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Abstract
The proliferation of residential Distributed Energy Resources (DERs), especially photo-
voltaic (PV) installations and stationary storage systems, raises a number of important
questions regarding their optimal operation. In the case of a PV installation, adding a
battery to the system can improve both its profitability and decrease the prosumer’s CO2

footprint. The battery’s impact depends on multiple aspects, such as the control strategy,
optimization objective (if optimization is used), the effect of battery parameters and the
inverter configuration. This project systematically examines the impact of these aspects on
the economic and environmental benefit of the system. The foundation for the study is a
real prosumer with such a PV-battery system.

The results show that a hybrid inverter shared between the PV and battery is to be preferred
over a double inverter configuration where both components have their own inverter. This
is both in terms costs and CO2 emissions.

The benefit of an optimization-based control strategy over a rules-based heuristic depends
on the objective function of the optimization. Cost optimization outperforms rules-based
heuristics economically, but not emissions-wise. On the other hand, CO2 optimization
(where exported power is not given a CO2 credit) outperforms the heuristics on emissions,
but not on costs. Implementing an optimization-based control strategy leads to a greater
number of battery cycles and therefore a shorter battery lifetime than in rules-based control,
but this is compensated for by the increased profitability of the system in the case of cost op-
timization. The profitability of the system is greatly impacted by the system efficiency, with
the battery capacity having a smaller but still appreciable impact. The emissions benefit is
not as sensitive to these parameters as the economic benefit, even in the case of emissions
optimization.

A multi-objective optimization that combines both cost and CO2 optimization shows great
potential, achieving both significant decreases in the prosumer’s electricity costs and CO2

footprint. Despite this, it can not be recommended over pure cost optimization because the
high price of batteries mean that profitability should be the sole focus of a control strategy.
For prosumers in Denmark, cost optimization leads to CO2 footprint reductions anyway,
due to the Danish energy mix. Ultimately though, it will be up the prosumer to decide
which strategy to implement. By applying different weights to the emissions component of
the multi-objective optimization, the prosumer can set the trade-off between profitability
and emissions reductions according to their preference.

The residential energy system investigated in this project is located in Roskilde, Denmark
and the benefits of the battery pertain to the specific prosumer. Nonetheless, these findings
are expected to be similar for other prosumers, and the methodology employed in this project
can be used in other case studies.
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1 Introduction

1.1 Background and Motivation
Over the last decades, man-made climate change and its causes and consequences has been
a subject of increasing focus amongst scientists, policymakers and the public. The science
shows that this anthropogenic climate change is driven primarily by global warming, which
in turn is a result of greenhouse gas emissions from human activities. By far the most
notorious greenhouse gas is carbon dioxide (CO2), the atmospheric concentration of which
has increased from 280 to 407 parts per million between 1750 and 2018. [1]

Reducing emissions is key to mitigating this climate change, and many nations have commit-
ted to this and adopted binding climate goals. Denmark for instance, has a goal of reducing
its greenhouse gas emissions by 70% in 2030 compared to 1990 levels, and to be climate
neutral, i.e. have no net emissions, by 2050. [2]

The largest historical source of CO2 emissions has been the electricity, heating and trans-
port sectors, which combined account for over 60% of CO2 emissions in recent years [3]. To
decrease these emissions, we have seen the advent and large-scale deployment of sustainable
energy technologies such as wind turbines and solar panels in the electricity sector, and an
increasing electrification of the heating and transport sectors. However, the intermittent
generation nature of these renewable technologies and the variable nature of electrical de-
mand present a challenge to electricity grids, warranting a need for flexibility in the power
system [4]. Furthermore, the deployment of these renewables is still much too slow and the
dependence on fossil fuels much too high, as the world is not on track to stay below a 1.5
∘C or even a 2 ∘C warming scenario. [5]

There is a great potential in the residential sector, where consumers who are motivated by
increasing electricity prices and energy security concerns may seek to optimize consumption
habits and self-sufficiency, including installing their own energy resources. In the case of
photovoltaic (PV) installations, the scalability and rapidly decreasing price [6] means that
such installations are not only viable for commercial actors, but now also in residential
settings. When paired with a battery, the intermittent generation of the PV can mitigated,
increasing financial benefits for the consumer and flexibility in the power system.

This introduces the notion of prosumers, which are those who both produce and consume
electricity. The net-metering concept, whereby the net result of production and consumption
over a specified interval is considered, allows them to draw advantage of the pricing structure
of electricity, and their ability to produce and store low-carbon electricity allows them to
decrease the carbon footprint of their residential consumption.

To make such systems as attractive investments for prospective prosumers as possible, it is
crucial to understand their operation and conduct a techno-economic analysis, as well as
look into what can be done to further incentivize them.

1
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1.2 Literature Review
The proliferation of residential Distributed Energy Resources (DERs), especially PV-battery
installations, means home energy management systems have received considerable attention
by researchers in the recent years. With prices for PV-battery installations projected to keep
on falling and with BloombergNEF calling for a 20x increase in installed battery capacity
by 2030 and an almost 80x increase by 2050 to meet their net-zero scenario, [7] it is a highly
topical area of research. In this section, relevant research will be reviewed, organized into the
overall areas that relate to the field. These are flexibility resources, battery control strategies,
temporal resolution and forecasting.

1.2.1 Flexibility Resources

Batteries are not the only flexibility resource for increasing PV self-consumption. Demand
side management, primarily via load shifting as well as other stationary storage solutions
such as hot water tanks, are alternatives for residential PV installations. In [8], different
on-site flexibility resources for balancing PV production and electrical demand are investi-
gated. The resources considered are a heat pump with thermal storage, electrical storage
(battery) and shiftable appliances. Two control strategies - rules-based and cost-optimal
- are considered. The different flexibility strategies are used in a case study with empir-
ical data from a real Finnish household, and the various configurations are simulated for
a one-year period. Importantly, the authors find the battery and heat pump with stor-
age to be the most effective flexibility measures. In [9], the potential of load shifting as a
means of increasing self-consumption is shown to be low. These findings are corroborated
by [10], where a battery is shown to improve PV self-consumption by 13-24% for every 0.5-1
kWh installed storage per kW PV power, whereas load shifting yielded a 2-15% increase in
self-consumption.

In [11], thermal storage in the form of hot water tanks is compared with lithium-ion (Li-ion)
and lead-acid (PbA) batteries and was found to economically outperform both batteries in
UK households (with Li-ion outperforming PbA). Present-day Li-ion batteries however are
over three times cheaper than assumed in the study, and these findings might change if the
study was done now. Similarly, thermal storage systems were found to be more economically
viable than batteries in [12], whereas batteries were found to improve self-sufficiency over
thermal storage. Both [11] and [12] emphasize that the thermal storage benefit was largest
when such a system was already installed, hence a comparison was made that effectively
ignored the cost of installing thermal storage but accounting for the cost of installing a
battery. For a fair comparison, the two systems should be compared including their upfront
cost, and doing so might likely erode a significant part of the thermal storage advantage.
The steadily decreasing battery costs [13] and increasing electrification of society means
that home batteries are only becoming more attractive, and they are increasingly likely to
become the standard means of stationary storage for residential DERs.

2
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1.2.2 Battery Control Strategies

The authors of [8] consider two control strategies for the household - a rules-based approach
that aims at maximizing PV self-consumption, either directly or indirectly, and a cost-
optimal approach that minimizes the household’s electricity cost. Compared to an inflexible
reference control, the cost-optimal approach leads to a 13-25% reduction in the annual
electricity bill, and an 8-88% decrease in electricity fed into the grid. In [14], two rules-
based heuristics are compared - self-consumption maximization (SCM) and financial gain
maximization (FGM). The study is based on real solar irradiance data and residential load
profiles, but uses computationally simulated grid prices. The study compares the strategies
across different storage sizes, and finds that each strategy performs significantly better than
the other when it comes to its own target. Interestingly, the degree of self-consumption in
the SCM strategy plateaus at a storage size equal to the average amount of daily PV and
load, whereas the financial gain in the FGM strategy plateaus at a storage size of 50% of
the average amount of daily PV and load. The diminishing returns of increasing battery
size with regards to self-consumption are corroborated by [15] and [16].

A systematic review of seven different energy management strategies for small-scale PV-
battery systems in Australia is conducted in Ref. [17]. Considered strategies include rule-
based heuristics, such as SCM and time-of-use arbitrage (ToUA) along with a mix of the
two, as well as optimization approaches using mixed integer linear programming (MILP) and
dynamic programming (DP). The study also implements Policy function approximations,
which are machine learning (ML) approaches. The practicalities of implementation, com-
putational requirements, quality of input data and battery degradation are considered, and
it is found that using a more sophisticated strategy does not necessarily result in a higher
economic benefit when accounting for uncertainties in input data and battery degradation
effects. The study uses half-hourly resolution data for the PV-battery systems, which can
lead to inaccurate results, as shown in [18] and [19]. The study also only uses persistence
forecasting in its optimization approaches, and focuses on optimizing for profits.

1.2.3 Temporal Resolution

The granularity of available data and the modelling done in a study can significantly impact
results. If the resolution is low, then the battery loses out on arbitrage opportunities,
since PV generation and load data is effectively smoothed, reducing both the number of
opportunities and their magnitude. As shown in [18], such low temporal precisions can
lead to noticeable underestimations of the economic benefit of PV-battery systems, with
30-minute and 60-minute resolutions yielding a mean relative error of 9.1% and 12.6%,
respectively, when compared to a 5-second resolution. The authors find that a temporal
resolution of 5 minutes or less is sufficient to compute accurate results. Ref. [19] agrees with
this, showing that a 5 minute resolution is adequate for modelling purposes, after having
studied the load and PV generation profiles of seven German households. Conversely, a low
temporal resolution may lead to an overestimate of the degree of self-consumption and a
corresponding underestimate of energy imports, as the authors of [20] show using real data
from a Danish household.

3
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1.2.4 Forecasting

Forecasting is pivotal for the energy management system (EMS) when it comes to battery
scheduling. Simple rules-based heuristics can operate without forecasts, but more advanced
heuristics and especially optimisation-based approaches will ultimately rely on forecasts in
the real-time scheduling of a battery. This includes both load and PV generation forecasts,
as well as electricity price and possibly grid CO2 forecasts.

PV generation forecasts are a well-researched topic, and if a precise weather forecast is
available, high degrees of accuracy can be achieved. Refs. [21] investigated the effects of
erroneous weather forecasts on profitability and self-consumption, concluding that forecast
uncertainty can reduce self-consumption by 0.5-5%. Meanwhile, [22] showed that batteries
are able to mitigate the effects of inaccurate PV forecasts.

Load forecasts are more challenging, as loads are individual and entirely dependent on
the habits of the person(s) inhabiting a household. As established in [23], realistic load
profiles are needed for proper modelling, since aggregated profiles can lead to sub-optimal
or misleading optimisation results.

In [24], a systematic review of different forecasts is conducted with regards to profitability,
complexity and security using data from two prosumers in Denmark. The authors compare
forecasts based on gradient-boosted decisions trees (GDBT) to naive persistence forecasts
across both rules-based and optimization control strategies. They find that persistence-
based optimization achieves 78% of the theoretical optimum profitability (computed using
perfect forecasts) for one of the prosumers and 86% of the optimum for the other. The best-
case GDBT-based optimizations achieve 90% and 93% for the two prosumers, respectively.
A rules-based control strategy used as a benchmark yields 45% and 56% of the optima
for the two, but is impervious to weather data and spot price manipulation, unlike the
optimization-based strategies which rely on external data. The rules-based and persistence-
based optimization approaches require the least computational power and have been, or
can be, implemented practically in EMSs, whilst only some of the GDBTs are feasible to
implement.

In summary, the review of related literature shows that while much work has been done
on the topic, most studies evaluate battery control strategies based on their profitability,
along with computational complexity as a secondary consideration. Many studies use small
data sets with low temporal resolution, and some rely on computer generated datasets for
load and PV profiles, as well as electricity prices. To the best of the author’s knowledge,
no work assesses several battery control strategies with regards to both profitability and
emissions reductions, whilst also considering the whether the residential EMS shares one
hybrid inverter or if the PV management system (PVMS) and battery management system
(BMS) each have their own inverter.

4
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1.3 Objectives
When assessing the benefit of a battery in a PV-battery system, there are numerous aspects
to consider. Amongst other things, there are the battery control strategy (whether heuristic
or optimization-based), optimization objective (cost minimization, emissions minimization,
or multi-objective), the effect of battery parameters (capacity, power, efficiency, degradation)
and whether the system shares one hybrid inverter or contains two inverters.

The possibilities for investigation in this topic are extensive, and in light of the limited time
and computational resources available, the scope of the project will be defined clearly.

This project will focus on a household with a PV and battery system, and will investigate
how various control strategies and battery parameters affect the battery’s profitability and
environmental impact, along with the implications of the system sharing one hybrid inverter
versus each component having its own. The basis of this is a dataset from a residential
prosumer located in Roskilde in the Eastern part of Denmark. Along with this, datasets on
grid CO2 emissions, both realized and forecasted, along with electricity spot prices will be
used. Since the project focuses on the overall operation of the battery in the context of the
EMS, battery chemistry and power electronics will not be investigated. The objectives of
the project can be summarized as:

• Review and implement heuristic control strategies that do not employ forecasting or
optimization

• Implement and test different forecasts

• Implement optimization-based control strategies assisted by forecasts

• Conduct a sensitivity analysis on the effect of battery parameters

• Provide recommendations for a residential prosumer

1.4 Outline
The project will be structured in the following manner:

• Section 2 introduces the theoretical background and elaborates on the residential
energy system

• Section 3 presents the different battery control strategies, forecasts and modelling
cases

• Section 4 presents and discusses the results of the different inverter configurations
and control strategies, and a sensitivity analysis is carried out

• Section 5 discusses the findings in the broader context of residential energy systems

• Section 6 concludes the project
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2 Theory and Background

2.1 Electricity Cost Structure
In Denmark, the electricity price is composed of three main components - 1. energy costs,
2. fees and tariffs and 3. taxes. The energy cost is the cost of the electricity itself, and
can be fixed or variable. Fees and tariffs are paid for the transmission and distribution of
electricity, and can be volumetric or fixed. Lastly, taxes include a fixed electricity tax and
Value Added Tax (VAT).

Energy cost, also known as the spot price, is determined on Nordpool, a pan-European power
exchange that serves 15 countries across 21 bidding zones. Denmark has two bidding zones,
DK1 and DK2, which cover everything west and east of the Great Belt, respectively. On
Nordpool, orders are matched to maximize social welfare while taking network constraints
into consideration. That is, the clearing price for each hour and bidding zone is set at the
intersection of the curves for buying and selling price. The day-ahead market functions as a
closed auction and is used as a baseline for planning generation, and adjustments are then
made in the intra-day market. Spot prices for the following day are typically published at
13:00 CET every day [25]. This means that on a given day, one always knows the prices for
the rest of the day, and one also knows the prices for the following day if the time is 13:00
CET or past.

Fees and tariffs are split into two groups; a transmission system operator (TSO) tariff, and
a distribution system operator (DSO) tariff. In Denmark, the TSO is Energinet and they
are responsible for maintaining the electrical transmission infrastructure, and their tariff is
split into a net tariff and a system tariff. The system tariff is paid partly via an annual
subscription, whilst its remainder is paid for on a per-kWh basis along with the entire net
tariff [26].

The DSOs are responsible for operating the distribution infrastructure. There are several
in Denmark, and they each operate a local section of the grid. For the prosumer in this
project (who is located in Roskilde), the DSO is Radius A/S. Their tariff is also split into
a subscription, albeit on a montly basis, and the remainder is paid on a per-kWh basis
[27]. Their tariffs are variable. Until 2023, the DSOs could use a flat or time-differentiated
tariff, where the time-differentiated tariff had two values; a peak value for the evening hours
in the winter half-year, and a normal value otherwise [28]. Since 2023, the Tariff Model
3.0 has allowed for the further differentiation of DSO tariffs to incentivize flexible power
consumption in response to increasing electrification [29]. There are now 5 tariffs, split up
by time of day and time of year and scaled in price as shown below:

Table 2.1: The different load periods in the Tariff Model 3.0.

Hour 00:00 - 06:00 06:00 - 17:00 17:00 - 21:00 21:00 - 00:00
Winter (all days) Low High Peak High
Summer (all days) Low High Peak High
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Table 2.2: The scaling factors for price differentiation between the tariffs.

Hour 00:00 - 06:00 06:00 - 17:00 17:00 - 21:00 21:00 - 00:00
Winter (all days) 1/2 1 3 1
Summer (all days) 1/2 1/2 1.3 1/2

Taxes are the final cost component of electricity. This includes a state tax per kWh which
changes periodically but is typically around 0.75 Danish kroner (DKK) / kWh [30], and
finally VAT which is 25% on top of all other pricing components, i.e. the electricity price,
tariffs and state tax. As of the time of writing, the TSO tariff is around 0.11 DKK / kWh
[31], and the base DSO tariff is around 0.36 DKK / kWh [27]. The average electricity price
for each hour of day in the DK2 bidding zone is plotted below for June 2023 and December
2023, to show the typical variation between hours and the significance of taxes and tariffs.

Figure 2.1: Average electricity cost component for each hour of June and December 2023.

Clearly, the spot price (i.e. the cost of the electricity from the producer) can end up being
only a minor component of the final electricity price.

2.2 Net Metering
Net metering is an electricity billing mechanism whereby only net energy exchanges of pro-
sumers with the grid over a specified interval are accounted for in settlements [20]. Originally
implemented in Massachusetts in the United States [32], it has since gained popularity in
multiple other countries, including Denmark. As per January 1, 2024, the netting interval
is instantaneous for all prosumers in Denmark, whereas it has been hourly or even yearly in
the past [33]. This effectively means that any imported electricity is now paid for in full and
was implemented to more fairly spread the TSO and DSO costs across all consumers. Prior
to this, the cost of maintaining the grid was borne disproportionately by regular consumers.
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2.3 Battery Operation
Batteries are energy storage devices that convert chemical energy into electrical energy
through electrochemical reactions. A typical battery consists of one or more electrochemical
cells, each containing two electrodes, called the anode and the cathode, and an electrolyte
that facilitates ion flow between them.

The anode always undergoes oxidation, which is a loss of electrons, and the cathode always
undergoes reduction, which is a gain of electrons. During discharge, electrons flow from
the negatively charged anode to the positively charged cathode through an external circuit,
thereby providing current, while ions move through the electrolyte. During charging, an ex-
ternal power source drives the reverse reaction, where electrons flow from the now positively
charged anode to the now negatively charged cathode, thereby storing chemical energy in
the battery [34]. Current can only flow in one direction at a given point in time, and the
battery can therefore not charge and discharge simultaneously.

The current flow in a battery is direct current (DC). This is characterized by a current
flow that is steady in magnitude and direction, unlike alternating current (AC) where the
magnitude and direction of current varies with time. Understanding the limitations of the
battery is important for the project, even if it is treated as a black box in the modelling.

2.4 Optimization
Mathematical optimization is the field of finding the best decision variable(s) with respect
to a criterion, termed an objective function, given a set of constraints. There are several
types of optimization problems. The simplest is linear optimization, also known as linear
programming (LP). In linear programming, the objective functions and constraints are all
linear in nature, and the decision variables are (non-regative) real numbers. Some linear
problems may restrict the variables to be integers, in which case the problem is known as
integer programming. In mixed-integer linear programming (MILP), as implied by the name,
some variables are constrained to be integers and others are allowed to be non-integers. Some
variables can be futher constrained to be binaries, i.e. 0 or 1, in which case they represent
decisions (such as whether to charge or discharge the battery in the context of this project).

2.5 Forecasting
Forecasting is the field of predicting future values, and is very important in energy appli-
cations. Forecasts can be generated in many ways, ranging from ML approaches such as
neural networks and decision trees to statistical approaches such as ARIMA and SARIMAX
models, to simple persistence forecasts. This project will use persistence forecasting to the
extent it is necessary, which is the practice of predicting the future value of a variable to be
its current or some previously observed value. This can be represented mathematically as:

̂𝑦𝑡+1 = 𝑦𝑡 (2.1)
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If there is a seasonality associated with the data, for example PV production, which exhibits
a daily profile (typically peaking around noon when the sun is at its highest, and dropping
to its lowest at night), the persistence forecast can be offset with some vallue 𝛿. Suppose
we have hourly values for PV production, then we might predict that the PV production at
a time 𝑡 as:

̂𝑦𝑡 = 𝑦𝑡−𝛿 = 𝑦𝑡−24 (2.2)

Some of the important metrics concerned with evaluating forecasts are the mean average
error (MAE) and the root mean square error (RMSE), defined as follows:

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖| (2.3)

𝑅𝑀𝑆𝐸 = √1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (2.4)

Here, 𝑦𝑖 is an observed or realized value, ̂𝑦𝑖 is the predicted value (corresponding to that
observation) and 𝑛 is the number of observations. Their difference is thus the error in the
forecasted value, also known as a residual. Thus, for the MAE, the absolute errors are
summed and then divided by the number of observations. For the RMSE, the square of the
residuals is summed and the square root of this sum is taken, which gives weight to large
outliers in the calculation. Both of these are measures of the errors between observed and
forecasted values, and are in the same units as the values.

2.6 The Residential Energy System
In order to properly model the prosumer’s PV-battery installation, it is important to un-
derstand the setup and energy flows in the system. The prosumer has a rooftop-mounted
PV installation, stationary storage in the form of a battery and an EMS. An inverter serves
both the PV installation and the battery, converting DC electricity into AC for consumption
or exports to the grid. The PV and battery measurements are provided by the PVMS and
the BMS respectively, and are fed to the EMS alongside external data such as forecasts that
can be used to schedule battery operation. A smart meter keeps track of both grid imports
and exports, and a utility meter is used for billing. The system can be illustrated succinctly
with the following graphic:
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Figure 2.2: A schematic diagram of the prosumer’s residential energy system.

Note that consumption and load both signify the electrical power usage of the household,
and are used interchangeably henceforth. The prosumer paid 115000 DKK for the PV,
battery and inverter in April 2021, of which the battery was just under half the total cost.
The PV modules have a rating of 4.7 kW. The inverter, which is the Symo GEN24 5.0 by
the Austrian company Fronius, has a capacity of 𝑝𝑖𝑛𝑣 = 5 kW [35]. The specifications for
the battery, which is the BYD Battery-Box Premium HVS 7.7, are given below:

Table 2.3: Battery specifications for the prosumer. [36]

Description Symbol Value
Capacity C 7.7 kWh
Max output current 𝐼 25 A
Peak output current 𝐼𝑝𝑒𝑎𝑘 50 A (3 s)
Nominal voltage 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙 307.2 V
Operating voltage 𝑉 240-360 V
Round-trip efficiency 𝜂 ≥ 96%
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3 Methodology
With a proper insight into the prosumer’s energy system and with the theoretical back-
ground in place, the PV-battery system can be modelled for different battery control strate-
gies, forecasting types and inverter configurations to assess its economic and environmental
performance. The combinations of these will result in the cases for this project.

3.1 Assumptions
In light of the project’s scope and the limited time and computational resources available,
assumptions are a necessity. The following assumptions are made:

• The battery is assumed to have a constant charging and discharging efficiency through-
out the entire range of charging and discharging powers and at all levels of state of
charge (SOC).

• The efficiency and capacity of the battery is assumed to be constant with respect to
time, i.e. battery degradation is not accounted for.

• The inverter(s) are assumed to have a constant efficiency throughout the entire range
of power throughputs.

The battery and power electronics will be treated as black boxes in the model, and the
efficiencies and capacities as constants. In reality, the efficiencies of both the battery and
inverter depend on many factors such as temperature, SOC and power throughput [17].
Battery capacity can also degrade significantly with time [37]. The assumptions are necessary
for the formulation of the battery scheduling as a linear optimization problem, which is
significantly easier to solve than a non-linear one. Since the project’s main objective is to
compare the different cases, it stands to reason that the results should hold also if these
details were accounted for.

As a proxy for battery degradation, the number of cycles for each control strategy will be
monitored, so the implications of different control strategies for the battery efficiency and
lifetime can be discussed. The average SOC will also be kept track of. The sizing of the
battery and inverter with respect to the PV installation will not be investigated, and is
assumed to be appropriate.

3.2 Datasets
Prosumer Data. The prosumer dataset contains data 24 months of data in 5-minute intervals
on the household energy balance, in the period 1/1/2021 00:00 - 31/12/2023 23:55. This
includes total energy consumption, direct consumption from PV, energy consumed from
battery, energy from grid, PV production, energy to battery, energy to grid and the battery
SOC. The energy values are given in Wh, and are aggregates of each 5-minute interval. The
total consumption and PV production are the variables of interest, since the aim is to the
determine battery operation. Thus, the other datapoints are not used in this investigation.
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Since the key values that are determined for a battery control strategy are charging and
discharging power at every point in time, the energy values in the data (Wh) will be converted
to an equivalent power (W). For this, the energy throughput for each 5-minute interval is
converted to an average power, according to:

𝐸 = ∫
𝑡2

𝑡1
𝑃(𝑡) 𝑑𝑡 ⇒ 𝑃 ∫

𝑡2
𝑡1

𝑑𝑡 = 𝑃(𝑡2 − 𝑡1) = 𝑃𝛥𝑡

⇒ 𝑃 = 𝐸
𝛥𝑡

For example, a PV production of 100 Wh in a 5-minute interval corresponds to 100 Wh / (5
minutes / 60 minutes/hour) = 1200 W of power in that interval. In reality, the instantaneous
power in an interval will vary, but the conversion is made under the justification that the 5
minutes is a sufficiently fine resolution for the power to be more or less constant.

Spot prices. The spot prices are taken from Energinet’s Energi Data Service [38], and they
are hourly values, in DKK / MWh. The prosumer is located in Roskilde which is in the
𝐷𝐾2 bidding area, so only data from this area is used. TSO tariffs are taken directly from
Energinet [31], and tax values from Skat (the Danish tax authority) [30]. The DSO tariffs
are also taken from Energi Data Service [39], such that the electricity buying price can be
calculated.

CO2 emissions. Data on CO2 emissions, also from Energi Data Service, will be used [40].
These are values for the CO2 emission in g-CO2 / kWh associated with electricity consumed
from the grid, with a 5-minute resolution. It can also be called the grid CO2 intensity. Its
value at a given time is based on emissions from the various power plants that are producing
power at that time.

CO2 emissions prognosis. Lastly, a dataset with a prognosis for the grid CO2 emission will
be used [41], also from Energi Data Service, which contains forecasted rather than actual
values of the CO2 emission but is otherwise the same as the just previously described CO2

dataset. Thes values are published on a day-ahead basis at 15:00 CET every day [41].

3.3 Hybrid Inverter vs. Double Inverter
In Figure 2.2, a single ’hybrid’ inverter is present in the residential energy system. This in-
verter is responsible for converting the DC power from the PV installation and the battery
to AC power such that it can be used by loads in the house or exported to the grid. The
inverter has a capacity of 5 kW, whereas the prosumer’s battery has a max discharge power
of 7.675 kW [36]. Thus, the inverter’s capacity restricts the discharging rate of the battery.
Also, since the inverter must both convert electricity from the PV and battery, potentially
simultaneously, a further restriction arises. When discharging the battery, any PV produc-
tion must go through the inverter (it cannot go to the battery since current cannot flow in
and out of the battery simultaneously). Thus, when discharging the battery, the capacity
of the inverter available to the battery is reduced by whatever the PV production may be.
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This can limit system profitability in certain cases, and this project aims to find out how
significant such a restriction may be. This restriction only arises when discharging; when
the battery is being charged by the PV, the inverter is not involved.

On the other hand, if a double inverter setup is used, such that the PV and battery each
have an appropriately-dimensioned inverter installed, the battery will always be able to
discharge at its rated power. This can lead to increased self-consumption, profitability and
a decreased carbon footprint of the residential consumption. A schematic of such a double
inverter setup is shown below.

Figure 3.1: A schematic diagram of the system with the double inverter setup.

As an illustrative example, the restriction with the hybrid inverter could impact the prosumer
in the following scenario. The inverter capacity is 5 kW, the PV installation 5 kW, and the
battery’s power rating is 8 kW. If the PV is producing 3 kW of power, all of which goes to the
inverter, then the inverter only has 2 kW of capacity left. Thus, the battery can maximally
discharge with 2 kW. If the spot price is very high and we wish to discharge to sell our stored
energy, we are then limiting our revenue. Another scenario where the restriction might be a
detriment is if consumption is very high. Suppose the PV is generating at 5 kW and going
entirely to the load, such that the inverter is fully occupied. If there is still a power deficit,
the battery cannot be discharged to cover this since the inverter is at capacity, meaning
potentially expensive electricity needs to be imported.
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3.4 Battery Control Strategies
This section will introduce the different battery control strategies used in the project.
Overall, the control strategies can be divided into two groups; rules-based heuristics and
optimization-based.

3.4.1 Rules-Based Heuristics

Rules-based heuristics are simple control strategies that follow a given set of rules, often
characterized by a series of if -statements. They typically do not employ forecasting and do
not actively seek to optimize a given outcome, but are easy to implement and usually do
better than a random approach if they follow a set of rules that is consistent and logical.
Two rules-based control strategies will be implemented in this project.

Self-Consumption Maximization

The first control strategy in this project is the so-called self-consumption maximization
(SCM), which aims to maximize the self-consumption of a prosumer, and thereby minimize
energy exchanges between the prosumer and the grid. It does this by always using the
battery to its maximum extent before engaging with the grid. If there is a surplus in power
generation, it charges the battery, only exporting once the battery is full. If there is a deficit
in power, it discharges the battery, only importing from the grid once the battery is empty.
In pseudocode, the algorithm is:

Algorithm 1: Self-consumption maximization

𝑠d
𝑡 ← 𝑠𝑡−1 − 𝑠;

𝑠c
𝑡 ← 𝑠 − 𝑠𝑡−1;

𝑝𝑛𝑒𝑡
𝑡 ← 𝑝L

𝑡 − 𝑝PV
𝑡 ;

if 𝑝𝑛𝑒𝑡
𝑡 ≥ 0 then

if Inverter == ’Hybrid’ then
𝑝d

𝑡 ← min(𝑝𝑖𝑛𝑣 − 𝑝PV
𝑡 , 𝑝𝑛𝑒𝑡

𝑡 , 𝑠d
𝑡 /𝛥𝑇 × 𝜂𝑑);

else if Inverter == ’Double’ then
𝑝d

𝑡 ← min(𝑝𝑏𝑎𝑡, 𝑝𝑛𝑒𝑡
𝑡 , 𝑠d

𝑡 /𝛥𝑇 × 𝜂𝑑);

𝑝b
𝑡 ← 𝑝𝑛𝑒𝑡

𝑡 − 𝑝d
𝑡 ;

𝑝s
𝑡 ← 0;

𝑝c
𝑡 ← 0;

else
𝑝c

𝑡 ← min(𝑝𝑖𝑛𝑣, −𝑝𝑛𝑒𝑡
𝑡 , 𝑠c

𝑡 /𝛥𝑇 × 1/𝜂𝑐);
𝑝s

𝑡 ← −𝑝𝑛𝑒𝑡
𝑡 − 𝑝c

𝑡 ;
𝑝b

𝑡 ← 0;
𝑝d

𝑡 ← 0;

return 𝑝b
𝑡 , 𝑝s

𝑡 , 𝑝c
𝑡 , 𝑝d

𝑡 ;
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Here, 𝑝L
𝑡 and 𝑝PV

𝑡 represent the average load and PV generation in the 5-min interval re-
spectively, while their difference 𝑝𝑛𝑒𝑡 is the net power demand. The upper and lower bounds
on the SOC are denoted by 𝑠 and 𝑠 respectively, and the starting SOC by 𝑠𝑡−1. The energy
that can be discharged from the battery is 𝑠d

𝑡 and the energy that can be charged to the
battery is 𝑠c

𝑡 . These are divided by 𝛥𝑇, which represents the normalized duration in which
this energy must be charged or discharged, to get a corresponding power. Since the data is
at a 5-minute resolution and we are working with kW and kWh, 𝛥𝑇 is equal to 1/12. The
inverter power capacity is denoted by 𝑝𝑖𝑛𝑣, while 𝑝𝑏𝑎𝑡 denotes the battery power capacity.
Finally, the charging and discharging efficiencies are represented by 𝜂𝑐 and 𝜂𝑑, respectively.

Note the differences in the restriction on discharging power that arise in the hybrid vs. the
double inverter configuration.

Time-of-use Arbitrage

Another rules-based approach is the time-of-use arbitrage (ToUA), which is effectively the
self-consumption maximization algorithm with a caveat that tries to exploit the typical
variation in spot prices. As shown in Figure 2.1, the spot prices have a tendency to rise in
the evening hours, when demand is high and production from cheap sources such as wind
and especially solar power is low. The prosumer could take advantage of this and sell any
excess power directly to the grid rather than charging to the battery during these hours.

Due to the asymmetrical pricing of electricity, where the purchase price can be over an
order of magnitude larger than the spot price that prosumers sell their electricity at, it is
still wise to minimize imports, even during hours where spot prices and tariffs are typically
low. Hence, the ToUA algorithm behaves like the SCM if there is a net consumption of
power, and should always draw power from the battery before importing from the grid.
Thus, the only change from SCM is when there is a net production of power, and the time
is between 17:00 and 21:00 (chosen based on the spot price variation). The pseudocode for
the algorithm is given below.

Note that is presented without the hybrid/double inverter 𝑖𝑓-statement for simplicity, but it
is still present in the actual implementation of the algorithm.
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Algorithm 2: Time-of-use Arbitrage

𝑠d
𝑡 ← 𝑠𝑡−1 − 𝑠;

𝑠c
𝑡 ← 𝑠 − 𝑠𝑡−1;

𝑝𝑛𝑒𝑡
𝑡 ← 𝑝L

𝑡 − 𝑝PV
𝑡 ;

if 𝑝𝑛𝑒𝑡 ≥ 0 then

𝑝d
𝑡 ← min(𝑝𝑖𝑛𝑣 − 𝑝PV

𝑡 , 𝑝𝑛𝑒𝑡
𝑡 , 𝑠d

𝑡 /𝛥𝑇 × 𝜂𝑑);
𝑝b

𝑡 ← 𝑝𝑛𝑒𝑡
𝑡 − 𝑝d

𝑡 ;
𝑝s

𝑡 ← 0;
𝑝c

𝑡 ← 0;

else
if 17 ≤ ℎ𝑜𝑢𝑟 ≤ 21 then

𝑝c
𝑡 = 0;

𝑝s
𝑡 = −𝑝𝑛𝑒𝑡

𝑡 ;
𝑝b

𝑡 ← 0;
𝑝d

𝑡 ← 0;
else

𝑝c
𝑡 ← min(𝑝𝑖𝑛𝑣, −𝑝𝑛𝑒𝑡

𝑡 , 𝑠c
𝑡 /𝛥𝑇 × 1/𝜂𝑐);

𝑝s
𝑡 ← −𝑝𝑛𝑒𝑡

𝑡 − 𝑝c
𝑡 ;

𝑝b
𝑡 ← 0;

𝑝d
𝑡 ← 0;

return 𝑝b
𝑡 , 𝑝s

𝑡 , 𝑝c
𝑡 , 𝑝d

𝑡 ;

3.4.2 Optimization-Based

In this section, the optimization based strategies will be walked through. The aim is to
schedule battery operation, for which the optimizer needs a forecast for the unknown values
that appear in the optimization problem.

Prosumer Cost Optimization Problem

The cost optimization problem for a prosumer is presented below.

min
pc,pd,pb,ps,s,𝛿𝛿𝛿,𝜎𝜎𝜎

∑
𝑡∈𝒯

(𝑝b
𝑡 𝜆b

𝑡 − 𝑝s
𝑡 𝜆s

𝑡 ) 𝛥𝑇 (3.1a)

s.t. 𝑝PV
𝑡 + 𝑝b

𝑡 + 𝑝d
𝑡 = 𝑝L

𝑡 + 𝑝s
𝑡 + 𝑝c

𝑡 , ∀𝑡 ∈ 𝒯 (3.1b)

𝑠𝑡 = 𝑠𝑡−1 + 𝑝c
𝑡 𝛥𝑇𝜂𝑐 − 𝑝d

𝑡 𝛥𝑇/𝜂𝑑, ∀𝑡 > 1 (3.1c)

𝑠1 = 𝑠1, 𝑠𝑛 = 𝑠𝑛 (3.1d)

𝑠 ≤ 𝑠𝑡 ≤ ̄𝑠, ∀𝑡 ∈ 𝒯 (3.1e)

0 ≤ 𝑝c
𝑡 ≤ ̄𝑝(1 − 𝛿𝑡), 0 ≤ 𝑝d

𝑡 ≤ ̄𝑝𝛿𝑡, ∀𝑡 ∈ 𝒯 (3.1f)

0 ≤ 𝑝b
𝑡 (1 − 𝜎𝑡), 0 ≤ 𝑝s

𝑡 𝜎𝑡, ∀𝑡 ∈ 𝒯 (3.1g)
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Here p𝑐, p𝑑, p𝑏 and p𝑠 denote the vectors for charging power, discharging power, power
bought and power sold, and s denotes the state-of-charge vector. Also, 𝛿𝛿𝛿 and 𝜎𝜎𝜎 denote
the binary charge-discharge and buy-sell vectors. These all have a length of 𝑛, which is the
number of steps for which the problem is solved. These form the decision variables for the
optimization. The set of steps in optimization horizon is denoted by 𝒯.

The objective function is the power bought 𝑝b
𝑡 times the buying price 𝜆b

𝑡 i.e. cost of power
bought from the grid, minus the power sold 𝑝s

𝑡 times the selling price 𝜆s
𝑡 , i.e. revenue from

power sold to the grid. It is multiplied by a time interval 𝛥𝑇 such that the units are DKK.
This objective function should be minimized such that net electricity costs are at a minimum
- alternatively, one could multiply the function by -1 such that it represents net profit, in
which case it should be maximized.

The first constraint (3.1b) is the power balance of the system, stating that the power in-
troduced to the system (PV production, power imported from the grid and power from
discharging the battery) should be equal to the power removed from the system (consump-
tion, power exported to the grid and power to charging the battery). It is a consequence of
the conservation of energy. The second constraint (3.1c) also arises from the conversation
of energy, and states that the battery’s SOC is equal to its SOC at the previous timestep,
plus the energy charged and minus the energy discharged, whilst accounting for efficiencies.

The third and fourth constraints (3.1d) concern the SOC at the beginning and end of the
optimization interval, denoted by 𝑠1 and 𝑠𝑛 respectively. The fifth constraint (3.1e) restricts
the SOC to the upper and lower limits on SOC.

The sixth and seventh constraints (3.1f) restrict the charging and discharging power to be
between zero and the upper limit (which depends on the inverter configuration), and make
use of 𝛿𝑡 to represent whether the battery is discharging or charging. The eighth and ninth
constraints (3.1g) stipulate that the power exchanged with the grid should be greater than
or equal to zero, and make use of 𝜎𝑡, which represents whether power is being sold to the
grid or bought from the grid. All constraints apply to all timesteps 𝑡 in the set 𝒯, except
3.1c which does not apply to the first step.

Prosumer Emissions Optimization Problem

The cost objective function is not the only possible objective function. The CO2 emitted by
the prosumer is an alternative, which one would seek to minimize. Two possible objective
functions are:

min
pc,pd,pb,ps,s,𝛿𝛿𝛿,𝜎𝜎𝜎

∑
𝑡∈𝒯

(𝑝b
𝑡 𝜆CO2

𝑡 ) 𝛥𝑇 (3.2a)

min
pc,pd,pb,ps,s,𝛿𝛿𝛿,𝜎𝜎𝜎

∑
𝑡∈𝒯

(𝑝b
𝑡 𝜆CO2

𝑡 − 𝑝s
𝑡 𝜆

CO2
𝑡 ) 𝛥𝑇 (3.2b)

The constraints are not listed, but are the exact same as (3.1b-3.1g) in the cost problem. The
first function takes the power imported by the grid multiplied by the grid CO2 intensity, and
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is thus a direct and intuitive measure of the CO2 footprint associated with the prosumer’s
consumption from the grid. The second function is similar to 3.1a, giving a carbon credit to
the prosumer when electricity is exported to the grid, akin to how the prosumer receives a
monetary credit when selling electricity. The ’selling price’ of the carbon credit is equal to
the grid CO2 intensity since the exported electricity can be assigned a carbon intensity of 0
g-CO2 / kWh, due to there being no carbon emitted when electricity is produced from the
PV array and/or discharged from the battery. Of course, the manufacturing and installation
of the PV system (and battery) has a certain CO2 emission associated it with it, but this
is not included in the objective function in the same way the cost of the PV-battery system
is not included in the cost function. Rather, these upfront ’costs’ can be accounted for
when evaluating whether the investment in a battery can be justified from an economic and
environmental perspective.

In the event that the battery is charged with grid electricity and then sold back to the grid
at a later time, the second objective function is still valid because the CO2 of the charged
electricity will have been ’paid’ for when it was bought, meaning the full credit should be
received when it is sold, leaving the net result just like with the cost.

The objective function that only accounts for CO2 emitted from imported electricity, shown
in eq. 3.2a will be called the CO2 no credit objective function. CO2 calculations done with
this metric will be referred to as the no credit (NC) values. The objective function that
also accounts for exported electricity, shown in eq. 3.2b, will be referred to as the CO2 with
credit function and CO2 calculations done this way as CO2 with credit (WC) values.

Note that emissions optimization and CO2 optimization are used interchangably in this
project.

The Multi-Objective Optimization Problem

A multi-objective optimization problem can also be considered, where the cost objective
function is combined with one of the two emissions objective functions according to:

min
pc,pd,pb,ps,s,𝛿𝛿𝛿,𝜎𝜎𝜎

∑
𝑡∈𝒯

[(𝑝b
𝑡 𝜆b

𝑡 − 𝑝s
𝑡 𝜆s

𝑡 ) + 𝑘(𝑝b
𝑡 𝜆CO2

𝑡 )] 𝛥𝑇 (3.3a)

min
pc,pd,pb,ps,s,𝛿𝛿𝛿,𝜎𝜎𝜎

∑
𝑡∈𝒯

[(𝑝b
𝑡 𝜆b

𝑡 − 𝑝s
𝑡 𝜆s

𝑡 ) + 𝑘(𝑝b
𝑡 𝜆CO2

𝑡 − 𝑝s
𝑡 𝜆

CO2
𝑡 )] 𝛥𝑇 (3.3b)

Here, 𝑘 is a constant that preserves dimensional homogeneity and determines the weight that
the emissions aspect of the objective function should have with respect to the cost aspect.
The constraints are the same as in the other optimization problems. To limit the scope
of the project, only one version of the hybrid optimization problem will be considered in
the results. The version of the emissions optimization problem that leads to better battery
performance will be used in the hybrid problem. If 3.2a performs better, then 3.3a will be
considered, and if 3.2b performs better, then 3.3b will be considered.
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3.5 Forecasting
The optimization based control strategies are dependent on forecasts. The cost optimization
problem needs spot prices, the emissions optimization problem needs grid CO2 values, and
the hybrid optimization problem needs both. All the optimization problems need PV and
load values. This project will use publicly available forecasts supplemented by persistence
forecasts where necessary.

Persistence Forecasts. For PV generation, load, spot prices and grid CO2 intensity, daily
and weekly persistence forecasts are considered for use in the optimization. Energinet’s grid
CO2 intensity prognosis is also considered, and the day-ahead spot prices are mentioned in
Table 3.3 for completeness. The RMSE and MAE for each is shown below, with the forecast
that will be used for modelling shaded in green:

Table 3.1: Load

Look-Back RMSE MAE
Daily 0.602 0.297
Weekly 0.606 0.300

Table 3.2: PV

Look-Back RMSE MAE
Daily 0.668 0.285
Weekly 0.711 0.316

Table 3.3: Spot prices

Look-Back RMSE MAE
Daily 0.568 0.373
Weekly 0.777 0.546
Day-Ahead - -

Table 3.4: CO2

Look-Back RMSE MAE
Daily 62.0 43.8
Weekly 80.7 58.6
Prognosis 10.7 7.5

The weekly and daily persistence load forecast have virtually the same error as shown in
Table 3.1. This is due to the habits of the specific prosumer in this project, who exhibits
regular consumption habits regardless of whether it is the weekend or a weekday. In general
though, residential load profiles tend to exhibit a weekly seasonality. The exception is if a
prosumer is away from home for an extended period, then there will be a larger delay in the
weekly persistence forecast picking up on this, and the same goes if the prosumer returns
home after an extended period away. Nonetheless, the two forecasts are very similar and the
effect of choosing either on the results will be negligible. The weekly persistence forecast for
loads will be used going forward.

The daily persistence clearly outperforms the weekly persistence for both RMSE and MAE
in the other cases. Daily persistence being better for PV generation makes sense; PV
generation is highly dependent on the weather, especially cloud cover, which is much more
likely to be the same from one day to the next rather than one week to the next. As a
secondary point, the number of daylight minutes can change appreciably from week to week
in a country of Denmark’s latitude, up to 32 minutes per week [42], which also affects PV
generation. Thus, the daily persistence PV forecast will be used.
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The reasoning for daily persistence being better for the spot prices and grid CO2 intensity
is similar; they are heavily dependent on solar and wind production in Denmark which is
generally more steady from day to day than week to week. Due to the large renewable energy
(RE) permeation in the Danish energy sector and their cheap levelized cost of energy, both
the spot price and CO2 intensity fall with increasing RE production and rise with decreasing
RE production, where expensive and CO2 emitting power plants are brought into operation.

The Day-Ahead Spot Prices aren’t a forecast, but will be used since the hourly day-ahead
prices are published at 13:00 CET every day, and the EMS can therefore access them in a
real system, meaning the error in the price forecast is reduced to zero for a short enough
optimization horizon. The expectation is that an optimization performed using the day-
ahead spot prices will outperform an optimization based on persistence forecasted prices.

The Day-Ahead CO2 Prognosis is a forecast (unlike the day-ahead spot prices) published
at 15:00 CET every day and therefore has uncertainty associated with it. However, the
forecast is more sophisticated than the naive persistence forecast, since it is based on the
production schedules for all power plants in Denmark, which in turn are based on the day-
ahead market [41]. Its higher accuracy is evident in Table 3.4, with a RMSE of 10.7 g-CO2

/ kWh versus 62.0 and 80.7 g-CO2 / kWh for the daily and weekly persistence forecast,
respectively. Thus, an optimization of CO2 emissions done with this should outperform one
done with the persistence forecast, and this will be used as the CO2 forecast going forward.

3.6 Cases
With the distinction between a hybrid and double inverter system made, and with the
battery control strategies and forecasts in place, the different cases are now presented. They
are shown in Table 3.5.

Table 3.5: The different cases that will be modelled

Index Control Objective Function Forecast
1 SCM - -
2 ToUA - -
3 Optimization Cost Persistence + Day-Ahead Spot Prices
4 Optimization CO2 (No Credit) Persistence + Day-Ahead CO2 Prognosis
5 Optimization CO2 (With Credit) Persistence + Day-Ahead CO2 Prognosis
6 Optimization Cost Oracle
7 Optimization CO2 (No Credit) Oracle
8 Optimization CO2 (With Credit) Oracle

9 Optimization Multi-Objective Persistence + Day-Ahead Spot Prices +
Day-Ahead CO2 Prognosis

10 Optimization Multi-Objective Oracle

Note that the first 8 cases are modelled for both inverter configurations. The multi-objective
optimization is only modelled for the superior inverter configuration and with the superior
CO2 objective function due to the computational limitations of the project.
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Oracle cases quantify the theoretical optimum for the different objective functions, and thus
serve as benchmarks for the cases that are feasible to implement in a real system. An oracle
case is defined by perfect forecasts of any relevant values infinitely far into the future, so that
the ideal battery schedule can be calculated. After testing, it was found that optimizing for
a period of 11 days at a time, corresponding to a optimization horizon of 𝑛 = 3168 steps,
was sufficient to approximate this behavior.

Adjusting horizon optimizations are run with a variable, or adjusting optimization horizon,
hence the name. The optimizations using persistence PV and load forecasting, day-ahead
spot prices and the day-ahead CO2 prognosis are adjusting horizon optimizations. This is a
consequence of data availability. In the case of the spot prices, they are published at 13:00,
meaning at 13:00 one would know the prices until and including 23:00 the next day. This
corresponds to an optimization horizon of 35 hours, or 420 steps. At 13:05 one would know
the prices for the next 34 hours and 55 minutes, or 419 steps, and so on until 12:55 the next
day where one knows the prices for the next 11 hours, which is 132 steps. The day-ahead
CO2 prognosis is published at 15:00 every day, so similarly one would know between 33 hours
(396 steps) and 9 hours (108 steps) for the optimization. Thus, these cases also constitute
the implementable versions of the optimization control strategies.

For the adjusting horizon cases, the optimization must be run for every timestep of the
simulation, which is 210240 steps for 2 years of data at a 5-minute resolution (there are no
leap years in the data). Thus, after implementing the optimal battery schedule at a timestep
𝑡, the optimization is re-run at the next timestep with the newest PV/load measurements and
forecasts, and so forth. This is to ensure physical feasibility of the solutions. If the battery
schedule from one optimization was implemented for the entire optimization horizon, it might
violate the power balance in the system since the schedule depends on forecasted values. But
the first step in the battery schedule will always satisfy the constraints, since the optimizer
can be given the actual PV and load values for that timestep. The oracle cases do not need
reoptimization at every timestep, since they have perfect knowledge of PV production and
load, ensuring all constraints in the optimization problem will be respected at all timesteps.
This makes for a much less computationally intensive task.

3.7 Evaluation Metrics
To properly evaluate the different cases, different metrics are derived. These are presented in
the following sub-sections, and pertain to a control strategy’s economic and environmental
performance, along with the battery health.

3.7.1 Economic and Environmental Performance

Each case is evaluated on its economic and environmental performance. To do this, the
electricity costs and CO2 emissions of the different cases are calculated. The electricity cost
for a case 𝐶 is calculated by:

𝐾𝐶
𝐶𝑜𝑠𝑡 =

𝐿
∑
𝑖=1

(𝑝b
𝑖 𝜆b

𝑖 − 𝑝s
𝑖 𝜆s

𝑖 )𝛥𝑇 (3.4)
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Where 𝐿 is the length of the dataset, which is 210240 for the two-year period, and 𝑝b
𝑖 and 𝑝s

𝑖
is the power bought and sold at every timestep for the case. Similarly, the CO2 emissions
are calculated by:

𝐾𝐶
𝐶𝑂2,𝑁𝐶 =

𝐿
∑
𝑖=1

(𝑝b
𝑖 𝜆CO2

𝑖 )𝛥𝑇 (3.5)

𝐾𝐶
𝐶𝑂2,𝑊𝐶 =

𝐿
∑
𝑖=1

(𝑝b
𝑖 𝜆CO2

𝑖 − 𝑝s
𝑖 𝜆

CO2
𝑖 )𝛥𝑇 (3.6)

Where the notation CO2,𝑁𝐶 refers to the no credit scenario and CO2,𝑊𝐶 refers to the with
credit scenario. Both CO2 calculations are used because the CO2 optimizations are done
using two objective functions, each of which corresponds to one of the above calculations.
Once the cost for a case is established, its economic benefit 𝐵𝐶 is calculated as the difference
between the energy costs under the baseline scenario of no battery (𝐾𝐵𝑎𝑠𝑒) and the energy
costs with the battery:

𝐵𝐶
𝐶𝑜𝑠𝑡 = 𝐾𝐵𝑎𝑠𝑒

𝐶𝑜𝑠𝑡 − 𝐾𝐶
𝐶𝑜𝑠𝑡 (3.7)

Similarly, the emissions benefit is then calculated according to:

𝐵𝐶
𝐶𝑂2,𝑁𝐶

= 𝐾𝐵𝑎𝑠𝑒
𝐶𝑂2,𝑁𝐶

− 𝐾𝐶
𝐶𝑂2,𝑁𝐶

(3.8)

𝐵𝐶
𝐶𝑂2,𝑊𝐶

= 𝐾𝐵𝑎𝑠𝑒
𝐶𝑂2,𝑊𝐶

− 𝐾𝐶
𝐶𝑂2,𝑊𝐶

(3.9)

The absolute benefits of the cases, which are in DKK and kg-CO2, may also be expressed
in relative terms by comparing with the theoretical maximum as obtained when using the
oracle forecasts and appropriate objective function:

𝑟𝐵𝐶
𝐶𝑜𝑠𝑡 =

𝐵𝐶
𝐶𝑜𝑠𝑡

𝐵𝑂
𝐶𝑜𝑠𝑡

(3.10)

𝑟𝐵𝐶
𝐶𝑂2,𝑁𝐶

=
𝐵𝐶

𝐶𝑂2,𝑁𝐶

𝐵𝑂
𝐶𝑂2,𝑁𝐶

(3.11)

𝑟𝐵𝐶
𝐶𝑂2,𝑊𝐶

=
𝐵𝐶

𝐶𝑂2,𝑊𝐶

𝐵𝑂
𝐶𝑂2,𝑊𝐶

(3.12)

To clarify, 𝐵𝑂
𝐶𝑜𝑠𝑡 refers to the cost benefit when using oracle cost optimization, 𝐵𝑂

𝐶𝑂2,𝑁𝐶

refers to the CO2 benefit of the oracle CO2 no credit optimization calculated according
the no credit metric, and 𝐵𝑂

𝐶𝑂2,𝑊𝐶
refers to the CO2 benefit of the oracle CO2 with credit

optimization calculated according to the with credit metric. This ensures that all benefits
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are normalized against the optimum value for each metric. The total relative benefit of a
case can be calculated as the sum of the relative benefits for that case:

𝑟𝐵𝑇𝑜𝑡𝑎𝑙 = 𝑟𝐵𝐶
𝐶𝑜𝑠𝑡 + 𝑟𝐵𝐶

𝐶𝑂2,𝑁𝐶
+ 𝑟𝐵𝐶

𝐶𝑂2,𝑊𝐶
(3.13)

The maximum 𝑟𝐵𝑇𝑜𝑡𝑎𝑙 is then 3, by definition. If only one of the two CO2 benefits is
included (e.g. to weight cost and emissions equally, or if one of the CO2 metrics is deemed
unimportant), then the maximum achievable 𝑟𝐵𝑇𝑜𝑡𝑎𝑙 is 2 and it is calculated as:

𝑟𝐵𝑇𝑜𝑡𝑎𝑙 = 𝑟𝐵𝐶
𝐶𝑜𝑠𝑡 + 𝑟𝐵𝐶

𝐶𝑂2,𝑁𝐶
(3.14)

𝑟𝐵𝑇𝑜𝑡𝑎𝑙 = 𝑟𝐵𝐶
𝐶𝑜𝑠𝑡 + 𝑟𝐵𝐶

𝐶𝑂2,𝑊𝐶
(3.15)

Note that environmental benefit, CO2 benefit and emissions benefit are used interchangeably
in this project.

3.7.2 Payback Period

Cases can also be evaluated on their payback period. The traditional (simple) payback
period is defined as:

Economic Payback Period = Cost of Investment
Annual Cashflow (3.16)

This will be referred to as the Economic Payback Period, since it is concerned with monetary
costs and cashflows. Another payback period, the Environmental Payback Period, is defined
according to:

Environmental Payback Period = CO2 Footprint of Investment
Annual CO2 Savings (3.17)

The simple payback period ignores inflation, discount rates and hinges on the assumption
that the annual benefit continues being the same in the future. Thus, it has its shortcomings,
but is nonetheless a good indicator if an investment is worth it. Most importantly, it can
be used to compare the different cases to each other, which is the point of its use in this
project.

3.7.3 Battery Health

As mentioned previously, the number of cycles for the battery in each control strategy will
be monitored, so the implications of different controls for the battery efficiency and lifetime
can be discussed. The battery cycles for a control strategy are calculated according to:

Cycles = kWh throughput
2x nominal capacity =

∑𝑁
𝑖 (𝑝c

𝑖 + 𝑝d
𝑖 )𝛥𝑇

2 ⋅ 𝐶𝑏𝑎𝑡
(3.18)
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Where 𝐶𝑏𝑎𝑡 is the capacity of the battery. The average SOC in a control strategy is taken
as the arithmetic mean of the SOC over the evaluation period:

𝑠𝑎𝑣𝑔 = 1
𝑁

𝑁
∑

𝑖
𝑠𝑖 (3.19)

3.8 Practical Implementation
All modelling and data handling is done in Python version 3.9. Universal Coordinated Time
(UTC) is used to avoid issues with daylight savings that may arise when working with time
series in Central European Time (CET). The Python packages used are:

• Numpy - A library for numerical computing with support for large, multi-dimensional
arrays and matrices, along with a collection of mathematical functions to operate on
these arrays.

• Pandas - A data manipulation and analysis library providing data structures like
DataFrames to work with structured data easily and efficiently.

• Matplotlib - A plotting library for creating static, interactive, and animated visual-
izations in Python.

• Datetime - A module in Python’s standard library for working with dates and times.

• Pytz - A library for working with time zones, allowing accurate and cross-platform
timezone calculations.

• Math - A module in Python’s standard library providing mathematical functions.

• CVXPY - A library for defining and solving convex optimization problems in a natural
and readable way.

• Gurobi - A solver for mathematical optimization, including linear programming,
quadratic programming, and mixed-integer programming linear problems.

The parameters that are used in the modelling are:

• 𝑝𝑖𝑛𝑣 = 5 kW

• 𝑝𝑏𝑎𝑡 = 7.675 kW

• 𝑠 = 8 kWh

• 𝑠 = 0 kWh

• 𝑠0 = 1
2 𝑠 = 4 kWh

• 𝑠𝑛 = 1
2 𝑠 = 4 kWh

• 𝜂𝑐 = 𝜂𝑑 = 0.95
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The upper limit on the SOC was chosen by rounding up the 7.7 kWh battery capacity,
and the lower limit is set to 0 kWh, such that 8 kWh of battery capacity is available. In
practice it is not advisable to fully discharge a battery since this can lead to capacity losses
and stability issues [43], but this does not affect the results since battery degradation is not
modelled and the upper and lower limits of the SOC do not matter for the control strategies,
only their difference - it would be the same with 𝑠 = 9 kWh and 𝑠 = 1 kWh, for example. Of
course, the available battery capacity is thus slightly higher in the model than in the real
case, but since the goal is to compare battery strategies it does not matter. In any case, a
sensitivity analysis of the battery capacity on the results is conducted, to show how they
are affected.

The efficiencies, which are meant to represent both battery and inverter efficiency, were set-
tled on as follows: the round-trip efficiency of the battery is at least 96% (Table 2.3). Going
with the lower limit of 96%, and assuming that the charging and discharging efficiencies are
the same, they are:

𝜂′
𝑐 = 𝜂′

𝑑 = √𝜂round-trip = √0.96 = 0.98

The inverter efficiency is dependent on power throughput, but the mean efficiency can be
taken to be 97.44 % based on numerical integration of its efficiency curve [35]. Thus, the
charging and discharging are taken to be:

𝜂𝑐 = 𝜂𝑑 = 𝜂′
𝑐 ⋅ 𝜂𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 = 0.95 ⋅ 0.9744 ≈ 0.95
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4 Results and Findings
This section presents the results and findings of the investigation. The matter will be
approached systematically, in an effort to comply with the project objective of providing
recommendations for a residential prosumer. The section is therefore structured as follows:

First, the hybrid inverter configuration is compared to the double converter configuration.
Only the superior configuration will be used in the remainder of the section, being taken
as representative of both configurations. Second, the different control strategies will be
compared. This includes finding the best optimization-based control strategy (excluding the
multi-objective optimization), and the best heuristic control strategy. The third section will
be brief battery health assessment for the different cases. Fourthly, a sensitivity analysis will
be conducted to see how battery parameters affect the economic and environmental benefit
of the system. Lastly, the multi-objective optimization problem will be compared against
its two constituents.

The reason the multi-objective optimization is only included in the end is two-fold. Firstly,
its objective function depends on whether exports are given a CO2 credit or not. Secondly,
the exact objective function is dependent on the value of 𝑘, i.e. the weight given to optimizing
emissions over cost. Thus, investigating the multi-objective optimization is in itself an
extensive task and therefore is only done for the best inverter configuration and best CO2

objective function to limit the scope.

4.1 Prosumer Overview
This section presents an overview of the prosumer’s energy production, consumption, cost
and emissions over the evaluation period, to create an overview and facilitate comparison
between the base case and the cases that are investigated. The quantities are shown in the
table below.

Table 4.1: Overview of the energy, cost and CO2 quantities of the prosumer in the 2-year
period.

Quantities
PV production 10055 kWh
Consumption 6162 kWh
Base cost 2074 DKK
Base emission1 402 kg-CO2
Base emission2 -352 kg-CO2

Evidently, the PV production in the period exceeds the consumption by quite a margin (it is
63%) higher, but the prosumer still has a net electricity cost of 2074 DKK since revenue from
PV production was smaller than electricity costs. The CO2 footprint of imported electricity
is 402 kg, and drops to -352 kg if exported electricity is given a CO2 credit.

1Calculated according to the CO2 no credit method.
2Calculated according to the CO2 with credit method.
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4.2 Hybrid Vs. Double Inverter Configuration
In this section, the hybrid versus double configuration is compared across the strategies. The
aim is strictly to ascertain which is better, before further results and analysis is conducted
with a focus on control strategies. The modelling results (costs and CO2 footprint) for the
hybrid and double inverter configurations are shown in Tables A.1 and A.2 in the appendix.
Below, the benefits for the different metrics are displayed for both configurations:

Table 4.2: The benefit of the different control strategies for the hybrid inverter configuration.

Index Forecast Control 𝐵𝐶𝑜𝑠𝑡
[DKK]

𝐵𝐶𝑂2,𝑁𝐶

[kg-CO2]
𝐵𝐶𝑂2,𝑊𝐶

[kg-CO2]
1 - SCM 4047 250 -4
2 - ToUA 4055 249 -5
3 Adjusting

Horizon

Cost Optimization 5938 150 39
4 CO2 (No Credit) Optimization 3744 258 44
5 CO2 (With Credit) Optimization -17792 -981 433
6

Oracle
Cost 6837 212 44

7 CO2 (No Credit) 4421 295 47
8 CO2 (With Credit) -19625 -1066 535

Table 4.3: The benefit of the different control strategies for the double inverter configuration.

Index Forecast Control 𝐵𝐶𝑜𝑠𝑡
[DKK]

𝐵𝐶𝑂2,𝑁𝐶

[kg-CO2]
𝐵𝐶𝑂2,𝑊𝐶

[kg-CO2]
1 - SCM 4048 250 -4
2 - ToUA 4056 249 -5
3 Adjusting

Horizon

Cost Optimization 5970 144 36
4 CO2 (No Credit) Optimization 3747 258 46
5 CO2 (With Credit) Optimization -20509 -1108 551
6

Oracle
Cost 6873 208 44

7 CO2 (No Credit) 4422 296 48
8 CO2 (With Credit) -23185 -1212 625

To better visualize the results and compare the effect of the inverter setup on each case,
all cases are normalized against the double inverter result of that case. For example, the
cost benefit under SCM with the hybrid inverter (4047 DKK) is normalized against the cost
benefit under the double inverter (4048 DKK), and so forth for each case and type of benefit.

The exception is for negative benefits, which may arise in some control strategies. For
example, the oracle CO2 with credit optimization yields negative benefits for cost, -19625
DKK for the hybrid case and -23185 DKK for the double case. If the hybrid value is
normalized against the double value, it will be less than 1, which implies it is outperformed
by the double inverter setup. This is not the case; the hybrid setup has a less negative,
i.e. ’less bad’ cost benefit, and the normalized values should reflect this. In such cases, the
calculation is reciprocated so that the double value is normalized against the hybrid value.
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This will then reflect performance fairly, irrespective of whether the benefits are positive or
negative. The scale is then consistent: if the normalized value is below 1, the double setup
performs better; if it is above 1, the hybrid setup performs better.

This results in the following plot (with reciprocated normalizations shown with striped bars,
i.e. where both configurations have negative benefits):

Figure 4.1: The benefit of the hybrid inverter normalized against the benefit of the double
inverter, for each case and each type of benefit. AH = Adjusting Horizon, OC = Oracle.
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It is evident that the benefit the double inverter brings is marginal or non-existent, depending
on the case and metric. Inspecting the costs first, the double inverter setup barely outpeforms
the hybrid setup in the majority of the cases, and does worse in both the adjusting horizon
and oracle CO2 with credit optimization. The hybrid inverter oracle cost case brings 99% of
the benefit that the double inverter oracle cost case has in the 2 year evaluation period. In
absolute numbers, the benefits are 6873 DKK and 6837 DKK. The double inverter setup thus
has a maximum theoretical economic benefit of 36 DKK over two years.3 The best attainable
economic benefit is derived from comparing the adjusting horizon cost optimization for the
two setups, where the double inverter brings a greater benefit of only 32 DKK over the two
years. With an inverter of this type costing around 20000 DKK [44], the economic payback
period for an extra inverter is:

Economic Payback Period = 20000 DKK
16 DKK/year = 1250 years

Such an investment can in no circumstances be justified from an economic standpoint. Even
if the benefit of 36 DKK in the oracle case is used - which is not achievable in practice
since it assumes perfect future knowledge - the payback time is 1111 years. This ignores
inflation, discount rates and assumes that the double inverter will yield the same added
benefit each year, but it is hard to conceive a situation in which the investment could be
justified, unless PV production is constantly at a maximum such that the inverter is always
occupied. In that case though, it would make more sense to acquire an inverter with a larger
capacity than the PV module’s power rating, thereby providing spare inverter capacity for
the battery to discharge. In the case of the prosumer in this study, a 12 kW inverter will be
sufficient to cover the PV and battery if they are both outputting at a maximum. This will
be the preferred solution, since one larger inverter is cheaper than 2 smaller inverters. The
price for a fitting inverter with 12 kW capacity is around 22000 DKK [45], which is 2000
DKK more than the 5 kW inverter the prosumer has (but made by a different company).
With the benefits being so small though, it would also not make economic sense to have one
larger inverter, despite it being half the cost of having two smaller inverters.

From the environmental perspective, the results are not much different. For the CO2 no
credit calculation, the hybrid inverter oracle CO2 NC case yields essentially 100% of the
benefit of the double inverter oracle CO2 NC case. The exacts benefits are 295.34 kg-CO2

saved versus 295.95 kg-CO2 saved, corresponding to an improvement of 610 g-CO2 over
the 2 years for the double setup. This is the theoretical optimum4. The other strategies,
including the adjusting horizon CO2 NC optimization (which is optimized for this metric),
do not show any improvement in the double inverter setup. The prosumer’s inverter has a
carbon footprint of approximately 320 kg-CO2 (sourcing and manufacturing of components,
production and transportation) [46]. This thus leads to a CO2 payback period of:

3Ignoring cases with a negative cost benefit, since the battery cannot be economically justified for those
cases and the hybrid vs. double inverter discussion therefore is irrelevant.

4Again, ignoring negative benefits for the same reason as in the cost discussion.
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Environmental Payback Period = 320 kg-CO2
0.305 kg-CO2/year = 1050 years

Which is also not achievable in practice, since this was using the oracle case optimized for
this metric. Using the CO2 with credit calculation, the double inverter can yield a benefit
of 625 kg-CO2 versus 535 kg-CO2 from the hybrid, which is an improvement of 90 kg-CO2

over the 2 years. In that case, the environmental payback period for the extra inverter is:

Environmental Payback Period = 320 kg-CO2
45 kg-CO2/year = 7 years

Which is much better, but it builds on the prosumer receiving a carbon credit for exported
electricity and this strategy also comes with awful economic performance.

On this basis, the double inverter configuration is clearly not a good investment by any
metric, and will not be investigated further. In any case, the results between the two
inverter configurations are so similar that the transferability of any findings should be very
high.

4.3 Comparing the Control Strategies
In this section, the different cases will be compared (now only for the hybrid configuration).
The benefits are calculated according to (3.7-3.9), and the relative benefits are calculated
according to (3.10-3.12). The results are the following:

Table 4.4: The relative benefits of the different cases.

Case Forecast Control 𝑟𝐵𝐶𝑜𝑠𝑡 [-] 𝑟𝐵𝐶𝑂2,𝑁𝐶
[-] 𝑟𝐵𝐶𝑂2,𝑊𝐶

[-]

1 - SCM 0.59 0.85 -0.01
2 - ToUA 0.59 0.84 -0.01
3 Adjusting

Horizon

Cost Optimization 0.87 0.51 0.07
4 CO2 (No Credit) Optimization 0.55 0.87 0.08
5 CO2 (Credit) Optimization -2.60 -3.32 0.81
6

Oracle
Cost 1 0.72 0.08

7 CO2 (No Credit) 0.65 1 0.09
8 CO2 (Credit) -2.87 -3.61 1

As expected, the adjusting horizon optimization approach for a given metric is the case that
has the highest relative benefit for that metric (other than the oracles themselves). Cost
optimization achieves 87% of the theoretical cost optimum, CO2 NC optimization achieves
87% of the theoretical CO2 NC optimum, and CO2 WC optimization achieves 81% of the
theoretical CO2 WC optimum. The results are plotted in Figures 4.2 and 4.3 to aid their
interpretation.
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Figure 4.2: Emissions (no credit) benefit
vs. cost benefit. SCM and ToUA have
similar values and are therefore hard to
distinguish.

Figure 4.3: Emissions (with credit) ben-
efit vs. cost benefit. The CO2 with
credit optimization results are very dif-
ferent from all the other cases.

4.3.1 The Rules-Based Controls

This subsection investigates which of the two-rules based control strategies is better for
a prosumer. The two heuristics have an almost identical performance with one another,
and they bring positive benefits for both cost and the CO2 no credit metric, with very
slight negative benefits on the CO2 with credit metric. Despite their simplicity, a battery
employing these strategies shows a clear benefit over not having a battery.

The time-of-use arbitrage strategy has a slightly greater economic benefit over the self-
consumption maximization strategy (4055 DKK vs. 4047 DKK), and a slightly worse CO2

no credit benefit (250 kg-CO2 vs 249 kg-CO2). This is not surprising considering the only
difference between the two is that ToUA tries to take advantage of the typically high spot
prices in the evening hours. With such a marginal economic benefit though, it cannot
be recommended because the downside is much greater than the upside. If the trend with
higher evening spot prices reverses, the battery will be discharging for no significant gain, and
potentially need to recharge at a more expensive time because it ’wasted’ its accumulated
energy by discharging to the grid at low prices. This can be very costly. Thus, SCM is
the preferred rules-based strategy. For ToUA to be more attractive, it could make use of
the day-ahead spot prices and statistical techniques such as moving averages to allow it to
discharge when prices are high (quantified according to some metric), rather than ’blindly’
discharging in the evening hours based on historic trends. This however, is outside the scope
of this project.

4.3.2 CO2 No Credit vs. CO2 With Credit Optimization

The goal of this subsection is to find out which of the two CO2-optimized control strategies
is superior. The optimizations performed with the CO2 with credit objective function have
extremely negative relative benefits for the cost and CO2 no credit metrics. In practice, this
means that a battery employing this strategy will be an economic burden on the prosumer,
and it will also cause an increase in the CO2 footprint of imported electricity. The battery
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may provide a service in that it helps alleviate the CO2 footprint of the grid when it is high,
but this alone cannot justify the investment of a battery. The Danish grid CO2 intensity is
better off being lowered by low-carbon electricity from large-scale solar and PV generation,
although it can be considered a bonus if a prosumer helps work towards this. This grid-
CO2-alleviating battery strategy is not feasible for a residential prosumer - it is simply too
much of an economic drain, and does not provide enough environmental value to offset this.

The explanation for this behavior is in the objective function. The power generated by the
PV installation always has a lower CO2 footprint than that of the grid, meaning the value
of the objective function can always be decreased by exporting the power generated by the
PV or the power stored in the battery. Thus, when the constraints allow for it, as much
electricity as possible is exported, which in turn means the prosumer needs to import more
power than otherwise necessary to meet demand. Due to the asymmetrical pricing between
buying and selling prices, these back and forth imports and exports impose a huge cost on
the prosumer, which is clearly seen in the results.

On the other hand, the CO2 no credit optimization has positive relative benefits for every
metric - including the CO2 with credit metric. This means it always brings a benefit to the
prosumer, no matter the metric it is judged by. It provides an economic benefit, whilst also
reducing the CO2 footprint of the prosumer’s electricity imports and providing the service
of exporting low-carbon electricity to the grid, thereby decreasing the CO2 intensity of the
grid electricity. This strategy forces the battery to minimize imports (weighted with the
grid CO2 intensity), since this is the only way to minimize the objective function. The
battery behavior is thus similar to the rules-based strategies which try to avoid exchanges
with the grid, and this can also be seen on the results in Figures 4.2 and 4.3. The fact that
imports are minimized are also what results in the economic benefit despite the prices not
appearing in the objective function. This key difference is evident below, where the imports
and exports for the adjusting horizon cases are shown:

Table 4.5: The total and mean imports and exports across the 2-year evaluation period for
the adjusting horizon CO2 optimizations.

Quantity [kWh]
Objective Total Import Total Export Mean Import Mean Export
No CO2 Credit 1756 5308 0.0086 0.025
With CO2 Credit 14636 17234 0.070 0.082

The exports, and especially the imports, are clearly much larger when using the CO2 with
credit optimization, for the reasons explained above. To conclude, the CO2 with credit
optimization strategy is not a viable option for a residential prosumer, and the CO2 no
credit optimization approach is superior in every aspect. In the next section, the CO2 no
credit strategy will be discussed further, along with the cost optimization.

The CO2 with credit optimization will not be investigated further except in the battery
health section. The CO2 with credit metric will also not be considered further.
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4.3.3 Cost Optimization vs. CO2 No Credit Optimization

In this subsection the cost and CO2 no credit optimization strategies will be compared to
each other and to SCM. With the CO2 with credit optimization strategy discarded, the CO2

no credit optimization will now just be referred to as CO2 optimization for simplicity. A
closer look at the results from Figure 4.2 is now possible:

Figure 4.4: The relative benefits of the the control strategies for the different metrics. Note
the blue SCM dot hidden behind ToUA. This plot is a zoomed-in version of Figure 4.2.

As with CO2 optimization, cost optimization also performs positively for both the cost and
emissions metrics.

The fact that both the cost and emissions optimization approach perform well for the metric
they are not optimized for is no coincidence. For the CO2 optimization, it is because it aims
to minimize imports which brings an economic benefit due to the asymmetrical electricity
prices as discussed earlier. For the cost optimization, it is because there is a tendency
that lower spot prices and lower grid CO2 intensity accompany one another. For the data
used in this investigation, the Pearson correlation coefficient between the two is 0.54, which
is a moderate positive correlation. The explanation for this lies in the fact that in the
present day, electricity from wind turbines and solar PV is cheaper than other generation
sources on a levelized cost basis, and it also has a lower CO2 footprint than other generation
sources. Thus, when wind and solar production is high in Denmark, spot prices and grid
CO2 intensity drop. This is seen in Figures 4.5 and 4.6.
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Figure 4.5: The grid CO2 intensity vs.
spot price for a random sample size of 𝑛 =
500 in the evaluation period.

Figure 4.6: The levelized cost of en-
ergy and CO2 footprint of selected energy
sources. Data from [47] and [48].

It should be noted that spot prices are influenced by neighboring bidding zones and are a
result of the balance between supply and demand, whereas the grid CO2 emission is only
a result of Danish electricity production. This why the correlation is only moderate. For
example, if RE production is low in Denmark, fossil-fuel power plants will make up the
majority of Danish production which means the grid CO2 emission is high. A neighboring
country like Sweden might have excess production from cheap hydropower though, which
is then exported to Denmark, thereby lowering the spot price despite the high grid CO2

intensity.

Comparing the oracle cases, the CO2 optimization attains an relative cost benefit of 0.65
(and a relative emissions benefit of 1 per definition). The cost optimization attains a relative
emissions benefit of 0.72 (with a relative cost benefit of 1). If the two metrics are given equal
weight, this suggests that the cost optimization may be better; it has a total relative benefit
of 1.72 versus the 1.65 of the CO2 optimization, calculated according to Equation 3.14.
In absolute terms, the cost benefit of cost optimization is 2416 DKK higher than CO2

optimization (6837 DKK vs. 4421 DKK), and CO2 optimization yields 83 kg-CO2 more
in saved emissions than cost optimization (295 kg-CO2 vs. 212 kg-CO2). These are the
differences between the oracle forecasts for each optimization type.

For the adjusting horizon optimizations, which constitute the realistic forecasting cases, the
findings are similar. The CO2 optimization attains a relative cost benefit of 0.55 versus 0.87
for the cost optimization, or 3744 DKK versus 5938 DKK (out of 6837 DKK possible) in
absolute terms. The cost optimization has a relative emissions benefit of 0.51 versus 0.87
for the CO2 optimization, corresponding to 150 kg-CO−2 versus 258 kg-CO2 saved (out of
295 kg-CO2 possible). Thus, the economic benefit of cost optimization is 2194 DKK higher,
and the emissions benefit of CO2 optimization is 108 kg-CO2 higher. The cost optimization
has a total relative benefit of 1.38, and the CO2 optimization achieves a slightly higher total
relative benefit of 1.42, implying it may be a slightly better control strategy. Ultimately,
this will depend on how the prosumer weights the emissons benefit versus the cost benefit.
Most prosumers will probably be motivated by the economic upside of a battery, perhaps in
tandem with the energy security it brings, with CO2 savings being a secondary concern.

34



May 2024

Comparing the two optimization cases with the rules-based cases, the total relative benefits
are similar. SCM has a 𝑟𝐵𝐶𝑜𝑠𝑡 of 0.59 and a 𝑟𝐵𝐶𝑂2,𝑁𝐶

of 0.85, for a total relative benefit
of 1.44. ToUA, with its 𝑟𝐵𝐶𝑜𝑠𝑡 of 0.59 and 𝑟𝐵𝐶𝑂2,𝑁𝐶

of 0.84 has a total relative benefit
of 1.43. Both these are slightly higher than those of the adjusting horizon optimizations,
meaning the rules-based cases outperform the optimization-based cases in this regard. The
rules-based cases are rather fixed in their performance though, whereas the benefit of the
optimization strategies can be increased if more accurate forecasts are provided.

4.3.4 Payback Periods

Going a step further, the simple economic and environmental payback periods for each case
is calculated. The CO2 WC optimization strategy is not considered since it brings negative
costs benefits, meaning a battery implementing it could never pay itself back.

The cost of the prosumer’s battery, including freight and installation is taken to be 50000
DKK (aggregate of [49, 50, 51]). The CO2 footprint of the battery is taken as 560 kg-CO2

[52]. The total payback time for a control strategy is the payback time of whichever one is
larger since the cost and emissions savings work in parallel. The results are shown below:

Figure 4.7: The payback periods for different cases. AH = Adjusting Horizon, OC = Oracle.

Several things can be concluded from this. Firstly, the economic payback time of the bat-
tery is much higher than the environmental payback time across the compared cases. The
economic benefit the battery provides is highly dependent on the prosumer’s consumption
habits - if they were previously an active prosumer that sought to shift their consumption to
the daylight hours when their PV installation was producing, a battery will not provide as
great of a benefit as for a prosumer that had high consumption outside the PV generating
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hours. However, the battery provides an additional advantage in that it allows prosumers
to be more flexible with their consumption, letting them consume their generated electricity
outside of PV generation hours. This advantage, although hard to quantify, should not be
underestimated. Ultimately though, its significance depends on how much a prosumer values
having a more flexible power consumption. Also, with automatic load scheduling becoming
more and more prevalent, the burding of shifting one’s power consumption to PV-producing
hours can be eased.

The theoretical payback time is 14.6 years, in the case of the oracle cost optimization, and
the lowest attainable payback time is 16.8 years, which is for the adjusting horizon cost
optimization. The cost optimization is clearly better than the CO2 optimization, because
a battery implementing this will have paid back both its economic and environmental cost
8 years before a battery implementing CO2 optimization (for the oracle forecasts). With
the adjusting horizon optimization, which uses actual forecasts and thus constitutes realistic
cases, the cost optimization has a payback period that is almost 10 years less than that of
the CO2 optimization, which is a very significant difference. One difference between the
two adjusting horizon optimizations are that for cost optimization, the EMS has access to
the day-ahead spot prices which are fixed, meaning it has perfect price knowledge within its
optimization horizon. In the case of the CO2 optimization, it has access to the day-ahead
CO2 prognosis which, despite its accuracy, is still merely a forecast and thus has an error
associated with it.

Cost optimization is also better than the rules-based strategies in terms of the payback
period, but interestingly, the rules-based approaches have a shorter payback period than the
(adjusting horizon) CO2 optimization. Thus, based on the simple payback period of each
strategy, one can conclude that cost optimization is best, followed by the rules-based cases,
with the CO2 optimization being worst.

4.4 Battery Health
In this section, the battery health for the cases (including CO2 WC optimization) will briefly
be assessed. The number of cycles in the 2-year evaluation period and the average SOC for
the different cases are presented in Table 4.6.

Table 4.6: The number of cycles and average state of charge for the different cases (hybrid
inverter configuration only).

Index Forecast Control Cycles [-] Average SOC [%]
1 - SCM 781 49.3
2 - ToUA 782 48.8
3 Adjusting

Horizon

Cost Optimization 1072 45.8
4 CO2 (No Credit) Optimization 88 53.0
5 CO2 (With Credit) Optimization 3984 50.3
6

Oracle
Cost Optimization 908 44.7

7 CO2 (No Credit) Optimization 795 51.1
8 CO2 (With Credit) Optimization 4225 49.4
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There are several things to notice. First, the oracle CO2 WC optimization leads to a very
high number of cycles in the 2-year period (3984 - 4225 cycles, depending on the forecast).
This is once again due to the objective function, which incentivizes as many exports as
possible and consequently also the discharging of the battery. The other optimization cases
have a much lower number of cycles, but still more than the rules-based cases. This makes
sense - the optimization approaches will use the battery more actively than the passive
heuristics, which solely use the battery when a power surplus can be charged into it or a
power deficit forces it to discharge. The average SOC is around 50% in all the cases, with
the only exception being the cost optimization cases which are ∼5% lower. The battery is
rated for 6000 cycles or more [53], so if the lower limit of 6000 cycles is taken, an estimated
lifetime under the different control strategies can be devised and plotted along with the
payback times:

Figure 4.8: The payback periods for different cases. AH = Adjusting Horizon, OC = Oracle.
CO2 WC optimization is excluded from the plot since it has negative cost benefits.

It is evident that the estimated lifetime is less than the payback time across all cases,
which essentially implies that the battery is not a good investment. This hinges on several
assumptions however; firstly that the battery only lasts for 6000 cycles, and secondly that
the benefit of the batter continues being the same year after year. It also ignores inflation
and the discount rate. Nonetheless, it is very useful in comparing the different scenarios.

As expected, the oracle cost optimization performs best, making it through 91% of its
payback period which can be taken as a benchmark. This is no surprise; it is optimized
for cost, which is the hardest aspect of the investment in the battery to recoup, and it has
perfect forecasting knowledge meaning it does not unnecessarily use the battery. Of the
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implementable strategies shown, the adjusting horizon cost optimization is the best, making
it through 67% of its payback period. The rules-based cases make it through 62% of their
payback period, and the adjusting horizon CO2 optimization only makes it 51% through its
payback period.

On this basis, it can be concluded that cost optimization is the best strategy for the residen-
tial prosumer to implement. It brings the greatest economic benefit, a sizeable environmental
benefit, has the shortest payback period and the highest lifetime-to-payback ratio.

4.5 Sensitivity Analysis
In this section, a sensitivity analysis of the battery parameters on the economic and CO2

footprint results will be conducted for selected cases. Self-consumption maximization is
included and considered to be representative of the rules-based cases. Oracle cost and CO2

optimization are included, since it is of interest to see how both the optimum cost and
CO2 NC benefits change and this can only be done full justice by including both types
of optimization. Adjusting horizon cost optimization is also included since it is the best
implementable control strategy.

The parameters that will be varied are the efficiency and the battery capacity (via the SOC
upper limit, 𝑠). The efficiency will be varied as per 𝜂 = {0.90, 0.99}, and the capacity will be
varied as per 𝑠 = {6, 10} kWh. The default values were 𝜂 = 0.95 and 𝑠 = 8 kWh. Note that
𝜂 refers to both 𝜂𝑐 and 𝜂𝑑 as presented in the methodology section.

The sensitivity cases are assessed by their relative cost benefit 𝑟𝐵𝑐𝑜𝑠𝑡 and their relative CO2

benefit 𝑟𝐵𝐶𝑂2,𝑁𝐶. The relative benefits are normalized against the benefits of the oracle
cases. Concretely, the relative cost benefits are normalized against the cost benefit of the
standard oracle cost optimization (6837 DKK), and the relative CO2 benefits are normalized
against the CO2 benefits of the oracle CO2 optimization (295 kg-CO2). The results are then
directly comparable to those in Figure 4.4. The results of the sensitivity analysis are shown
in Tables A.5 and A.6 in the appendix, and also in Figures 4.9 and 4.10.
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Figure 4.9: The effect of changing 𝜂 on the relative cost and CO2 benefits.

Figure 4.10: The effect of changing 𝑠 on the relative cost and CO2 benefits.
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Across all the considered cases, increasing the system efficiency 𝜂 increases the cost benefit,
and decreasing the system efficiency decreases it. The same is true for the battery capacity
𝑠 - increasing that also increases the cost benefit, and vice versa.

The effect of 𝜂 is significant across all cases since it is a key parameter in all the control
algorithms and optimization problems. The explanation for this is simple: if the efficiency
decreases, the battery loses a higher share of energy every time it charges or discharges. This
can for instance mean less PV generation is stored, more energy from the battery needs to
be discharged to meet demand, or that less energy can be sold to the grid, all of which
negatively impact profits.

The effect of 𝑠 is also significant, but especially so for the optimization-based cases. This is
because the maximum SOC is a key parameter in the optimization problems. Increasing it
means the degree of arbitrage the battery can perform is greater - all else equal, the battery
can simply store more power, meaning more PV generation can be self-consumed or low and
high spot prices can be exploited for imports and exports.

In the rules-based cases, a higher battery capacity also means more energy can be stored
in times of excess PV generation, which then means more energy is available during a
power deficit. Due to the asymmetrical electricity prices, this is a benefit for the prosumer.
However, 𝑠 is not necessarily relevant to the battery control at every time step - it is only
explicitly present when setting the limit on how much power can be charged to the battery
during power surpluses and therefore when to begin exports. Since the battery is not always
at full charge, 𝑠 is not used at every time step the rules-based algorithms are run. This is
why its effect is less prominent than that of 𝜂 on cost benefits for the rules-based cases.

The effect of the parameters on 𝑟𝐵𝐶𝑂2,𝑁𝐶
is not as great as on 𝑟𝐵𝐶𝑜𝑠𝑡. It is greatest for

the CO2 optimization, which is natural seeing as it is optimized for this metric. Increasing
𝜂 and 𝑠 means the prosumer can store and use more self-generated power, and therefore
needs to import less electricity, which is both expensive and CO2 intensive in comparison.
This is positive for both cost and CO2 - hence the results. The explanation is the same
for SCM, which also sees improvements in 𝑟𝐵𝐶𝑂2,𝑁𝐶

with increasing 𝜂 and 𝑠. For the two
cost optimizations however, increasing 𝜂 and 𝑠 does not result in an improved 𝑟𝐵𝐶𝑂2,𝑁𝐶

-
it actually decreases slightly. This can be attributed to the fact that these strategies have
larger imports with an increased 𝑠 (due to the larger magnitudes involved in arbitrage),
which directly increases the prosumer’s CO2 footprint and therefore decreases 𝑟𝐵𝐶𝑂2,𝑁𝐶

.
The decrease in 𝑟𝐵𝐶𝑂2,𝑁𝐶

is not so drastic however, and this is because of the correlation
between spot prices and grid CO2 intensity.

Of the two investigated parameters, the efficiency 𝜂 has the biggest effect. For cost opti-
mization, a 1% change in efficiency resulted in a ∼2.5% change in 𝑟𝐵𝐶𝑜𝑠𝑡, whereas a 1%
change in battery capacity resulted in a ∼0.4% change for 𝑟𝐵𝐶𝑜𝑠𝑡 for the considered values.
If a battery is to be included in a residential energy system, it should be chosen carefully,
as its capacity and especially efficiency can significantly impact the system’s profitability.
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4.6 Multi-Objective Optimization
In this section, the multi-objective optimization approach will be compared to its con-
stituents. The CO2 no credit optimization has been shown to significantly outperform the
CO2 with credit optimization, hence the optimization problem that will be investigated is
that of eq. 3.3a, i.e:

min
pc,pd,pb,ps,s,𝛿𝛿𝛿,𝜎𝜎𝜎

∑
𝑡∈𝒯

[(𝑝b
𝑡 𝜆b

𝑡 − 𝑝s
𝑡 𝜆s

𝑡 ) + 𝑘(𝑝b
𝑡 𝜆CO2

𝑡 )] 𝛥𝑇

With the constraints of eqs. 3.1b - 3.1g as in the other optimization problems. The multi-
objective optimization is run for different values of 𝑘 to determine how the emissions weight-
ing influences the relative benefits. This is done for the hybrid inverter configuration and
oracle forecast only, due to the limited computational resources available. The results for
𝑟𝐵𝐶𝑜𝑠𝑡 and 𝑟𝐵𝐶𝑂2,𝑁𝐶

for selected values of 𝑘 are shown together with the oracle cost and
CO2 optimization results in Figure 4.11. The modelling results (costs and CO2 quantities)
are shown in Table A.7.

Figure 4.11: 𝑟𝐵𝐶𝑜𝑠𝑡 and 𝑟𝐵𝐶𝑂2,𝑁𝐶
for the multi-objective optimization. Oracle only. 𝑘 = 0.02

is depicted with a star marker because this value for 𝑘 maximizes 𝑟𝐵𝑇𝑜𝑡𝑎𝑙.

Overall, the results of the multi-objective optimization are in between those of the cost
and CO2 optimization. The results converge to those of the cost optimization at values of
𝑘 << 1. This makes sense, as cost optimization can be considered a special case of the hybrid
optimization where 𝑘 = 0.

41



May 2024

On the other hand, the results for high values of 𝑘 do not converge at those of the CO2

optimization - they converge at 𝑟𝐵𝐶𝑜𝑠𝑡 ≈ 0.876 and 𝑟𝐵𝐶𝑂2,𝑁𝐶
≈ 1. The convergence happens

rapidly once 𝑘 > 1, as can be seen in Figure 4.11. Larger values for 𝑘 (𝑘 = 100 and 𝑘 = 1000)
were also tested, and the results were virtually the same as those of 𝑘 = 10. The multi-
objective optimization problem simply leads to a battery schedule that essentially reaches
the same emissions reduction as in CO2 optimization, but with a much greater profitability.
To illustrate this: the emissions in CO2 optimization are only 1.42 ⋅ 10−14 kg-CO2 less
than in multi-objective optimization with 𝑘 = 100. This is essentially just a rounding
error, and means the multi-objective control achieves the same emissions reduction as the
emissions control. The electricity costs are however 1566 DKK less with the multi-objective
optimization, meaning it also achieves significant cost reductions over CO2 optimization.

To verify that the multi-objective optimization does not converge at the CO2 optimization
results for high values of 𝑘, the optimization was also tested with 𝑘 applied to the cost
component instead of the emissions component, such that the weight of the cost could be
controlled explicitly. A very small value 𝑘 = 0.00001 still resulted in 𝑟𝐵𝐶𝑜𝑠𝑡 = 0.876 and
𝑟𝐵𝐶𝑂2,𝑁𝐶

= 1, the same result as a high 𝑘 applied to the emissions component. Thus, it does
not matter which component of the objective function the weight is applied to.

As previously established, the total relative benefits (sum of 𝑟𝐵𝐶𝑜𝑠𝑡 and 𝑟𝐵𝐶𝑂2,𝑁𝐶
) for oracle

cost and oracle CO2 optimization were 1.72 and 1.65, respectively. Of the considered values
for 𝑘, every single one had a higher total relative benefit than 1.72, meaning the multi-
objective optimization outperforms cost and CO2 optimization by this metric. The highest
total relative benefit was found to be 1.92 for 𝑘 = 0.02, which is depicted with a star in
Figure 4.11. This is quite close to an 𝑟𝐵𝑇𝑜𝑡𝑎𝑙 of 2, i.e achieving the optimum cost and
emission benefit.

This optimum value of 𝑘 = 0.02 was run as an adjusting horizon optimization to see what
benefit it would bring in a real system. It achieved a 𝑟𝐵𝐶𝑜𝑠𝑡 of 0.82 and 𝑟𝐵𝐶𝑂2,𝑁𝐶

of 0.76, and
thus had an 𝑟𝐵𝑇𝑜𝑡𝑎𝑙 of 1.58. This is significantly better than both the adjusting horizon cost
optimization (𝑟𝐵𝐶𝑜𝑠𝑡 = 0.87, 𝑟𝐵𝐶𝑂2,𝑁𝐶

= 0.51, 𝑟𝐵𝑇𝑜𝑡𝑎𝑙 = 1.38) and adjusting horizon CO2

optimization (𝑟𝐵𝐶𝑜𝑠𝑡 = 0.55, 𝑟𝐵𝐶𝑂2,𝑁𝐶
= 0.87, 𝑟𝐵𝑇𝑜𝑡𝑎𝑙 = 1.42). Multi-objective optimization

clearly has the potential to achieve sizeable reductions in both the prosumer’s electricity
costs and CO2 footprint, with the added advantage of the prosumer being able to specify
the weighting between the two.

Despite the higher total relative benefit, multi-objective optimization can not be recom-
mended over cost optimization, simply because the monetary cost of the battery is hardest
to recoup and it should therefore be the only focus of a control strategy - the emissions
benefit is still significant when cost is the optimization objective.
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5 Discussion
In this section, the findings from the previous section are discussed in a broader context.

5.1 Transferability
In this project, it was found that cost optimization also brought about a reduction to the
household CO2 footprint, and that CO2 optimization also brought about a reduction in
household electricity costs. This is largely due to the correlation between low spot prices
and low grid CO2 intensity in Denmark. In a country with a different energy mix, the
correlation may be weaker or even reversed, and it is not sure that optimizing a battery
schedule for one metric will also benefit the other.

In any case, the biggest effect on the battery benefit is the prosumer themself. If they are
active prosumers that align consumption with PV production, then the benefit the battery
brings them will not be as great as in the case of a passive prosumer that does not make
an effort to use their self-generated energy. This goes both for both the cost and emissions
metrics. The authors in Ref. [24] demonstrated this for costs by considering two prosumers
with different consumption habits.

The analysis conducted in this project should thus be carried out for other load profiles and
for different countries to substantiate the findings.

5.2 Modelling Assumptions
The assumption of a constant battery capacity in the modelling, i.e. no degradation has
likely not impacted the model results significantly. The investigation is carried out in a
two-year period, and with the number of cycles seen (except in the CO2 WC optimization),
battery capacity degradation is not likely to impact the cost and CO2 footprint results. The
effect of decreasing battery capacity was also investigated in the sensitivity analysis, and a
relatively large degradation is needed before results are significantly impacted.

However, the payback period results may be affected by this assumption. The annual benefit
in future years for a case is projected to be the same as the annual benefit from the two
years which the modelling was done on. This gives a disproportionate advantage to the
optimization-based cases over the rules-based cases. The optimization cases experience
more annual cycles and their future benefits should thus be lowered to a greater degree in
later years than the rules-based cases, if this was accounted for. The payback periods of the
optimization cases would then increase more than the payback periods of the rules-based
cases. Nonetheless, cost optimization has a payback period that is so much lower that it
would in all likelihood still be preferred over a rules-based control.

The results were much more sensitive to system efficiency than battery capacity, as was also
shown in the sensitivity analysis. A constant efficiency was assumed in this investigation, but
the inverter efficiency is dependent on power throughput, and battery efficiency is dependent
on power throughput and SOC. Battery efficiency would be hard to model, but the inverter
efficiency can relatively easily be incorporated by making use of its efficiency curve. Having
not just non-constant, but non-linear efficiencies would however increase the complexity
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of the optimization problems. It is uncertain whether the optimal battery schedule would
change, and an investigation of that would be interesting. If the schedule does not change
by much, it is not worth the extra computational complexity, which the hardware of a real
EMS might not be able to handle.

5.3 Implementation in Real Systems
The methodology used in this project can be implemented into a real EMS. The rules-based
heuristics are already implemented in real batteries, and the optimization based approaches
can be too.

The computational demands of the optimization based approaches is not high, and they rely
on simple persistence forecasts and the publicly available day-ahead spot prices and/or CO2

prognosis. Both the optimization algorithms and the external data are free. The control
strategies presented in this project cost can thus be considered market ready. If implemented
in other countries, the adjusting horizon optimization will have to be modified according to
the availability of spot prices in that country (and grid CO2 intensity if that is used).
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6 Conclusion
This project has investigated the benefit of PV-battery systems across cases categorized by
inverter configuration, battery control strategy and forecast type. The cases were evaluated
in a 2-year period (1-1-2022 to 31-12-2023) based on their economic and emissions (CO2)
benefit. The basis for the project was prosumer data (load and PV generation) from a real
household in Roskilde, Denmark. Grid CO2 intensity data and spot prices were also used.

Energy costs for a case were calculated as the cost of electricity imports minus the revenue
from exports. For the CO2 footprint, two calculations were considered. In the first cal-
culation the prosumer’s CO2 footprint was solely based on imports, and in the second the
imports were offset by the prosumer’s exports since they were considered to give a carbon
credit (just like the prosumer receives a monetary credit when exporting electricity). The
name given to these two metrics were CO2 no credit and CO2 with credit, respectively. To
quantify the benefit of the battery in a given case, the costs and CO2 footprints were com-
pared to the cost and CO2 footprints of the prosumer without a battery. Of the considered
cases, some were so-called ’oracle’ cases that were considered to quantify the theoretical
optimum of the different benefits.

A hybrid inverter setup and a double inverter configuration were investigated, which place
different restrictions on the battery’s discharge power. In the hybrid inverter setup, the bat-
tery’s discharge power was limited to the inverter capacity (5 kW) minus the PV production,
and in the double inverter configuration, the only limit was the battery’s own power rating
(7.675 kW) since an inverter dimensioned for the battery was assumed. It was shown that
across all battery control strategies and forecasts, the benefit of a double inverter setup was
either marginal or non-existent. The maximum theoretical benefit of the double inverter
was 36 DKK over the two years. With the price of a second inverter being in the range
20000-35000 DKK, it is not a good investment. Having one large 12 kW inverter instead
of the 5 kW inverter would also not be worth it, since the extra price of a larger inverter
is likewise not recouped by the increased cost benefit. The double inverter setup also only
yielded a 610 g-CO2 reduction in the prosumer’s CO2 footprint over the evaluation period
when optimized for emissions. With the CO2 footprint of an inverter being 320 kg, the
double inverter configuration does also not recoup this ’cost’ within a reasonable timeframe.
Investing in a second inverter - or a larger one - can not be recommended by any metric.

The different battery control strategies were all compared based on the economic and emis-
sions performance metrics. The rules-based approaches performed well in all aspects con-
sidering their simplicity. SCM and ToUA achieved both achieved relative cost benefits of
0.59, and relative CO2 NC benefits of 0.85 and 0.84 respectively. ToUA had a slightly higher
economic benefit than SCM - 8 DKK in the evaluation period - but it is not advisable to
implement it over SCM because it relies on the trend that spot prices are higher in the
evening than otherwise. If this trend reverses, or even just tapers off, the small benefit that
ToUA brings will quickly disappear and the battery’s profitability may be eroded.

Optimization using the CO2 no credit objective function far outperformed the CO2 with
credit optimization. The CO2 WC optimization yielded significant negative benefits for cost
and CO2 NC. The prosumer’s electricity costs increased from 2074 DKK in the evaluation
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period to 19866 DKK when the CO2 WC optimization was implemented with the adjusting
horizon forecast, and emissions from imports increased from 402 kg-CO2 to 1384 kg-CO2.
Emissions when considering the CO2 export credit however dropped from -352 kg-CO2 in
the base case to -785 kg-CO2, meaning the battery decreased the CO2 footprint of the grid
by 433 kg.

On the other hand, the CO2 NC optimization achieved positive benefits across all three
metrics. It decreased the prosumer’s electricity costs to -1670 DKK, meaning a profit of
1670 DKK was made selling excess electricity, and emissions from imports decreased to 144
kg-CO2. Emissions when considering the CO2 export credit also dropped, to -396 kg-CO2.
The cost optimization also boasted positive metrics, achieving a profit of 3864 DKK and
emissions of 253 kg-CO2 (-391 kg-CO2 when considering the CO2 export credit).

The optimization approaches led to a greater number of cycles in the battery than the rules-
based heuristics. Thus, an optimization control strategy will wear down the battery faster,
but as shown in Figure 4.8, the trade-off between profitability and lifetime is worth it.

Overall, the battery’s economic payback time is much greater than its payback time (see
Figure 4.7), suggesting the need to prioritize costs over emissions in a battery control strat-
egy.

A multi-objective optimization control was investigated, where the battery schedule was
optimized for both cost and emissions. Different weightings between the cost and emissions
were considered, and it was shown that the total relative benefit of the system could be
increased significantly if an appropriate weighting was applied. A theoretical 𝑟𝐵𝑇𝑜𝑡𝑎𝑙 of
1.93 was achieved for 𝑘 = 0.02, versus the theoretical 𝑟𝐵𝑇𝑜𝑡𝑎𝑙 = 1.72 for cost optimization
and theoretical 𝑟𝐵𝑇𝑜𝑡𝑎𝑙 = 1.65 for CO2 optimization. Nonetheless, cost optimization is
still recommended as the control strategy for a residential prosumer since recouping the
monetary cost of a battery takes much longer than recouping its CO2 footprint. However,
it will ultimately be up to a prosumer themself to decide what balance between profitability
and emissions reductions is right for them.

Battery efficiency has a significant impact on the profitability of the system. For the cost
optimization approach, a 1% change in efficiency corresponded to a more than 2% change
in the economic benefit of the system. A 1% change in battery capacity corresponded to
a change of approximately 0.4% in the economic benefit, so it was less impactful. For the
rules-based heuristics, the impact of battery capacity was even less significant than for the
cost optimization, but the efficiency had a large impact on results. Both the efficiency and
the battery capacity did not impact emissions reductions as much as they did costs.
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6.1 Further Work
Future work can be classified into two categories: 1) improve on the methodology employed
in this study, and 2) expand the investigation.

Improvements to the methodology include:

• Investigate the effects of a more realistic (non-linear) battery model. This includes
accounting for the degradation of battery capacity and efficiency throughout time,
and non-constant efficiencies for different charging/discharging powers. Combined
with this, the non-constant efficiency of the inverter should also be modelled, which
can be done using the curves provided by the manufacturer.

• Investigate the benefit of a PV-battery system for other prosumer load profiles, since
the benefit of a battery is highly dependent on consumption habits.

The scope of the investigation can also expanded by:

• Investigating the profitability and environmental footprint of other residential energy
systems, such as PV-electric vehicle setups.
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A Appendix

A.1 Model Results

Table A.1: Cost and CO2 quantities for the hybrid inverter cases.

Case Forecast Control Cost CO2 (No Credit) CO2 (Credit)
1 - SCM -1973 153 -348
2 - ToUA -1981 153 -347
3 Adjusting

Horizon

Cost Optimization -3864 253 -391
4 CO2 (No Credit) Optimization -1670 144 -396
5 CO2 (Credit) Optimization 19866 1384 -785
6

Oracle
Cost -4763 190 -396

7 CO2 (No Credit) -2347 107 -399
8 CO2 (Credit) 21699 1468 -887

Table A.2: Cost and CO2 quantities for the double inverter cases.

Index Forecast Control Cost CO2 (No Credit) CO2 (Credit)
1 - SCM -1974 153 -348
2 - ToUA -1982 153 -347
3 Adjusting

Horizon

Cost Optimization -3877 253 -389
4 CO2 (No Credit) Optimization -1657 145 -397
5 CO2 (Credit) Optimization 22583 1510 -904
6

Oracle
Cost -4800 195 -396

7 CO2 (No Credit) -2348 106 -400
8 CO2 (Credit) 25259 1615 -977
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A.2 Payback Periods & Estimated Lifetimes

Table A.3: The economic and environmental payback times of the cases.

Case Economic Payback Time
[Years]

Environmental Payback Time
[Years]

SCM 24.7 4.5
ToUA 24.7 4.5
Adjusting Horizon Cost 16.8 7.5
Adjusting Horizon CO2 26.7 4.3
Oracle Cost 14.6 5.3
Oracle CO2 22.6 3.8

Table A.4: The estimated lifetime of the battery for the different cases (hybrid inverter
configuration only).

Index Forecast Control Estimated Lifetime [Years]
1 - SCM 15.4
2 - ToUA 15.3
3 Adjusting

Horizon

Cost Optimization 13.2
4 CO2 (No Credit) Optimization 15.1
5 CO2 (With Credit) Optimization 2.8
6

Oracle
Cost Optimization 11.2

7 CO2 (No Credit) Optimization 13.6
8 CO2 (With Credit) Optimization 3.0
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A.3 Sensitivity Results

Table A.5: The effect of changing battery efficiency on the the relative benefits for selected
cases.

Case 𝑟𝐵𝐶𝑜𝑠𝑡, 𝜂 = {0.90, 0.99} 𝑟𝐵𝐶𝑂2,𝑁𝐶
, 𝜂 = {0.90, 0.99}

SCM {0.541, 0.623} {0.822, 0.862}
Adjusting Horizon Cost {0.757, 0.960} {0.500, 0.499}
Oracle Cost {0.880, 1.099} {0.706, 0.709}
Oracle CO2 {0.576, 0.705} {0.960, 1.033}

Table A.6: The effect of changing battery capacity on the the relative benefits for selected
cases.

Case 𝑟𝐵𝐶𝑜𝑠𝑡, 𝑠 = {6, 10} 𝑟𝐵𝐶𝑂2,𝑁𝐶
, 𝑠 = {6, 10}

SCM {0.572, 0.597} {0.815, 0.853}
Adjusting Horizon Cost {0.766, 0.952} {0.514, 0.493}
Oracle Cost {0.896, 1.086} {0.718, 0.701}
Oracle CO2 {0.619, 0.657} {0.958, 1.021}

A.4 Multi-Objective Optimization Results

Table A.7: The cost and CO2 quantities for different values of 𝑘 in the multi-objective
optimization.

Weight 𝑘 Cost CO2 (No Credit)
10 3913.82 107.07
1 3935.47 107.08
0.1 4175.3 108.18
0.02 4495.94 115.07
0.01 4576.93 124.64
0.005 4665.90 136.91
0.002 4735.18 157.35
0.001 4755.25 171.26
0.0001 4762.89 186.01
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