0.30859 0.03710 0.24831

9 -0.04504 0.35220 -0.01539 0.25787

10 0.01480 0.31102 0.01971 0.24783

11 -0.00800 0.26416 0.01043 0.23362

12 -0.16190 0.29880 0.04106 0.26341

No. of clusters Davies-Bouldin Index

2 1.73222 1.08312 1.68783 1.20949

3 4.13433 0.92159 2.32263 1.13754

4 4.31540 1.11376 2.41701 1.21673

5 2.36893 0.95664 2.08761 1.33165

6 3.84114 1.07336 3.25029 1.28886

7 4.21964 1.06072 1.55934 1.39125

8 4.57814 1.06068 1.52143 1.35632

9 3.60060 1.37983 2.86745 1.26315

10 3.21785 1.08808 3.14817 1.24080

11 3.66278 1.21414 2.81161 1.33142

12 3.38955 1.16043 2.39371 1.13697

No. of clusters Calinski-Harabasz Index

2 5807.40 12630.92 6097.47 7926.36

3 2987.32 13235.28 4627.68 11304.23

4 3141.06 11010.57 3738.46 11033.27

5 3317.73 10405.81 3927.49 9821.07

6 2808.50 10204.26 3082.10 8840.09

7 3030.12 9426.95 3734.92 8293.49

8 3255.93 9259.41 4168.92 7309.53

9 3097.35 6393.49 3119.55 7793.34

10 3929.59 8846.09 3920.02 7552.51

11 3139.23 5894.13 3826.79 7004.49

12 1815.72 7771.03 4063.66 7941.74
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Table A.5: Detailed results for the GR-Data Agglomerative Hierarchical clustering, according to the no. of clusters
and distance measure.

Distance measure Ward’s method Complete-link Average-link Single-link

No. of clusters Silhouette Coefficient

2 0.36524 0.51560 0.67181 0.67181

3 0.38935 0.36598 0.53889 0.65820

4 0.37778 0.35997 0.47794 0.64444

5 0.31118 0.37035 0.46936 0.62952

6 0.31898 0.36903 0.40626 0.54340

7 0.32231 0.35887 0.40155 0.54374

8 0.29405 0.35085 0.29433 0.54361

9 0.30471 0.24693 0.29175 0.46728

10 0.27997 0.25433 0.29148 0.46270

11 0.23269 0.25177 0.28610 0.45317

12 0.23366 0.25167 0.27724 0.45132

No. of clusters Davies-Bouldin Index

2 1.05466 0.80714 0.24176 0.24176

3 0.92321 0.93118 0.55434 0.29659

4 1.08166 0.80693 0.72967 0.23260

5 1.05006 0.87422 0.72114 0.25642

6 1.06984 0.93020 0.81416 0.27744

7 1.03606 1.03833 0.78597 0.31382

8 1.04921 1.11920 0.77099 0.34381

9 1.08190 1.18052 0.77971 0.35276

10 1.14070 1.14694 0.77090 0.34205

11 1.07476 1.11700 0.77663 0.33598

12 1.07004 1.04482 0.81600 0.33639

No. of clusters Calinski-Harabasz Index

2 12273.73 293.08 14.30 14.30

3 13116.49 6823.81 911.63 24.13

4 12237.96 6504.19 727.16 16.20

5 12803.51 7428.55 548.13 36.15

6 12518.97 5970.72 912.94 30.35

7 11777.57 5051.53 768.13 37.85

8 11222.55 4504.13 667.22 32.57

9 10712.25 4945.95 584.48 29.20

10 10332.39 5673.12 521.24 27.51

11 9965.21 5231.59 489.75 25.87

12 9721.59 4761.15 1005.73 25.41
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Table A.6: Detailed results for the GR-Data K-means clustering, according to the number of clusters.

No. of clusters Silhouette Davies-Bouldin Calinski-Harabasz

2 0.38171 1.08329 12646.32

3 0.41961 0.94303 14357.92

4 0.41454 1.07574 12678.16

5 0.32422 1.10253 12045.72

6 0.33627 0.98594 12090.11

7 0.31712 1.00377 11619.31

8 0.31754 1.02830 11126.51

9 0.29995 1.02061 10931.56

10 0.32630 0.98269 10715.45

11 0.32511 1.02119 10370.62

12 0.32400 1.00872 10193.72
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B
Appendix B - EV User Behavior

profiles

Table B.1: Detailed results for the ACN-Data user behavior K-means clustering, according to the number of clusters.

No. of clusters Silhouette Davies-Bouldin Calinski-Harabasz

2 0.34126 1.19387 163.95

3 0.34210 1.02889 161.08

4 0.36223 0.92213 175.08

5 0.32752 0.93782 182.01

6 0.29713 0.97856 175.74

7 0.31575 0.90153 180.11

8 0.32133 0.91951 179.17

9 0.30701 0.92140 172.45

10 0.32408 0.78121 169.65

11 0.31363 0.90343 172.20

12 0.31329 0.84355 170.46
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Table B.2: Detailed results for the ACN-Data user behavior GMM clustering, according to the no. of clusters and
covariance type.

Covariance Type Full Tied Diagonal Spherical

No. of clusters Silhouette Coefficient

2 0.27170 0.48448 0.32297 0.40483

3 0.28328 0.42482 0.28416 0.24552

4 0.26567 0.42116 0.20121 0.31802

5 0.24999 0.29009 0.14601 0.24710

6 0.15114 0.31111 0.11827 0.27105

7 0.14215 0.29779 0.12276 0.29974

8 0.09369 0.29729 0.11705 0.25300

9 0.12092 0.30205 0.11916 0.29226

10 0.08630 0.27532 0.12748 0.30970

11 0.12094 0.27683 0.07661 0.29759

12 0.02333 0.23940 0.10843 0.26210

No. of clusters Davies-Bouldin Index

2 1.33701 0.89989 1.26047 1.67718

3 1.20782 0.84265 1.19773 1.67693

4 1.17150 0.80026 1.18948 1.16293

5 1.20893 0.93921 1.68658 1.10425

6 1.71623 0.90562 1.55385 0.97053

7 1.44279 0.78990 1.57404 0.96608

8 1.31268 0.93940 1.26399 0.89929

9 1.31953 0.85260 1.31579 0.93398

10 2.11985 0.84471 2.05610 1.18140

11 1.30083 0.94565 2.12649 0.94792

12 2.18061 1.01658 1.94048 0.96927

No. of clusters Calinski-Harabasz Index

2 128.59 77.25 147.94 98.43

3 117.04 92.80 117.56 91.72

4 125.89 131.72 105.26 135.32

5 127.10 122.99 76.72 130.19

6 76.96 163.60 68.64 135.47

7 83.30 133.36 70.08 156.15

8 74.03 165.51 81.02 148.08

9 78.52 159.20 83.90 157.78

10 58.88 156.44 71.43 138.59

11 84.63 150.07 64.26 153.42

12 48.82 142.94 63.62 145.46
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Table B.3: Detailed results for the ACN-Data user behavior Agglomerative Hierarchical clustering, according to the
no. of clusters and distance measure.

Distance measure Ward’s method Complete-link Average-link Single-link

No. of clusters Silhouette Coefficient

2 0.36363 0.56765 0.70028 0.70028

3 0.37043 0.55632 0.65914 0.65914

4 0.33327 0.53134 0.53134 0.49858

5 0.25747 0.29084 0.47729 0.47166

6 0.27309 0.31005 0.42627 0.45960

7 0.27500 0.27778 0.41796 0.40592

8 0.29220 0.27568 0.41250 0.41402

9 0.29490 0.27571 0.33238 0.41546

10 0.29800 0.26813 0.34046 0.40563

11 0.27130 0.26022 0.32207 0.39991

12 0.27116 0.25351 0.31936 0.21283

No. of clusters Davies-Bouldin Index

2 1.20647 0.78186 0.20446 0.20446

3 1.02421 0.59308 0.21058 0.21058

4 0.92706 0.43856 0.43856 0.28344

5 1.10668 0.73371 0.52487 0.34640

6 1.03568 0.74967 0.53776 0.35449

7 0.93593 0.72763 0.46802 0.40083

8 0.98294 0.74428 0.50886 0.40257

9 0.88796 0.69428 0.62899 0.39151

10 0.82636 0.72909 0.66090 0.35172

11 0.84329 0.74116 0.63267 0.32743

12 0.90675 0.76189 0.66013 0.37088

No. of clusters Calinski-Harabasz Index

2 145.35 70.85 17.10 17.10

3 144.31 46.34 16.82 16.82

4 151.62 37.28 37.28 13.25

5 151.46 74.72 40.24 22.92

6 159.46 86.43 52.20 18.72

7 156.79 111.28 44.73 17.42

8 159.69 100.10 40.00 17.84

9 155.60 91.22 77.56 16.89

10 154.36 113.04 86.34 15.03

11 154.06 112.79 79.72 13.51

12 151.91 113.41 73.75 12.72
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Table B.4: Detailed results for the GR-Data user behavior GMM clustering, according to the no. of clusters and
covariance type.

Covariance Type Full Tied Diagonal Spherical

No. of clusters Silhouette Coefficient

2 0.37202 0.54116 0.36811 0.46616

3 0.17636 0.46063 0.17869 0.24009

4 0.15901 0.47112 0.13998 0.22874

5 0.12348 0.26057 0.15226 0.27842

6 0.10752 0.26526 0.08950 0.30536

7 0.10284 0.26421 0.06540 0.30831

8 0.12045 0.19111 0.08586 0.25756

9 0.07170 0.30694 0.05274 0.26699

10 0.08036 0.30401 0.06837 0.28526

11 0.08848 0.28810 0.06939 0.28746

12 0.07741 0.23701 0.07491 0.28952

No. of clusters Davies-Bouldin Index

2 1.73441 0.87348 1.70895 1.49276

3 1.93741 0.97290 1.90969 1.53224

4 1.75839 0.86970 1.78246 1.72034

5 1.83537 0.87029 1.53420 1.38924

6 1.64499 1.00817 2.12001 1.05955

7 1.85225 1.02806 2.16321 1.26052

8 1.53939 1.10824 1.62902 1.37092

9 1.84682 1.13699 1.89767 1.32925

10 1.76484 1.12972 1.73592 1.04256

11 1.63437 1.23825 1.61173 0.97966

12 1.85089 1.44101 1.75280 0.96220

No. of clusters Calinski-Harabasz Index

2 327.22 481.33 336.44 442.81

3 268.84 511.16 293.02 326.22

4 268.85 391.75 287.66 291.52

5 261.64 368.55 348.89 409.81

6 293.32 278.24 306.80 474.68

7 263.09 355.00 235.21 418.22

8 288.87 263.82 267.90 358.64

9 240.88 279.55 216.27 343.45

10 246.67 266.70 257.45 462.04

11 246.66 239.66 256.29 457.17

12 208.04 217.81 239.03 461.97
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Table B.5: Detailed results for the GR-Data user behavior Agglomerative Hierarchical clustering, according to the
no. of clusters and distance measure.

Distance measure Ward’s method Complete-link Average-link Single-link

No. of clusters Silhouette Coefficient

2 0.50269 0.57040 0.64589 0.67408

3 0.23050 0.48437 0.59210 0.67263

4 0.24859 0.48810 0.57743 0.60018

5 0.28512 0.37946 0.49113 0.59863

6 0.28924 0.37690 0.48920 0.57905

7 0.21471 0.37460 0.46024 0.56014

8 0.21636 0.37364 0.45312 0.52332

9 0.22650 0.37307 0.45110 0.47714

10 0.24158 0.31372 0.45074 0.48567

11 0.24387 0.31355 0.44711 0.48547

12 0.25151 0.31600 0.44454 0.42640

No. of clusters Davies-Bouldin Index

2 0.96578 0.60934 0.41484 0.22059

3 1.11648 0.89855 0.63462 0.28708

4 1.05203 0.82929 0.53776 0.28351

5 1.04237 0.84419 0.47404 0.23558

6 1.10367 0.90122 0.64101 0.23254

7 1.12458 0.90255 0.63853 0.24323

8 1.10824 0.86916 0.72124 0.25177

9 1.07168 0.77046 0.69445 0.30802

10 1.06813 0.81319 0.65022 0.34423

11 1.04192 0.81471 0.66908 0.33245

12 1.07378 0.78440 0.66551 0.33408

No. of clusters Calinski-Harabasz Index

2 481.09 186.68 81.18 13.82

3 456.30 337.88 78.82 23.01

4 464.59 260.39 55.03 18.45

5 483.32 249.45 42.52 13.93

6 459.33 246.86 136.77 14.05

7 444.84 289.55 199.75 15.99

8 436.72 252.84 190.83 14.83

9 439.23 224.27 168.95 14.41

10 441.33 320.89 154.12 20.53

11 437.54 298.57 140.95 20.11

12 433.18 283.78 129.15 18.86
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Table B.6: Detailed results for the GR-Data user behavior K-means clustering, according to the number of clusters.

No. of clusters Silhouette Davies-Bouldin Calinski-Harabasz

2 0.46285 1.26269 552.00

3 0.31877 1.10987 586.81

4 0.30330 1.09038 556.07

5 0.32368 0.96377 558.37

6 0.31165 0.98577 542.14

7 0.32049 1.02435 529.99

8 0.28370 1.01615 526.34

9 0.29500 0.95885 527.71

10 0.29685 0.96460 508.86

11 0.29625 0.98748 501.46

12 0.30069 0.97868 492.86
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