
DTU Wind

Implementation and test of the open
charge point protocol in an autonomous
charger for electric vehicles

Author
Martin Ellehammer Hansen

DTU Wind-M-0756
February 2024

DTU Wind-M-0756
February 2024

ECTS: 30

Education: Master of Science

Supervisors:
Mattia Marinelli
Kristian Sevdari
DTU Wind & Energy Systems

Oliver Lund Mikkelsen

Remarks:
This report is submitted as partial
fulfillment of the requirements for
graduation in the above education at
the Technical University of Denmark.

Technical University of
Denmark Department of Wind Energy
Frederiksborgvej 399
4000 Roskilde
Denmark
www.vindenergi.dtu.dk

Author:
Martin Ellehammer Hansen

Title:
Implementation and test of the open charge point
protocol in an autonomous charger for electric
vehicles

DTU Wind & Energy Systems is a department of
the Technical University of Denmark with a unique
integration of research, education, innovation and
public/private sector consulting in the field of wind
energy. Our activities develop new opportunities
and technology for the global and Danish
exploitation of wind energy. Research focuses on
key technical-scientific fields, which are central for
the development, innovation and use of wind
energy and provides the basis for advanced
education at the education.

Abstract

This master’s thesis investigates the implementation of the Open Charge Point Protocol (OCPP)
in an electric vehicle autonomous charger (ACDC). As an important standard, OCPP facilitates
secure and seamless interactions between Charging Stations (CS) and their respective Charging Sta-
tion Management Systems (CSMS). This research aims to provide practical insights into the OCPP
implementation, contributing to a standardized and efficient electric vehicle charging infrastructure.

Based upon multiple factors, the chosen OCPP version to be implemented is version 2.0.1, especially
because this is the newest, state-of-the-art version of the protocol on the market. This decision
ensures that the system remains at the forefront of technological advancements, offering enhanced
security, interoperability, and a wide range of features essential for modern electric vehicle charging
infrastructure.

The CSMS is created as a secure WebSocket server through AWS API Gateway. The created Web-
Socket is based upon a "server-less" architecture and is greatly scalable. The implemented database
is the one provided by AWS cloud services, DynamoDB. This database is used to store all relevant
information received by the CSMS along with other critical information.

On the charging stations, the already installed Zephyr RTOS environment provides a WebSocket
library, capable of connecting to the new CSMS providing real-time bi-directional communication.
Core functions within the OCPP are implemented and tested, showcasing that the overall setup is
working and that values can be changed on the charging station, directly from the CSMS.

Overall the fundamental steps of implementing OCPP 2.0.1 have been taken, providing a CSMS,
capable of scaling, and an encrypted connection between the CS and the CSMS has been created.
Thereby this thesis has provided the fundamental steps, paving the way for further development
and implementation.

iii

List of Tables

1 Core Certification profile [14] . 8
2 Overview of OCPP security profiles [15] . 10
3 CALL Fields [20] . 18
4 CALLRESULT Fields [20] . 18
5 CALLERROR Fields [20] . 19
6 Test case scenario for Cold Boot Charging Station - Pending 22
7 Tool validations for Cold Boot Charging Station - Pending 24

iv

List of Figures

1 3-tier model as used in OCPP [18] . 13
2 WebSocket Connection Overview . 17
3 General BootNotification procedure . 21
4 WebSocket API, overview of how it works [25] . 27
5 Test Setup With 2 Connected Devices . 30
6 2 devices connected to the CSMS, shown in the DynamoDB 35

v

Contents

Abstract iii

List of Tables iv

List of Figures v

1 Introduction 1
1.1 Why is OCPP necessary? . 1
1.2 Goals of the Thesis . 3
1.3 Structure of the Thesis . 3

2 Background 5
2.1 Which OCPP version is to be implemented? . 5

2.1.1 OCPP 1.6 . 5
2.1.2 OCPP 2.0.1 . 5
2.1.3 The need for smarter features . 6
2.1.4 OCPP 2.0.1 for an Advanced Charging Infrastructure 7

2.2 Core Certification Profile . 7
2.3 Security . 9

3 Methodology 11
3.1 Requirements analysis . 11

3.1.1 Charging Station Integration Requirements 11
3.1.2 CSMS implementation requirements . 11

3.2 Architecture - OCPP, WebSocket Server, Client-Side 12
3.2.1 The Architecture of the OCPP . 12
3.2.2 CSMS - WebSocket Server . 14
3.2.3 CS - ACDC . 15
3.2.4 Communication - secure WebSocket . 16

3.3 Test cases . 19
3.3.1 Test Case Analysis: BootNotification . 20
3.3.2 Cold Boot Charging Station - Pending . 21
3.3.3 Responsiveness . 24
3.3.4 Heartbeat & Multiple Connections . 25

4 Implementation 26
4.1 Basics/Setup . 26
4.2 The WebSocket Server - CSMS . 26

4.2.1 $connect . 27
4.2.2 $disconnect . 27

vi

4.2.3 $ocpp_request . 28
4.3 The client - EVSE . 28

5 Results 30
5.1 Tested cases . 30

5.1.1 Cold Boot Charging Station - Pending . 31
5.2 Responsiveness . 34
5.3 Heartbeat & multiple connections . 35

6 Discussion 36
6.1 OCPP v2.0.1 . 36
6.2 Evaluation of implemented WebSocket server and client code 36

7 Conclusion 38
7.1 Future Work . 38

Acronyms 39

Bibliography 40

Appendix 42

vii

1 Introduction

The need for the transition to clean and sustainable energy is undeniable, and in 2020, the trans-
portation sector was the second greatest emitter of greenhouse gasses globally[1]. The world will
not reach its goal of zero emissions without great changes in this industry.

In 2023 the global sales of electric vehicles grew by 55%, reaching an all-time high of more than
10 million deployed electric vehicles worldwide[2]. The world is rapidly moving towards sustain-
able options for transportation, and as the number of electric vehicles (EV) is greatly increasing,
a parallel need for intelligent management of the power grid and energy transmission arises. This
is where the Open Charge Point Protocol (OCPP), the object of interest in this thesis, becomes
relevant.

The OCPP offers a multitude of benefits that create a robust and efficient charging infrastructure.
Thus, the OCPP will better the user experience [3], and therefore it may be expected to greatly
increase the already rapid growth in the adoption of electric vehicles.

Furthermore, the complexity of making the charging infrastructure more efficient extends beyond
just the user experiences in the charging of a vehicle. It involves providing grid services, making
the charging stations more efficient, creating robust central management systems, and upgrading
the electric vehicles themselves.

In the expanding world of EV infrastructure, OCPP is breaking through, acting as a universal
language that can facilitate seamless communication between charging stations and central man-
agement systems. This interoperability is critical for real-time management of energy flows and
grid services, mounting in a dynamic and responsive charging infrastructure.

The origin of OCPP is based upon the idea that to make electric vehicles widespread all over the
world, a charging system that is easy to use, and in no way intimidating to the user is paramount
[4]. OCPP handles this issue by greatly increasing interoperability, creating a shared communica-
tion framework, and ensuring different equipment can coexist within a charging network.

Thus, OCPP is more than just a technical specification created by the Open Charge Alliance
(OCA). It is the realization, a collective understanding, that the introduced interoperability is
fundamental in introducing a consumer-oriented experience.

1.1 Why is OCPP necessary?

The accelerating adoption of electric vehicles (EV) has highlighted the need for standardized and
interoperable charging infrastructure, and this is precisely where the Open Charge Point Protocol
(OCPP) steps in and addresses critical challenges[5].

1

Interoperability and User Convenience

The main goal of OCPP is to make sure charging stations and management systems work well
together, no matter who made them. Without a common standard, the EV charging world would
be split up, making it tough for drivers to easily use different charging networks. OCPP helps
ensure that users have a smooth and straightforward experience at any charging station, which
helps more people feel comfortable switching to electric vehicles.

Scalability for Growing EV Market

With the global surge in EV adoption, the scalability of charging infrastructure becomes paramount.
OCPP’s open standard allows for the seamless integration of new charging stations into existing
networks. This flexibility is crucial for accommodating the exponential growth of electric vehicles
on the road, ensuring that the charging infrastructure can scale dynamically to meet evolving
demand[6].

Operational Efficiency and Remote Management

Moreover, OCPP greatly contributes to the operational efficiency of charging stations. The remote
management capabilities introduced with the Charging Station Management System (CSMS) help
the operator monitor, control, and troubleshoot from a centralized location[7]. The efficiency in
operation will result in less downtime, quicker issue resolution, and optimized grid services.

Data Standardization for Informed Decision-Making

The standardization of the exchanged data between the CS and the CSMS is another key benefit
of OCPP and part of the greatly increased interoperability. The standardization makes sure that
all parties involved will have access to reliable information, including charging session data, energy
consumption, and charging station statuses. This makes a great foundation for future infrastructure
enhancements.

Enhancing User Experience

OCPP’s role in promoting interoperability directly translates to an improved user experience. Elec-
tric vehicle owners benefit from a seamless and consistent charging process, regardless of the charg-
ing station’s make or model. This user-centric approach is crucial, providing confidence for the user
in the adaptation of EVs.

Enabling Innovation and Competition

The open standard framework of OCPP introduces healthy competition among charging equipment
manufacturers and encourages fast-developing innovation. The environment of OCPP creates a
platform for the development of cutting-edge technologies and a diverse range of charging solutions,

2

in the end benefiting the consumer, and contributing to the advancement of the electric mobility
environment.

1.2 Goals of the Thesis

The objectives of this thesis revolve around the preliminary design, structuring, and initial imple-
mentation phases of the Open Charge Point Protocol (OCPP) within an Autonomously Controlled
Distributed Charger (ACDC) for electric vehicles, created in collaboration between Circle Consult
and DTU in the EV4EU project. This exploration researches the complexity of integrating OCPP,
focusing on the initial steps necessary for the implementation and progressing toward the estab-
lishment of fundamental functions, tested in alignment with the Open Charge Alliance’s specified
test scenarios. The key stages investigated include:

• Developing a WebSocket server to function as the Charging Station Management System
(CSMS), enabling real-time, bidirectional communication with the Charging Station.

• Establishing and maintaining robust communication links between the Charging Stations
(CS) and the CSMS, ensuring data integrity and system reliability.

• Crafting core OCPP functionalities and ensuring their compatibility and effectiveness through
rigorous testing on an Autonomously Controlled Distributed Charger (ACDC).

This sets the foundation for a more detailed and precise implementation phase of OCPP, target-
ing specific functionalities and use cases. Through this systematic approach, the thesis aims to
contribute to the advancement of the electric vehicle charging infrastructure, facilitating efficient
energy management, enhanced security measures, and improved user experience, ultimately sup-
porting the broader adoption of electric vehicles through the use of the OCPP.

1.3 Structure of the Thesis

This thesis has been structured in a comprehensive way to provide an overview of the research
conducted.

Chapter 2 presents the current states of the different versions of the Open Charge Point Protocol,
and the main differences between the versions. Additionally, it outlines the essential use cases
required for a basic OCPP implementation, along with the corresponding security measures that
must be addressed.

Chapter 3 titled Methodology, delves into the research methods and approaches utilized through-
out this study. This chapter focuses on an Requirement analysis, the Architecture used for the
CSMS, CS, and the Communication through WebSockets. Finally, test cases are formulated to be
carried out.

3

Chapter 4 focuses on the Implementation of the project. Here insights are given into how
to get started with development, how the CSMS is created, and what it entails, along with the
implementation done on the Charging station.

Chapter 5 presents the Results obtained through testing, and analyzes and evaluates the results
of the test cases.

Chapter 6 , Discussion, considers and discusses the implementation of different aspects along
with the results presented in the preceding chapter.

Chapter 7 concludes the thesis, summarizing the findings and results, as well as giving an idea
of what future work might entail for the integration of OCPP.

4

2 Background

This chapter describes the relevant terminology used for the implementation of OCPP. Further, it
discusses which version of OCPP to implement, what the core of the OCPP implementation is, and
the importance of security.

2.1 Which OCPP version is to be implemented?

The Open Charge Point Protocol is a living protocol, constantly being innovated and improved
upon. Over the past years, different versions of the protocol have been created, with the most
widespread version being OCPP 1.6. However, the newest, more capable, and complex version,
OCPP 2.0.1, is the state of the art of the protocol.

2.1.1 OCPP 1.6

The OCPP version 1.6, developed by the Open Charge Alliance (OCA), is the most widespread
version of the protocol and is an iteration of OCPP 1.5. The protocol provides a communication
standard allowing the CS and CSMS to communicate effectively with each other. OCPP 1.6 in-
cludes several features, such as remote start and stop of a charging session, status notifications,
firmware management, and data transfer capabilities over a WebSocket connection using either
SOAP or JSON.

Despite its strengths, OCPP 1.6 has certain limitations, particularly in terms of security features,
where additional security is introduced in the newer version [8]. It lacks advanced mechanisms
for secure firmware updates and sophisticated authentication, which are essential for protecting
against cyber threats. Additionally, the protocol supports only basic smart charging capabilities
and does not include support for the ISO 15118 protocol, which offers advanced EV-to-charger
communication and features like Plug & Charge. In terms of scalability, OCPP 1.6 might face
challenges in handling large networks with complex use cases, especially when compared to the
more advanced OCPP 2.0.1.

2.1.2 OCPP 2.0.1

OCPP 2.0.1 is a significant advancement in the development of the Open Charge Point Protocol,
addressing many of the limitations found and requested in earlier versions. A strength of OCPP
2.0.1 is its enhanced security features, which include introducing more advanced authentication
mechanisms while providing robust protection against cyber threats. OCPP 2.0.1 also introduces
advanced smart charging capabilities, allowing more efficient and intelligent management of CS.
Also significantly, OCPP 2.0.1 is compatible with the ISO 15118 standard, supporting vehicle-to-
charger technology features like Plug & Charge. Making sure charging systems can work smoothly
with future electric vehicle technology is essential to a smooth experience for drivers as they charge

5

their EVs[9].

Moreover, OCPP 2.0.1 is designed to handle large-scale deployments and complex use cases, making
it highly scalable and suitable for the foundation of the infrastructure of EV charging. The protocol
offers improved data handling and efficiency. With these advancements, OCPP 2.0.1 provides a
more comprehensive and robust solution for the infrastructure of EV charging.

Direct Vehicle Communication, another significant advantage of OCPP 2.0.1 is its ability to ob-
tain valuable data directly from the vehicle. This includes crucial information such as the state of
charge, charging preferences, battery capacity, and vehicle identification. Access to this data allows
for more intelligent charging management, and tailored charging experiences. This is a feature very
useful for the ACDC project, as it will eliminate a lot of the actions the consumer has to take, in
order to start a smart charging session.

Limitations of OCPP 2.0.1 While OCPP 2.0.1 addresses many issues of previous versions, it
does present certain limitations. One of the main challenges is the complexity of the implemen-
tation of the newer protocol. The advanced features and enhanced security measures can make
deployment and integration more complex and resource-intensive, particularly for organizations
transitioning from earlier versions of the protocol[8]. The lack of backward compatibility means
that upgrading existing OCPP 1.6 systems to OCPP 2.0.1 can become time-consuming and costly.

Another potential limitation is the need for continuous updates and maintenance to keep up with
the evolving standards and security requirements. This ongoing requirement can be a challenge for
smaller operators or those with limited technical capabilities.

Despite these limitations, OCPP 2.0.1 represents a major step forward in the EV charging industry
compared to OCPP 1.6, offering enhanced capabilities and security that are essential for modern
charging infrastructure. Moreover, implementing the newest version of the standard will also present
a charging solution that will be competitive on the market for many years to come.

2.1.3 The need for smarter features

Smart Charging As the growth of EVs on the market is rising, so is the demand requested
from the electric grid. As smart charging introduces flexible demand by utilising the capabilities of
unidirectional (V1G) or bidirectional (V2G) functionalities[10], it will be able to support the grid,
by broadening the demand required at critical times by strategic charging, thereby being able to
help with peak shaving the demand curve during critical hours. This effect is needed to release the
stress on the grid, potentially enabling flexibility in the incorporation of renewable energy sources
(RES)[11][12].

6

Interoperability is an important aspect to the consumer. Providing interoperability to the user
through OCPP, is one of the main aspects, allowing the consumer to switch between different
flexible providers. Moreover the strictness introduced in the OCPP protocol makes the protocol
highly interoperable, and make the integration of a new charge point to a central system operate
without any problems (or few)[13].

Ease of Use is another crucial feature to become a competitive CS in the market. Here the need
for the ISO 15118 standard is needed, in order to use the plug & charge technology [8]. This feature
is not implemented in OCPP 1.6, and many charging station providers have had to implement it
around the OCPP protocol.

2.1.4 OCPP 2.0.1 for an Advanced Charging Infrastructure

The chosen protocol for the implementation in this thesis is OCPP 2.0.1, prioritizing the multiple
benefits associated with the complexity of implementation. The key benefits are the critical need
for enhanced cyber security, along with smart charging capabilities and Plug-&-charge technology.

The incorporation of the Plug and Charge functionality, supported by the ISO 15118 standard, is
a key factor in the choice of OCPP 2.0.1. This feature streamlines the charging process, allowing
for automatic vehicle identification and authorization, and enhancing user experience.

OCPP 2.0.1 enables direct access to crucial vehicle data, such as the state of charge, charging
preferences, and battery capacity. This access streamlines the charging process by eliminating the
need for users to manually input values before starting a charging session, as these key parame-
ters can now be automatically read from the vehicle, which fits well in the scope of the ACDC
project. This feature enhances smart charging by allowing dynamic adjustment of charging rates
and schedules based on each vehicle’s specific needs and battery status, leading to more efficient
energy management and better user experiences.

In summary, while OCPP 2.0.1 presents a more complex implementation process, its advanced
features align with the project’s focus on security, efficiency, and robustness for the future. The
timeline of the EV4EU project allows for thorough integration of these sophisticated capabilities,
ensuring a robust and user-friendly charging infrastructure using OCPP 2.0.1.

2.2 Core Certification Profile

When implementing OCPP, the first overall goal is to become OCPP compliant and to do so, the
core certification profile must always be present. It consists of a lot of different use cases, which
have to pass specific testing.

7

Table 1: Core Certification profile [14]

Certification Profile Description
Core Basic Authentication

TLS - server-side certificate
Update Charging Station Password for HTTP Basic Authentication
Security Event Notification
Booting a Charging Station
Configuring a Charging Station
Resetting a Charging Station / EVSE
Authorization incl. GroupId
Stop Transaction with a Master Pass
Local start transaction - Cable plugin first & Authorization first
Start / Stop transaction options
Disconnect cable on EV-side
Check Transaction status
Remote start / stop transaction
Remote unlock Connector
Remote Trigger
Change Availability - Charging Station / EVSE / Connector
Clock-aligned Meter & Sampled Meter Values
Install CA certificates
Retrieve certificates from Charging Station
Delete a certificate from a Charging Station
AdditionalRootCertificateCheck
Retrieve Log Information
Get / Clear Customer Information
Secure Firmware Update
Store / Clear Authorization Data in Authorization Cache
Authorization through authorization cache

To achieve full OCPP certification, all certification profiles must be implemented. It is possible,
however, to obtain partial certification by fulfilling at least the core certification profile. After
establishing the core certification profile, additional profiles may be adopted to enhance capabilities,
pursuing full OCPP compliance, as detailed in the ensuing list:

• Advanced Security

• Local Authorization List Management

• Smart Charging

8

• Advanced Device Management

• Advanced User Interface

• Reservation

• ISO 15118 support

2.3 Security

It is important to take serious measures regarding the security of charging stations, as these are
more and more prone to cyber-attacks in the future. Therefore there are four well-defined security
objectives in the documentation provided by the Open Charge Alliance (OCA)[15]:

• To allow the creation of a secure communication channel between the CSMS and the Charging
Station. The integrity and confidentiality of messages on this channel should be protected
with strong cryptographic measures.

• To provide mutual authentication between the Charging Station and the CSMS. Both parties
should be able to identify who they are communicating with

• To provide a secure firmware update process by allowing the Charging Station to check the
source and the integrity of firmware images, and by allowing non-repudiation of these images.

• To allow logging of security events to facilitate monitoring the security of the smart charging
system. A list of security-related events and their ’criticality’ is provided in the appendices.

To secure the messages, and make sure no one can intercept and read the messages being commu-
nicated between the CS and the CSMS, the WebSocket Server created will be a WebSocket Secure
(wss). This ensures that all messages being sent and received are TLS encrypted, and can not be
intercepted and read by third parties.

When implementing the security to the system, introducing TLS authentication certificates for
both the CS and CSMS is optimal. However, there are three accepted predefined security profiles
that can be used. They are defined as in table 2:

9

Table 2: Overview of OCPP security profiles [15]

Profile Charging Station
Authentication

CSMS Authentica-
tion

Communication
Security

1. Unsecured Trans-
port with Basic Au-
thentication

HTTP Basic Authen-
tication

- -

2. TLS with Basic
Authentication

HTTP Basic Authen-
tication

TLS authentication
using certificate

Transport Layer Secu-
rity (TLS)

3. TLS with Client
Side Certificates

TLS authentication
using certificate

TLS authentication
using certificate

Transport Layer Secu-
rity (TLS)

However, later on when the implementation of the protocol begins, to focus on getting fundamen-
tal parts working, eg the CSMS, the connection between the CS and the CSMS, and the OCPP
functions, none of these authentication certificates are implemented. It will be run on a WSS, and
have TLS peer verification as an optional parameter, making it easier to implement in the future.
The following statement is specified in the OCA’s documentation [15]:

•In some cases (e.g. lab installations, test setups, etc.) one might prefer to use OCPP 2.0.1
without implementing security. While this is possible, it is NOT considered a valid OCPP 2.0.1
implementation.

10

3 Methodology

3.1 Requirements analysis

To ensure a good starting point for the implementation of OCPP 2.0.1, it is important to have
clarified the foundational steps and specifications necessary for a holistic OCPP implementation.
This section outlines the core functional requirements vital for the system’s architecture, creating
a clear path toward effective integration.

3.1.1 Charging Station Integration Requirements

The implementation of OCPP 2.0.1 is carried out on the nRF-9160DK using Zephyr RTOS[16],
which necessitates a specific setup to ensure clear development and integration. The critical com-
ponents of this setup are:

• nRF-9160DK Board: The primary development platform, as the integrated communication
board used in the ACDC, is the nRF-9160 board, taking advantage of its LTE-M and NB-IoT
capabilities.

• Zephyr RTOS: A scalable real-time operating system (RTOS) for connected, resource-constrained
devices like the nRF-9160 board. Zephyr provides a WebSocket library essential for estab-
lishing OCPP communication channels between the CSMS and the CS.

3.1.2 CSMS implementation requirements

The deployment of the OCPP 2.0.1 Central System will be done on AWS cloud services, and sets
out so ensure a secure, scalable and reliable server-side environment for the CSMS. Components
and considerations include:

• WebSocket server implementation: Utilizing AWS API Gateway to create and manage a
WebSocket API acting as the CSMS for OCPP 2.0.1 communications. This setup facilitates
real-time messaging between charging stations and the central system without the need for
managing server infrastructure.

The WebSocket API makes real-time messaging between the CS and the CSMS possible,
without a huge need for managing server infrastructure, as AWS takes care of most.

• Security Configuration: Implement authentication and authorization with certificate authori-
ties (CA), mechanisms through AWS API Gateway, using IAM roles and Lambda authorizers
to validate connections and messages in AWS.

• AWS Lambda:

11

– Server-less Computing: Deployment of AWS Lambda functions to handle OCPP messages,
connections, and disconnections, providing a server-less architecture capable of scaling
automatically with the number of incoming requests.

– Integration: Ensure Lambda functions are integrated properly with API Gateway Web-
Socket routes for robust message processing and routing.

• Amazon DynamoDB: Leverage DynamoDB for storing transactional data, configurations,
and different status information of the charging stations. DynamoDB offers fast, scalable
NoSQL database capabilities perfect for handling the shifting amount of workload that will
be introduced to the CSMS.

• Scalability and Reliability:

– Managed Scaling: Benefit from the automatic scaling ability of API Gateway and Lambda
handlers, which adjust the resources used based on traffic patterns, keeping efficient han-
dling of OCPP communications without any intervention[17].

– High Availability: AWS services used like API Gateway, Lambda, and DynamoDB are
designed for high availability and a good fault tolerance across multiple availability zones,
making it a service well suited for scaling to other markets in the future.

This analysis underscores the importance of a strategic approach to system architecture, empha-
sizing the need for secure, scalable, and efficient communication between charging stations and the
central system. By adhering to these outlined requirements, the foundation is set for a successful
OCPP 2.0.1 implementation that is well-positioned to support the evolving demands of the electric
vehicle charging infrastructure.
This requirement analysis highlights the significance of a well-sorted approach to system architec-
ture, focusing on the need for secure, scalable, and efficient communication between the CS and
the CSMS. By following the outlined requirements, a solid foundation for a successful OCPP 2.0.1
implementation is set, capable of scaling for future needs.

3.2 Architecture - OCPP, WebSocket Server, Client-Side

3.2.1 The Architecture of the OCPP

The architecture of the Open Charge Point Protocol is well described in [18], including the infor-
mation model, a 3-tier model, and a device model. Together this ensures an architecture providing
standardized communication and good interoperability for the growing EV infrastructure.

The information model explains the structure and types of messages exchanged between Electric
Vehicle Supply Equipment (EVSE) and Charging Station Management Systems (CSMS), making
sure consistent definitions are kept across different manufacturers’ devices and management soft-
ware.

12

The 3-tier model outlines the physical and logical layers within the charging infrastructure of the
entire CS, categorizing the system into Charging Station (CS), EVSE, and Connector levels. The
representation can be seen in figure 1.

• Charging Station (CS): This is the physical system where EVs are charged. It may consist of
one or more EVSEs and serves as the primary interface for electric vehicles.

• EVSE (Electric Vehicle Supply Equipment): Represents the actual charging points and can
be seen as independently operated units within the Charging Station.

• Connector: This refers to the individual connectors or sockets on the EVSE where the electric
vehicle is plugged in to charge.

Figure 1: 3-tier model as used in OCPP [18]

Linked to these models, is the device model. The device model provides a detailed representation
of the devices within the OCPP network. The attributes, capabilities, and status information of
charging stations and their components are specified here. This creates effective device manage-
ment, and monitoring as well as enhances the control of the OCPP system.

Together, these models enable an interoperable and scalable OCPP infrastructure capable of sup-
porting everything from simple direct connections to complex networks involving multiple CSs and
controllers.

13

3.2.2 CSMS - WebSocket Server

The architecture for the OCPP implementation leverages the server-less computing model offered
by AWS API Gateway, to create a scalable, efficient and resilient CSMS. The architecture as men-
tioned centers around the AWS API Gateway, AWS Lambda and Amazon DynamoDB, facilitating
communication and data management for the system.

AWS API Gateway serves as the entry point for all OCPP messages. Utilizing the WebSocket
support implemented enables real-time, two-way communication between charging stations and
the server-less back end, the CSMS. This approach eliminates the need for a traditional physical
server for the developer, providing a "server-less" architecture that can dynamically scale in re-
sponse to varying loads and requests to the CSMS. The API Gateway handles the connection and
disconnection events, as well as the routing of OCPP messages to the appropriate Lambda handlers.

At the heart of the "server-less" CSMS architecture is the WebSocket server facilitated by AWS API
Gateway. Unlike traditional WebSocket servers that require dedicated infrastructure to maintain
persistent connections, a server-less WebSocket operates without the need for physical servers to be
provisioned or managed by developers. Instead, AWS API Gateway acts as the server, managing
the WebSocket connections dynamically, while scaling automatically is handled to accommodate
the varying amount of active connections and messages, by dynamically allocating resources.

This server-less approach simplifies the complexity of the setup of the CSMS. It abstracts away
the underlying infrastructure management for the developer, enabling developers to focus on the
implementation of OCPP rather than on server maintenance, scalability, or availability concerns.

When a WebSocket connection is established, AWS API Gateway persists the connection state and
routes incoming messages to the appropriate AWS Lambda function based on predefined routes,
such as OnConnect, OnDisconnect, and OCPP_route. This routing allows for a decoupled, event-
driven architecture where different Lambda functions can be triggered in response to specific types
of messages. The use of AWS Lambda further emphasizes the server-less nature of the architecture,
as these functions execute in a stateless environment, again scaling automatically with the number
of requests on the CSMS.

The core of message processing lies within the OCPP_route Lambda function, which is respon-
sible for interpreting and processing incoming OCPP messages. Depending on the message type
and content, this function executes the necessary logic, which may involve querying or updating
DynamoDB, and sends appropriate responses back to the charging station.

A downside of using the AWS API Gateway to create the WebSocket is the lack of configuration on

14

specific settings on the server. Two specific things that are to be noted here, are that a WebSocket
connection between the CS and the CSMS is closed after 10 minutes of inactivity. The other is
that a connection between the CS and the CSMS can only be online for a maximum of two hours.
If a session is to last longer than two hours, the connection is to be re-established to keep running
smoothly.

Amazon DynamoDB is used to store and manage all relevant data, including charging sta-
tion statuses, transaction details, live connections, and configuration settings. DynamoDB’s fully
managed, NoSQL database service offers a fast performance with seamless scalability, making it an
ideal choice for handling the data received in a rapidly growing EV market.

Together, these components form a cohesive, server-less back-end architecture that not only reduces
the complexity for the developer but also provides the flexibility and scalability needed to support
the growing network of electric vehicle charging stations. The server-less model aligns with OCPP’s
requirements for reliable, real-time communication and efficient data management, ensuring that
the infrastructure can adapt to a future increase in demands without significantly re-engineering
the CSMS.

3.2.3 CS - ACDC

The client-side architecture of the Open Charge Point Protocol (OCPP) implementation is designed
to meet the requirements, demanding reliability, real-time responsiveness, and efficient network
communication. The implementation of the ACDC is happening in the programming language C,
a language that focuses on performance and control over system resources, an architecture opti-
mized for embedded systems.

Thread Management and Real-time Communication: Central to the client-side architec-
ture is the creation of a separate thread for handling OCPP communication. This design decision
allows the OCPP communication to operate independently of the ACDCs main control loop. The
separate thread is responsible for managing WebSocket connections, sending Heartbeat messages
to keep the connection alive, and processing incoming and outgoing OCPP messages while having
access to all information on the ACDC.

WebSocket Communication: At the heart of the ACDC network communication for the OCPP
is the WebSocket protocol, enabling bi-directional communication between the charging station and
the server-less back end. Implementing and creating the WebSocket connection for the ACDC, uti-
lizing the libraries within the already existing Zephyr environment. These libraries (should) support

15

non-blocking socket operations and TLS encryption, creating a secure and efficient data exchange.
This setup allows for real-time monitoring, remote control, and firmware updates, aligning with the
OCPP’s requirements for functionality and cyber security regarding the encrypted link between the
CS and the CSMS. However, the currently used version of Zephyr has some bugs in the receiving
algorithm used within the WebSocket library. For now, a workaround is implemented, described in
section 4.3.

Security and Reliability: Recognizing the importance of security in OCPP communications,
the client-side architecture incorporates robust encryption mechanisms and in the future authen-
tication protocols. Utilizing Zephyr’s security features, such as mbed TLS for encrypted data
transmission, and the connection being a secure WebSocket, ensures that all messages exchanged
with the CSMS are secure and encrypted.

3.2.4 Communication - secure WebSocket

The communication is as said done over a secure WebSocket connection. The format of the com-
munication for the OCPP 2.0.1 implementation is JSON format. JSON is chosen by the OCA, for
its lightweight nature and ease of use. It facilitates efficient data interchange between the charging
station and the central system, ensuring that messages are compact and network bandwidth is
conserved, which is crucial for the system.

The WebSocket protocol, defined in [RFC6455][19], enables full-duplex communication channels
over a single TCP connection. This is essential for OCPP, which requires a persistent, real-time
connection between the CS and the CSMS to support immediate execution, status updates, and
monitoring. By utilizing WebSockets, the OCPP implementation can maintain an open channel for
two hours, and can then immediately create a new connection whenever it is needed for seamless
operability.

For the secure aspect, the secure WebSocket connections are established using Transport Layer
Security (TLS), ensuring that all transmitted data is TLS encrypted. This security measure is
critical to protect sensitive information related to charging transactions and to safeguard from po-
tential eavesdropping or tampering. The communication loop, is a continuous real-time exchange of
messages, providing a robust conduit for the JSON-formatted data stream between the CS and the
central system. To better visualize this exchange, a schematic overview of the CS-CSMS connection
will be presented in figure2, illustrating the flow of information within the OCPP architecture.

16

Figure 2: WebSocket Connection Overview

Furthermore, the use of JSON over WebSockets simplifies the parsing and generation of messages
on both the client and server sides. It allows for a straightforward mapping of OCPP commands
and responses to JavaScript Object Notation (JSON) objects, making the development and main-
tenance of the OCPP 2.0.1 system more manageable.

Within OCPP, there are three different messaging types; CALL, CALLRESULT, and CALLER-
ROR. A typical chain of messages between the CS and the CSMS is a string of CALLs and CALL-
RESULTs and can be initiated by either of them. The three messages are structured and explained
as follows in the documentation:

•CALL: The initial call, from either the CS or the CSMS, containing the action of what is to
happen.

17

Table 3: CALL Fields [20]

Field Datatype Meaning
MessageTypeId integer This is a Message Type Number which is used to identify

the type of the message.
MessageId string[36] This is a unique identifier that will be used to match request

and result.
Action string The name of the remote procedure or action. This field

SHALL contain a case-sensitive string. The field SHALL
contain the OCPP Message name without the "Request" suf-
fix. For example: For a "BootNotificationRequest", this field
shall be set to "BootNotification".

Payload JSON JSON Payload of the action, see: JSON Payload for more
information.

1 [
2 2,
3 " 19223201 ",
4 " BootNotification ",
5 {
6 " reason ": " PowerUp ",
7 " chargingStation ": {
8 "model": " SingleSocketCharger ",
9 " vendorName ": " VendorX "

10 }
11 }
12]

•CALLRESULT: Containing the same MessageId as the one received in the CALL, and the ap-
propriate response to the CALL.

Table 4: CALLRESULT Fields [20]

Field Datatype Meaning
MessageTypeId integer This is a Message Type Number which is used to identify

the type of the message.
MessageId string[36] This must be the exact same ID that is in the call request

so that the recipient can match request and result.
Payload JSON JSON Payload of the action, see: JSON Payload for more

information.

1 [

18

2 3,
3 " 19223201 ",
4 {
5 " currentTime ": "2013 -02 -01 T20 :53:32.486 Z",
6 " interval ": 300,
7 " status ": " Accepted "
8 }
9]

•CALLERROR: This is only used in two cases:

• An error occurred under the transport of the message.

• The call has been received; however, the contents do not fulfill the criteria necessary for a
valid message.

Table 5: CALLERROR Fields [20]

Field Datatype Meaning
MessageTypeId integer This is a Message Type Number which is used to identify

the type of the message.
MessageId string[36] This must be the exact same id that is in the call request so

that the recipient can match request and result.
ErrorCode string This field must contain a string from the RPC Framework

Error Codes table.
ErrorDescription string[255] Should be filled in if possible, otherwise a clear empty string

"".
ErrorDetails JSON This JSON object describes error details in an undefined

way. If there are no error details you MUST fill in an empty
object {}.

1 [
2 4,
3 " 162376037 ",
4 " NotSupported ",
5 " SetDisplayMessageRequest not implemented ",
6 {}
7]

3.3 Test cases

Careful testing and validation of functionality is critical when implementing a system that is to
be OCPP compliant. Test cases serve as a demonstration of the CS capabilities to follow the pro-

19

tocol’s stringent requirements, in the end ensuring the reliable and efficient operation within the
EV charging infrastructure. This section will explain specific test cases chosen for investigation,
focusing on the BootNotification test case, which is fundamental to the initial interaction between
the CS and the CSMS.

In the documentation from Open Charge Alliance [21], many different test cases are provided, and
the specific mandatory test cases to be passed for each use case are defined. Here, the mandatory
tests for the Cold Boot Charging Station, will be carried out, focusing on the Cold Boot
Charging Station - Pending in this thesis.
The profile outlined in the core certification profile, is a set of use cases and functionalities that a
charging station must support to ever be able to achieve OCPP certification. The use cases in the
profile include critical functionalities such as basic authentication, security event notification, and
the BootNotification procedure, among others.

3.3.1 Test Case Analysis: BootNotification

When a charging station boots up, it sends a BootNotification request to the central system,
which responds with a BootNotification response. This exchange of messages is the first step in
establishing a session between the two entities, allowing the central system to recognize the charging
station and configure it for further use. The BootNotification test case has several checks, such as:

• Validation of the message format and data integrity.

• Ensuring the payload contains necessary information like the charger model, serial number,
and vendor information.

• Verification of the central system’s response, whether it accepts the boot notification and
properly registers the charging station, rejects the BootNotification, or gives a "Pending"
response.

The outcome of this test case determines if the charging station can proceed to the next operational
steps, such as status reporting and transaction initiation. Thus, it’s a fundamental test that impacts
the CS entire life cycle within the OCPP network.

Testing Methodology The methodology for testing the BootNotification involves simulating
the charging station’s boot process, and crafting valid and invalid BootNotification requests, ex-
plained by different test cases in the test documentation [21]. This rigorous testing ensures that the
charging station adheres to the protocol’s standards and behaves as expected when it eventually is
deployed in a production environment.

20

In figure 3, a detailed schematic overview illustrates the communication process during the Boot-
Notification test case, providing a clear visual representation of the sequence of messages and their
respective roles in the OCPP ecosystem.

Figure 3: General BootNotification procedure

3.3.2 Cold Boot Charging Station - Pending

Multiple test cases within the BootNotification will be done; cold boot charging station - Accepted,
Pending, and Rejected, with the test case IDs, TC_B_01_CS, TC_B_02_CS, and TC_B_03_CS.
The case with pending will be gone through in detail, as it entails many different core functions,
seen by the requirements and prerequisites described in the documentation, and displays how a
series of different CALLS and CALLRESULTS, can be interacting. Moreover, the test also show-
cases the functionality to get or set variables directly on the CS from the CSMS. The test case is
defined as in table 6, by the Open Charge Alliance [21].

21

Table 6: Test case scenario for Cold Boot Charging Station - Pending

Main (Test
scenario)

Charging Station CSMS

Manual Action:
Reboot the
Charging
Station.

1. The Charging Station sends a
BootNotificationRequest

2. The OCTT responds with a
BootNotificationResponse with
status Pending interval <Configured
heartbeatInterval>

4. The Charging Station responds
with SetVariablesResponse

3. OCTT sends
SetVariablesRequest with: -
variable.name = "OfflineThreshold" -
component.name =
"OCPPCommCtrl" - attributeValue =
"300" - attributeType is omitted

6. The Charging Station responds
with GetVariablesResponse

5. OCTT sends
GetVariablesRequest with: -
variable.name = "OfflineThreshold" -
component.name = "OCPPCommCtrl"
- attributeType is omitted

8. Charging Station responds with:
GetBaseReportResponse

7. OCTT sends
GetBaseReportRequest with: -
requestId = <Generated requestId> -
reportBase = FullInventory

9. Charging Station responds with:
NotifyReportRequest

10. OCTT sends
NotifyReportResponse

12. The Charging Station responds
with a RequestStartTransaction-
Response

11. The OCTT sends a
RequestStartTransactionRequest

14. The Charging Station responds
with a TriggerMessageResponse

13. The OCTT sends a
TriggerMessageRequest with
requestedMessage BootNotification

15. The Charging Station sends a
BootNotificationRequest

16. The OCTT responds with a
BootNotificationResponse with
status Accepted interval <Configured
heartbeatInterval>

17. The Charging Station notifies the
CSMS about the current state of all
connectors.

18. The OCTT responds accordingly.

When the charging station is met with a status of pending from the OCTT (OCPP Compliance
Testing Tool), a series of steps has to happen. In this test, the "OfflineThreshold" is changed/set
to 300, meaning that the charging station shall send a new BootNotificationRequest in 300s if it is
still offline at that time. Hereafter, the same variable is requested from the CS by the OCTT, to

22

check that it has been successfully changed. The OCTT then requests a full inventory base report.
The idea here is, to showcase that any variable can be set before the BootNotificationRequest is
accepted, and controlled by the CSMS operator.

When the BootNotificationRequest has not yet been accepted, no transactions are to be allowed,
which is then tested. When it has been rejected, the OCTT shall trigger a new BootNotificationRe-
quest from the CS, which is to be accepted. At last, after the status of the BootNotificationRequest
has been accepted, the availability of all connectors is to be reported to the CSMS. The expected
results of this test case are defined in table 7.

23

Table 7: Tool validations for Cold Boot Charging Station - Pending

Test case name Cold Boot Charging Station - Pending
Tool validations * Step 4:

Message: SetVariablesResponse
- setVariableResult[0].attributeStatus Accepted
* Step 6:
Message: GetVariablesResponse
- getVariableResult[0].attributeStatus Accepted
* Step 8:
Message: GetBaseReportResponse
- status Accepted
* Step 12:
Message: RequestStartTransactionResponse
- status Rejected
* Step 14:
Message: TriggerMessageResponse
- status Accepted or NotImplemented
* Step 15:
Message: BootNotificationRequest
- reason Triggered (If the status from the response from step 14 contained
Accepted)
* Step 17:
Message: StatusNotificationRequest
- connectorStatus Available
Message: NotifyEventRequest
- eventData[0].trigger Delta
- eventData[0].actualValue "Available"
- eventData[0].component.name "Connector"
- eventData[0].variable.name "AvailabilityState"
Post scenario validations:
- A message to report the state of a connector has been received for all
connectors.

3.3.3 Responsiveness

Important for the many features OCPP introduces is the responsiveness of the system. To test the
responsiveness, the round-trip time it takes for a CALL is measured, as the CALL is sent from the
CS, and the response from the CSMS is received.

The responsiveness is as mentioned important to many features, especially for the charging stations

24

to be able to provide ancillary services, such as frequency containment reserve (FCR). The FCR is
a critical grid ancillary service, necessitating rapid activation to counterbalance sudden frequency
deviations and ensure grid stability, and is necessary to provide certain effective smart charging
capabilities, through OCPP, which is shown to be possible through clusters of charging stations[22]
[10].

3.3.4 Heartbeat & Multiple Connections

In addition, a test of the Heartbeat function while two different charging stations are connected,
is also carried out. This is a simple but important function, to ensure that the link between the
CS and the CSMS keeps intact. It sends a Heartbeat message at a predetermined interval, con-
firming its operational status to the CSMS. The CSMS must acknowledge each Heartbeat with a
corresponding response. This test is crucial for maintaining an effective communication channel
and ensuring the CS’s availability is accurately reflected in the CSMS.

The WebSocket created with AWS API Gateway operates on a server-less architecture 3.2.2, and
will automatically close inactive connections after a 10-minute timeout period. To maintain the
connection, the Heartbeat function is configured to send a HeartbeatRequest whenever there
have been nine minutes of inactivity on the communication link. This ensures continuous connec-
tivity by preventing timeouts, as the connection will only be considered inactive if no messages
have been exchanged for a full length of 10 minutes. Doing this while having multiple connections
to the CSMS, proves that the CSMS and the CS can keep connections alive and that the system is
scalable and ready to handle many connections simultaneously.

25

4 Implementation

This chapter describes the practical steps undertaken to realize the communication framework
between the Charging Station Management System (CSMS) and the Charging Station (CS). Em-
phasis is placed on the initial setup required to operationalize the development environment and
the subsequent establishment of a secure, serverless WebSocket connection. This implementation
unfolds through the configuration of the NRF-9160 development kit board and the leveraging of
AWS services for creating a responsive WebSocket server, detailing the challenges and solutions
encountered in the process.

4.1 Basics/Setup

To start the implementation, all necessary programs and boards must be set up correctly and work-
ing. As mentioned, the board in the ACDC is the NRF-9160 board, and all implementation has
been done on the development kit version of this, NRF-9160DK.

To work with this board, and the correct packages installed in all of the live ACDCs, the nRF
connect is installed in the Visual Studio Code IDE. Furthermore, the nRF Connect SDK v2.3.0[23]
has to be installed locally on the computer, to get the Zephyr RTOS environment installed.

Once the computer is set up properly, the next thing is to get the board up and running with the
initial working program of the ACDC project (September 2023). The board needs to have a SIM
card, for it to go online. Furthermore, the internal modem number/station address of the board
needs to match a number located in the database, for it to work and boot properly. When the board
runs the existing code and turns on properly, the implementation can now begin on the CS, ACDC.

4.2 The WebSocket Server - CSMS

To establish a connection with a WebSocket server, the server must first be created. Given that
the existing connections and database of the ACDC project already utilize AWS services, AWS
was also chosen for creating the WebSocket server. AWS API Gateway facilitates the creation of a
’server-less’, as described in 3.2.2, action-based WebSocket server. In this context, ’action-based’
implies that incoming calls are managed through Lambda functions. Upon creation of the Web-
Socket server, standard routes, $connect, $disconnect, and $default, are configured alongside
the server. These routes determine which Lambda functions are invoked, enabling direct interac-
tions with the DynamoDB database. The $connect and $disconnect routes are automatically
triggered when a new client (CS) connects to or disconnects from the WebSocket (CSMS), re-
spectively, allowing for the execution of predefined actions. Additionally, a custom route named
$ocpp_request is established to route all OCPP messages to a designated handler, facilitating the
processing of OCPP-specific communications. [24]. In figure 4 an overview of all the interactions

26

can be seen.

Figure 4: WebSocket API, overview of how it works [25]

When the WebSocket has been created, a URL connected to the CSMS is created. The URL format
from AWS is typically as the following:

wss://API_ID.execute-api.REGION.amazonaws.com/PRODUCTION

This URL is important to remember and save (and can always be found again on AWS API Gate-
way), as this is the URL needed to connect to the CSMS. It will be used for all clients (CS)) trying
to connect to the CSMS, and it also needs to be used directly in all of the Lambda handler functions.

4.2.1 $connect

In the connect Lambda function 7.1, new connections are handled. Whenever this is invoked, a
new entry to the database holding live connections will be created. This holds the station address
from the connected client, along with the "ConnectionID" given to that specific connection between
the CS and the CSMS.

4.2.2 $disconnect

Opposite to the $connect function, the $disconnect function 7.1 makes sure to remove the closed
connection from the same database, making sure that it is only live connections held by that
database. This means, that it is possible to have an overlook of all existing connections to the
WebSocket, and which specific ACDC is connected.

Furthermore, some cleanup is also handled on the disconnect route. As all OCPP CALLS have
specific messageIDs, and the CALLRESULT needs to hold the same messageID, a database is

27

created where these are stored along with their given action. As this database quickly can become
large, all messageIDs older than 48 hours are deleted for now.

4.2.3 $ocpp_request

For all incoming OCPP messages, the $ocpp_request route is used 7.1. This means, all OCPP
functions on the server side, CSMS, are placed and handled in this route. Depending on the re-
ceived message, whether it be a CALL or a CALLRESULT, different functions are used. If it is a
CALL coming from the ACDC, the CSMS handles the call, saves given values in the database, and
creates a CALLRESULT to send back to the CS.

If a CALL is made from the CSMS, the messageID is stored in a database along with the accompa-
nied action. This is done to be able to act accordingly, when the CALLRESULT is received from
the ACDC, based solely on the messageID.

All of the code contained within these lambda functions can be found in the appendix 7.1.

4.3 The client - EVSE

The first step to take is to connect the board to the secure WebSocket server. This is done using
Zephyrs WebSocket and BSD socket libraries. First, a TCP sock is created to the URL given by
the WebSocket server. Thereafter this connection is upgraded to become a WebSocket connection,
with the build in WebSocket library. For now, while developing the TLS peer verification is set
to be optional, to easier be able to successfully create the connection between the ACDC and the
Websocket, eg the CS and the CSMS, and focus on other implementation aspects in this step of
the implementation. This process is done in the function named int initialize_websocket(int
*ws_sock), given in the code presented in the appendix. 7.1

To make sure the new ongoing implementation does not interfere with the working ACDC, a sep-
arate thread is created to run the OCPP communication out of the main loop, making sure the
main functions are not altered because of the OCPP communication.

As the connection is established with the CSMS, messages can now be both sent and received
between the two parties. However, a limitation in Zephyr v3.2.99 affects the WebSocket library’s
message reception, necessitating a workaround. It should be able to block for a short amount of
time, to listen for incoming messages, however this is not the case. In this version, the function is
either entirely blocking, meaning it will stay in the waiting stage until a message is received, or it
can be non-blocking, meaning that if there is a new message inbound since the last check, it will
read the oldest message in the queue. To make sure that all messages are received, a short delay
is introduced to all messages sent by the CSMS, to make sure two messages are never sent almost
simultaneously. To make sure that the messages are received by the CS, the created separate thread

28

will be running many times each second, to check for new incoming messages. In newer versions
of Zephyr, the receiving algorithm has been updated multiple times, meaning that these delays
can probably be altered/discarded in the future, when the version will be upgraded. The Zephyr
version is sometimes upgraded, as Zephyr is a part of the nRF toolbox installed on the ACDCs.

29

5 Results

This chapter presents the results of the test cases. The testing is done on the communication board,
NRF-9160, situated in the ACDC located in the Circle Consult office in Nærum.

5.1 Tested cases

The testing of the described Cold Boot Charging Station - Pending is shown in detail. It
will be conducted on the communication board taken directly from the ACDC placed at Circle
Consult’s office in Nærum. To test the communication board, it is removed from the ACDC, and
a DC voltage is applied to turn it on. To flash the new code to the communication board, a J-link
base classic programmer is used. The setup looks as in figure 5

Figure 5: Test Setup With 2 Connected Devices

30

5.1.1 Cold Boot Charging Station - Pending

Starting the test with a BootNotificationRequest, as the following, yielding in all of the following
messages to be received by the CS:
Initial request:

1 [
2 2,
3 " 81765948 ",
4 " BootNotification ",
5 {
6 " reason ": " LocalReset ",
7 " chargingStation ": {
8 "model": " SingleSocketCharger ",
9 " vendorName ": " VendorX "

10 }
11 }
12]

Subsequent messages received by the CS:

1 [00:00:33.316 ,711] <inf > OCPP: Received message : [3, 81765948 , {" status ": " Pending
", " currentTime ": "2024 -01 -12 T10 :05:27.000 Z", " interval ": 100}]

2

3 [00:00:33.327 ,484] <inf > OCPP: Received message : [2, 7788320 , " SetVariables ", {"
setVariableData ": [{" component ": {"name": " OCPPCommCtrlr "}, " variable ": {"name"
: " OfflineThreshold "}, " attributeValue ": 300}]}]

4

5 [00:00:33.432 ,464] <inf > OCPP: Received message : [2, 4520469 , " GetVariables ", {"
getVariableData ": [{" component ": {"name": " OCPPCommCtrlr "}, " variable ": {"name"
: " OfflineThreshold "}}]}]

6

7 [00:00:33.637 ,939] <inf > OCPP: Received message : [2, 2599330 , " GetBaseReport ", {"
requestId ": 7975112 , " reportBase ": " FullInventory "}]

8

9 [00:00:33.831 ,634] <inf > OCPP: Received message : [2, 7744396 , "
RequestStartTransaction ", {" evseId ": "", " remoteStartId ": 4236631 , " idToken ":
1234 , " chargingProfile ": "", " groupIdToken ": ""}]

10

11 [00:00:34.025 ,878] <inf > OCPP: Received message : [2, 9017299 , " TriggerMessage ", {"
requestedMessage ": " BootNotification ", "evse": null }]

12

13 [00:00:37.658 ,142] <inf > OCPP: Received message : [3, 85377754 , {}]
14

15 [00:00:38.072 ,814] <inf > OCPP: Received message : [3, 70216275 , {" status ": "
Accepted ", " currentTime ": "2024 -01 -12 T10 :05:32.000 Z", " interval ": 100}]

16

31

17 [00:00:38.534 ,942] <inf > OCPP: Received message : [3, 91391541 , ""]
18

19 [00:00:38.707 ,153] <inf > OCPP: Received message : [3, 12669709 , ""]

Listing 1: OCPP Log Messages

At the same time, the messages received by the CSMS are as follows:

1 {" action ": " OCPP_request ", " message ": [2, 81765948, " BootNotification ", {
2 " reason ": " LocalReset ",
3 " chargingStation ": {
4 " vendorName ": " VendorX ",
5 "model": " SingleSocketCharger ",
6 " serialNumber ": "",
7 " firmwareVersion ": ""
8 }
9 }]}

10 {" action ": " OCPP_request ", " message ": [3, " 1543325 ", {
11 " SetVariablesResponse ": [{
12 " component ": " OCPPCommCtrlr ",
13 " variable ": " OfflineThreshold ",
14 " attributeStatus ": " Accepted "
15 }]
16 }]}
17 {" action ": " OCPP_request ", " message ": [3, " 4520469 ", {
18 " getVariableResult ": [{
19 " component ": " OCPPCommCtrlr ",
20 " variable ": " OfflineThreshold ",
21 " attributeStatus ": " Accepted ",
22 " attributeValue ": "300"
23 }]
24 }]}
25 {" action ": " OCPP_request ",
26 " message ": [
27 3,
28 " 7975112 ",
29 {
30 " requestId ": 7975112,
31 " status ": " Accepted "
32 }
33]}
34 {" action ": " OCPP_request ", " message ": [2, 85377754, " NotifyReport ", {
35 " requestId ": 2599330,
36 "tbc": false,
37 "seqNo": 0,
38 " reportData ": [{

32

39 " component ": "EVSE",
40 " variable ": " power_ref_amp ",
41 " variableAttribute ": "0"
42 }, {
43 " component ": "EVSE",
44 " variable ": " group_fuse ",
45 " variableAttribute ": "0"
46 }, {
47 " component ": "EVSE",
48 " variable ": " power_data ",
49 " variableAttribute ": "0"
50 }, {
51 " component ": "EVSE",
52 " variable ": " trafo_rating ",
53 " variableAttribute ": "0"
54 }, {
55 " component ": "EVSE",
56 " variable ": " distributed_amp ",
57 " variableAttribute ": "0"
58 }, {
59 " component ": "EVSE",
60 " variable ": " trafo_pi_available ",
61 " variableAttribute ": "0"
62 }, {
63 " component ": " OCPPCommCtrlr ",
64 " variable ": " OfflineThreshold ",
65 " variableAttribute ": "300"
66 }]
67 }]}
68 { " action ": " OCPP_request ",
69 " message ": [
70 3,
71 " 7744396 ",
72 {
73 " status ": " Rejected "
74 }
75]}
76 {" action ": " OCPP_request ", " message ": [2, 70216275, " BootNotification ", {
77 " reason ": " Triggered ",
78 " chargingStation ": {
79 " vendorName ": " VendorX ",
80 "model": " SingleSocketCharger ",
81 " serialNumber ": " SerialNumber_trigger ",
82 " firmwareVersion ": " FirmwareVersion_trigger "
83 }

33

84 }]}
85 {" action ": " OCPP_request ", " message ": [2, 91391541, " StatusNotification ",

{
86 " timestamp ": "1970 -01 -01 T00 :00:00 Z",
87 " connectorStatus ": " Available ",
88 " connectorId ": 1,
89 " evseId ": ""
90 }]}
91 {" action ": " OCPP_request ", " message ": [2, 12669709, " StatusNotification ",

{
92 " timestamp ": "1970 -01 -01 T00 :00:00 Z",
93 " connectorStatus ": " Available ",
94 " connectorId ": 2,
95 " evseId ": ""
96 }]}

Comparing these results with the expected results from 7, it can be seen that the desired re-
sponses are achieved. The setVariableResult[0].attributeStatus Accepted, is seen in line
14. The getVariableResult[0].attributeStatus Accepted, can be seen in line 21, with
the associated value of 300, which has just been set by the SetVariablesRequest, seen in line 3
of the messages received by the CS. This continues, and most importantly it is seen that the
RequestStartTransactionResponse is rejected and that the status of the connectors is received
after the second BootNotificationRequest has been received and accepted with the reason being
"Triggered".

This test showcases the successful implementation of the CSMS, the communication created between
the CS and the CSMS, and the ability for the CSMS to read and write variables directly to the
CS. This lays a solid foundation to continue further implementation of the OCPP protocol.

5.2 Responsiveness

To comprehensively assess the responsiveness of the OCPP integrated into the ACDC, a series of
tests aimed at quantifying the latency in the communication loop between the Charging Station
(CS) and the Charging Station Management System (CSMS) is done.

To test this, a Boot Notification Request was dispatched from the CS at an internal uptime marker
of 18,209 milliseconds. The corresponding acknowledgment from the CSMS was registered at 18,876
milliseconds, creating a round-trip time of 667 milliseconds for this specific message exchange. Av-
eraging the results over multiple trials yielded a mean communication delay of approximately 600
milliseconds for this sequence of interactions.

Such a delay is deemed acceptable within the operational parameters of the system, characterized

34

by its promptness. It is anticipated that optimizations in the receiving algorithm could further
diminish this latency. Notably, the system’s responsiveness aligns with the stringent requirements
for engaging as a Frequency Containment Reserve (FCR) within the electrical grid. The system’s
capacity to adhere to these response times makes the OCPP highly usable in supporting and
maintaining grid operability through FCR.

5.3 Heartbeat & multiple connections

To test that the CSMS is capable of handling multiple connections, both the nRF-9160 board
from the ACDC and the nRF-9160DK board are turned on and connected simultaneously. As
shown in figure 6, both of the boards connect successfully, with their unique station address, and
connectionID.

Figure 6: 2 devices connected to the CSMS, shown in the DynamoDB

At the same time, inactivity for nine minutes is introduced to the devices, resulting in the automatic
Heartbeat function to be triggered, and answered by the CSMS. The following response is logged
on the ACDC:

1 [00:09:26.323 ,242] <inf > OCPP: Received message : [3, " 91391541 ", {" currentTime ": "
2024 -01 -12 T09 :06:14.000 Z"}]

Listing 2: OCPP Log Heartbeat response

As it can be seen, a response to the Heartbeat request is received after nine minutes of inactivity,
keeping the connection alive.

35

6 Discussion

In this chapter, we delve into the outcomes and insights derived from the study, focusing on the
primary inquiries and goals outlined in section 1.2. The setup of the WebSocket server, communi-
cation with Charging Stations (CS), and the security of the communication link, will be discussed.
Additionally, the foundational aspects of deploying the Open Charge Point Protocol (OCPP) are
discussed, underscoring its critical role within the scope of this research.

6.1 OCPP v2.0.1

Choosing the wanted version of the Open Charge Point Protocol to implement, is based upon the
time frame of the EV4EU project, and the many extra necessary features this version provides,
especially to implement the state-of-the-art version of the OCPP. It will make the ACDC have the
newest version of OCPP, and make it competitive in an increasing electric vehicle market, compared
to many other charging stations, as OCPP 1.6 is the widest spread implemented version. The only
true negative about version 2.0.1 of OCPP is its much more complex implementation than the
implementation of OCPP 1.6.

6.2 Evaluation of implemented WebSocket server and client code

Reflecting upon the fundamental implementations this research set out to investigate and imple-
ment, an assessment can be done.

• A "server-less" WebSocket server has been implemented through AWS API Gateway. This
server is able to hold multiple connections at the same time and is set up in an environment
with the ability to be vastly scaled in the future. The server created is a WebSocket secure
server, wss, making sure all communication over the created connection is encrypted by TLS.
However, if a session is to take more than two hours, the architecture of the server will be
closed, and a new connection needs to be established immediately, with saved information
from before the connection was closed to continue smoothly.

• The connection created between the CSMS and the CS, is created through the mentioned wss
connection. The communication is created on a new separate thread on the ACDC, for it to
not change the functioning of the already existing ACDC code. In the currently used version
of the Zephyr RTOS environment, flaws were found, regarding the receiving capabilities of
messages for the CS, and a workaround had to be implemented. Moreover, the certificates
discussed in section 2.3, part of the security profiles, have not been implemented yet. The
connection created is as of now created with the certificate verification as being optional, and
not used in testing.

• The creation of the fundamental function, BootNotification has been implemented, with a
set of core functions also implemented for it to work. This function along with some other

36

basic functions has been tested, and shown to deliver expected results, within reasonable
response times.

Overall, the fundamental steps have been created, as the CSMS has been created as a WebSocket
Secure Server, a secure connection is established between the CS and the CSMS, and some core
OCPP functionalities have been implemented.

However, some aspects of the implementation can be wished differently, as the need for re-establishing
the WebSocket connection after two hours, is not optimal. This is a known "down" side of using the
server-less architecture provided by AWS API Gateway, but is chosen as the many upsides of the
developer not having to manage and operate the WebSocket server directly, and the automatic scal-
ability involved in using this service outweighs the negatives. Moreover, the need for a workaround
in the communication on the receiving end of the CS is not ideal, however, this can be fixed in the
future when the Zephyr environment is updated on the ACDCs.

37

7 Conclusion

This thesis has presented and developed the fundamental starting steps when implementing the
Open Charge Point Protocol to the Autonomously Controlled Distributed Charger created by DTU
and Circle Consult within the EV4EU project. The motivation behind the need for this research
amounts to the very important ease of use and interoperability that the Open Charge Point Pro-
tocol (OCPP) brings to the electric vehicle charging infrastructure. By implementing OCPP, this
initiative not only streamlines the interaction between charging stations and management systems
but also creates a standardized ecosystem helpful to the widespread adoption of electric vehicles.
This foundational work sets the stage for future developments, making the ACDC OCPP compliant,
and ultimately contributing to the sustainability and resilience of the global electric vehicle market.

The created CSMS is a secure WebSocket, available to scale greatly using the architecture provided
by AWS API Gateway. By having this fundamental step setup, future implementation of the OCPP
should be streamlined, and the development can focus on the specifications of the OCPP provided
by Open Charge Alliance (OCA).

By utilizing the existing WebSockets library within the already installed Zephyr RTOS, a secure
connection is established to the CSMS from the CS, ready for real-time, bi-directional communica-
tion. Through this connection, the BootNotification function specified by the OCA is implemented.

A working test is carried out using the communication board from an ACDC located in Nærum.
This showcases the working communication between the CS and the CSMS, and values are saved
from the CS to the database, and values on the CS are also directly changed by request from the
CSMS.

The delay that is presented between messages and actions between the CS and the CSMS is also
seen to be fast enough, to make the ACDC have smart charging capabilities in the future, including
the ability to act as Fast Frequency Reserve.

7.1 Future Work

For future work, the first step would be to introduce the TLS authentication certificates, to get as
much security as needed when the protocol is to be tested publicly. The first goal hereafter would
be to become partially OCPP compliant, implementing the core certification profile.

Further work will introduce the most needed certification profiles beyond the core profile, such as the
smart charging, advanced security, or the ISO 15118 Support (Plug & Charge) certification profiles.
With the ultimate goal being the ACDC becoming fully OCPP compliant with all certification
profiles implemented.

38

Acronyms

• OCPP: Open Charge Point Protocol

• EV: Electric Vehicle

• EVSE: Electric Vehicle Supply Equipment

• OCA: Open Charge Alliance

• CS: Charging Station

• CSMS: Charging Station Management System

• OCTT: OCPP Compliance Testing Tool

• FCR: Frequency containment reserve

• ACDC: Autonomously Controlled Distributed Charger

• API: Application Programming Interface

• JSON: JSON JavaScript Object Notation

• TCP: Transmission Control Protocol

• TLS: Transport Layer Security

• WSS: WebSocket Secure

• RES: Renewable Energy Sources

• V2G: Vehicle to Grid

39

Bibliography

[1] Statista, Global share of CO2 emissions from fossil fuel and cement, Accessed: 2023-17-10,
2023.

[2] International Energy Agency, Tracking Clean Energy Progress 2023, Accessed: 2024-02-14,
2023, https://www.iea.org/reports/tracking-clean-energy-progress-2023 (visited
on 12/14/2023).

[3] AMPECO, The Complete Open Charge Point Protocol (OCPP) Guide, Accessed: 2024-02-14,
2024.

[4] Monta, What is Open Charge Point Protocol (OCPP)?, Last updated: 7 October, 2023, 2023.

[5] EVBox, Understanding OCPP: Why Interoperability Matters, https://evbox.com/us-
en/understanding-ocpp, Accessed: 2023-10-14, 2023.

[6] Greenlots, Open vs. Closed Charging Stations: Advantages and Disadvantages, tech. rep.,
Accessed: 2024-10-16, Greenlots, 2018.

[7] B. Kegler, What is OCPP 2.0.1 and Why Does it Matter?, 2023, https://www.switch-
ev.com/blog/what-is-ocpp-2-0-1-and-why-does-it-matter (visited on 02/14/2024).

[8] Monta, Upgrade to OCPP 2.0.1: The key to advancing the EV charging infrastructure, https:
//monta.com/uk/blog/upgrade-to-ocpp-2-0-1/, Last updated: 23 May, 2023, 2023.

[9] ChargePanel, OCPP 1.6 vs OCPP 2.0.1 - Key Differences, Updates and Functionality, Ac-
cessed: 2023-10-11, 2023, https://www.chargepanel.com/ocpp-1-6-vs-ocpp-2-0-1-
key-differencesupdates-and-functionality/.

[10] K. Sevdari, L. Calearo, P. Andersen, M. Marinelli, Renewable and Sustainable Energy Reviews
2022, 167, DOI 10.1016/j.rser.2022.112666.

[11] A. Malkova, S. Striani, J. Zepter, M. Marinelli, L. Calearo in Proceedings of 58th International
Universities Power Engineering Conference (UPEC 2023), 58th International Universities
Power Engineering Conference, UPEC 2023 ; Conference date: 29-08-2023 Through 01-09-
2023, IEEE, United States, 2023.

[12] M. Marinelli, S. Striani, K. Pedersen, K. Sevdari, M. Hach, O. Mikkelsen, M. Rakowski,
ACDC project – Autonomously Controlled Distributed Chargers: Final report, Det Energite-
knologiske Udviklings- og Demonstrationsprogram, 2023.

[13] P. Klapwijk, L. Driessen, EV Related Protocol Study: When to use which protocol? A use
case based approach, tech. rep., ElaadNL, Arnhem, The Netherlands, 2017.

[14] Open Charge Alliance, OCPP 2.0.1: Part 5 - Certification Profiles, Open Charge Alliance,
2023.

[15] Open Charge Alliance, OCPP 2.0.1: Part 2 - Specification, Open Charge Alliance, 2022.

[16] Zephyr Project Documentation, https://docs.zephyrproject.org/latest/index.html,
Accessed: Feb 13, 2024, 2024.

40

https://www.iea.org/reports/tracking-clean-energy-progress-2023
https://evbox.com/us-en/understanding-ocpp
https://evbox.com/us-en/understanding-ocpp
https://www.switch-ev.com/blog/what-is-ocpp-2-0-1-and-why-does-it-matter
https://www.switch-ev.com/blog/what-is-ocpp-2-0-1-and-why-does-it-matter
https://monta.com/uk/blog/upgrade-to-ocpp-2-0-1/
https://monta.com/uk/blog/upgrade-to-ocpp-2-0-1/
https://www.chargepanel.com/ocpp-1-6-vs-ocpp-2-0-1-key-differencesupdates-and-functionality/
https://www.chargepanel.com/ocpp-1-6-vs-ocpp-2-0-1-key-differencesupdates-and-functionality/
https://doi.org/10.1016/j.rser.2022.112666
https://docs.zephyrproject.org/latest/index.html

[17] DataScientest, AWS Lambda Explained: Unveiling the Power of Serverless Functions on Ama-
zon Web Services, Accessed: 2023-10-25, 2023.

[18] Open Charge Alliance, OCPP 2.0.1: Part 1 - Introduction, Open Charge Alliance, 2020.

[19] A. Melnikov, I. Fette, The WebSocket Protocol, RFC 6455, 2011.

[20] Open Charge Alliance, OCPP 2.0.1: Part 4 - JSON over WebSockets implementation guide,
Open Charge Alliance, 2020.

[21] Open Charge Alliance, OCPP 2.0.1: Part 6 - Test Cases, Open Charge Alliance, 2023.

[22] N. Banol Arias, S. Hashemi, P. B. Andersen, C. Traholt, R. Romero in Proceedings of 2018
IEEE International Conference on Industrial Technology, IEEE, 2018, pp. 1814–1819.

[23] Nordic Semiconductor, nRF Connect SDK Release Notes 2.3.0, https://developer.nordicsemi.
com/nRF_Connect_SDK/doc/latest/nrf/releases_and_maturity/releases/release-
notes-2.3.0.html, Accessed: 2023-11-01, 2023.

[24] B. A. B. Dev, AWS API Gateway Websocket Tutorial With Lambda | COMPLETELY
SERVERLESS!, YouTube video, 2021, https://www.youtube.com/watch?v=FIrzkt7kH80
(visited on 10/30/2023).

[25] AWS, Amazon API Gateway quotas and important notes, AWS, 2023, https://docs.aws.
amazon.com/apigateway/latest/developerguide/limits.html.

41

https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/releases_and_maturity/releases/release-notes-2.3.0.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/releases_and_maturity/releases/release-notes-2.3.0.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/releases_and_maturity/releases/release-notes-2.3.0.html
https://www.youtube.com/watch?v=FIrzkt7kH80
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html

Appendix

ACDC code

1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4

5 # include <zephyr / logging /log.h>
6 # include <zephyr /fs/fs.h>
7 # include <date_time .h>
8

9 # include <sys/time.h>
10

11 # include <zephyr /net/ socket .h>
12 # include <zephyr /net/ websocket .h>
13 # include <mbedtls /sha1.h>
14 # include <zephyr /net/ net_ip .h>
15

16 # include <zephyr /net/ tls_credentials .h>
17 # include <zephyr /shell/shell.h>
18 // # include <zephyr /arpa/inet.h>
19

20 # include <cJSON.h>
21

22 # include "modem.h"
23 # include " test_file .h"
24 # include " actionFunctions .h"
25 # include " virtual_aggregator .h"
26 # include " state_machine .h"
27 # include " validation .h"
28 # include "watch.h"
29

30 // Initializing the logging module for OCPP with a custom log level
31 LOG_MODULE_REGISTER (OCPP , CC_LOG_LEVEL);
32

33

34 // Variables to keep track of the time of the last received message and the
current time

35 static int64_t last_received_message = 0;
36 static int64_t current_time_ms = 0;
37 static int8_t flag = 0;
38 static int64_t status_change_time = 0; // Timestamp when the status last changed
39

40

41 // OfflineThreshold : Duration in seconds after which , upon reconnection , a
StatusNotificationRequest should be sent for each connector

42

43 bool is_offline = false;

42

44 struct timeval offline_start_time ;
45

46 // Structure to hold component and variable names
47 typedef struct {
48 const char* componentName ;
49 const char* variableName ;
50 } ComponentVariable ;
51

52 // Structure for OCPP communication controller with required fields as per OCPP
2.0.1

53 typedef struct {
54 char* bootStatus ;
55 char* chargingStationVendorName ;
56 char* chargingStationModel ;
57 char* chargingStationSerialNumber ;
58

59 uint16_t * OfflineThreshold ;
60 uint16_t * bootInterval ;
61 // Additional fields based on OCPP 2.0.1 requirements
62 uint16_t ResetRetries ;
63 char* FileTransferProtocols ; // Could be a comma - separated list of protocols
64 char* NetworkConfigurationPriority ; // Comma - separated list or another format
65 } OCPPCommCtrlr ;
66

67 // Structure for authorization controller
68 typedef struct {
69 const char* AuthorizeRemoteStart ;
70 } AuthCtrlr ;
71

72 // Structure to keep track of recent requests and their corresponding actions
73 typedef struct {
74 int messageId ;
75 char action [50]; // Adjust the size as needed
76 } RequestRecord ;
77

78 // Define the maximum number of recent requests to track locally .
79 # define MAX_REQUESTS 3
80

81 // Define uint16_t variables
82 static uint16_t offlineThresholdValue = 0;
83 static uint16_t bootIntervalValue = 0;
84

85

86 // Declare instances of the defined structures
87 static OCPPCommCtrlr myOCPPCommCtrlr = {
88 . bootStatus = NULL ,
89 . chargingStationVendorName = NULL ,
90 . chargingStationModel = NULL ,
91 . chargingStationSerialNumber = NULL ,

43

92 . OfflineThreshold = & offlineThresholdValue ,
93 . bootInterval = & bootIntervalValue ,
94 . ResetRetries = NULL ,
95 . FileTransferProtocols = NULL ,
96 . NetworkConfigurationPriority = NULL
97 };
98

99 static AuthCtrlr myAuthCtrlr ;
100 static RequestRecord lastRequests [MAX_REQUESTS];
101 static int requestIndex = 0; // Index to keep track of the next request to

overwrite
102

103

104 // Server configurations for WebSocket connection
105 # define SERVER_PORT 443
106 # define SERVER_ADDR4 "wss :// example .execute -api.eu -west -2. amazonaws .com/ production

" // Replace with your IPv4 address
107 # define TMP_BUF_SIZE 1024
108

109

110 // Sample data and buffer sizes for testing
111 # define MAX_RECV_BUF_LEN 2048
112 // static uint8_t recv_buf_ipv4 [MAX_RECV_BUF_LEN];
113 # define EXTRA_BUF_SPACE 30
114 static uint8_t temp_recv_buf_ipv4 [MAX_RECV_BUF_LEN + EXTRA_BUF_SPACE];
115

116

117

118 // Function to initialize WebSocket connection
119 int initialize_websocket (int * ws_sock) {
120 int ret;
121 int32_t timeout = 1000;
122 // const char * ip_address = " example .execute -api.eu -west -2. amazonaws .com ";
123 // const char *port = "443";
124

125 struct addrinfo hints = {
126 . ai_flags = 0,
127 . ai_family = AF_INET ,
128 . ai_socktype = SOCK_STREAM ,
129 . ai_protocol = IPPROTO_TLS_1_2 ,
130 };
131

132 // The resulting address info struct .
133 struct addrinfo * result ;
134 int ip_address = getaddrinfo (" example .execute -api.eu -west -2. amazonaws .com", "

443", &hints , & result);
135

136 // Print the IP address in the result
137 struct sockaddr_in *addr = (struct sockaddr_in *) result -> ai_addr ;

44

138 char ip[INET_ADDRSTRLEN];
139 // Convert IP address to string format
140 inet_ntop (AF_INET , &addr ->sin_addr , ip , sizeof (ip));
141

142 // Create a TCP socket
143 int tcp_sock = socket (AF_INET , SOCK_STREAM , IPPROTO_TLS_1_2);
144

145 if (tcp_sock < 0) {
146 LOG_ERR (" Failed to create TCP socket \n");
147 return -1;
148 }
149

150 struct sockaddr_in server_addr ;
151 memset (& server_addr , 0, sizeof (server_addr));
152 server_addr . sin_family = AF_INET ;
153 server_addr . sin_port = htons (443); // Port for WebSocket connection
154

155 // Set the server ’s IP address (replace this with the actual IP)
156 if (inet_pton (AF_INET , ip , & server_addr . sin_addr) <= 0) {
157 LOG_ERR (" Invalid address or address not supported \n");
158 close(tcp_sock);
159 return -1;
160 }
161

162 // Set up TLS peer verification .
163 enum {
164 NONE = 0,
165 OPTIONAL = 1,
166 REQUIRED = 2,
167 };
168 int tls_verify = OPTIONAL ;
169

170 // Set the socket options for TLS verification .
171 ret = setsockopt (tcp_sock , SOL_TLS , TLS_PEER_VERIFY , &tls_verify , sizeof (

tls_verify));
172

173 // Connect the TCP socket to the server
174 ret = connect (tcp_sock , (struct sockaddr *)& server_addr , sizeof (server_addr));
175 if (ret < 0) {
176 LOG_ERR (" Failed to connect TCP socket \n");
177 close(tcp_sock);
178 freeaddrinfo (result);
179 return ret;
180 }
181 // Read the parameters for the publish message .
182 char* client_id = modem_get_client_id ();
183 // Create the Origin header string with the client_id
184 char origin_header [100]; // Adjust the buffer size as needed
185 snprintf (origin_header , sizeof (origin_header), " Origin : Charger / device : %s\r\n

45

", client_id);
186 const char * extra_headers [] = {
187 origin_header ,
188 NULL
189 };
190

191 struct websocket_request wreq;
192 memset (&wreq , 0, sizeof (wreq));
193

194 wreq.host = " example .execute -api.eu -west -2. amazonaws .com";
195 wreq.url = "/ production /";
196 wreq. optional_headers = extra_headers ;
197 wreq. tmp_buf = temp_recv_buf_ipv4 ;
198 wreq. tmp_buf_len = sizeof (temp_recv_buf_ipv4);
199

200 // Connect to the WebSocket server using the TCP socket
201 // int timeout = 5000; // Timeout in milliseconds
202 * ws_sock = websocket_connect (tcp_sock , &wreq , timeout , NULL);
203 if (* ws_sock < 0) {
204 LOG_ERR (" Failed to connect to WebSocket server , with error: %d\n", *

ws_sock);
205 close(tcp_sock);
206 freeaddrinfo (result);
207 return * ws_sock ;
208 }
209

210 freeaddrinfo (result);
211 return 0; // Success
212 }
213

214 // Function to handle going offline
215 void go_offline () {
216 if (! is_offline) {
217 gettimeofday (& offline_start_time , NULL);
218 is_offline = true;
219 }
220 }
221

222 // Function to handle going online
223 void go_online () {
224 is_offline = false;
225 }
226

227 // Function to get the current time in a formatted string
228 void get_current_time_and_date (char *buffer , size_t buffer_size) {
229 // Get the current uptime in milliseconds
230 int64_t uptime = date_time_now (& uptime);
231

232 // Convert uptime to seconds

46

233 time_t now = uptime / 1000;
234

235 // Convert time_t to tm struct
236 struct tm * tm_now = gmtime (& now);
237

238 // Format the current time and date into the provided buffer
239 snprintf (buffer , buffer_size , "%04d -%02d -%02 dT %02d:%02d:%02 dZ",
240 tm_now -> tm_year + 1900 , tm_now -> tm_mon + 1, tm_now ->tm_mday ,
241 tm_now ->tm_hour , tm_now ->tm_min , tm_now -> tm_sec);
242 }
243

244 // Function to check and handle offline duration
245 void offline_duration (){
246 if (is_offline) {
247 struct timeval now;
248 gettimeofday (&now , NULL);
249 long elapsed_seconds = now. tv_sec - offline_start_time . tv_sec ;
250

251 if (elapsed_seconds > myOCPPCommCtrlr . OfflineThreshold) {
252 // Offline period exceeded the threshold
253 // Queue or send StatusNotification
254 go_online (); // Reset offline status
255 }
256 }
257 }
258

259 // Function to handle receiving WebSocket messages
260 void receive_ws_message (int ws_sock) {
261 uint8_t buf[MAX_RECV_BUF_LEN];
262 size_t buf_len = MAX_RECV_BUF_LEN ;
263 uint32_t message_type ;
264 uint64_t remaining ;
265 int32_t timeout = 0; // Should be in ms , but i think a conversion is happening

somewhere . 0 = non blocking .
266 int result ;
267 int err;
268

269 // Sends a message if no message has been received for 9 minutes .
270 ocpp_heartbeat (ws_sock);
271 // check_boot_status_duration (ws_sock);
272

273 do {
274 result = websocket_recv_msg (ws_sock , buf , buf_len , & message_type , &

remaining , timeout);
275 offline_duration ();
276

277 // LOG_INF (" remaining and buf: %d, %d", remaining , buf);
278 if (result < 0) {
279 if (result == -EAGAIN) {

47

280 // timeout on the websocket_recv_msg function . No message received
.

281 break; // Exit the loop if there ’s a timeout
282 } else if (result == -ENOTCONN) {
283 // No socket connection
284 go_offline ();
285 LOG_ERR ("No websocket connection ");
286

287 if (ws_sock) {
288 websocket_disconnect (ws_sock); // Make sure to close the

existing socket
289 ws_sock = NULL;
290 }
291 // Reconnect to the WebSocket server
292 err = initialize_websocket (& ws_sock);
293 if (ws_sock) {
294 go_online (); // Update state to online if reconnection is

successful
295 LOG_INF (" Reconnected to websocket .");
296 } else {
297 LOG_ERR (" Failed to reconnect to websocket .");
298 // Handle reconnection failure (e.g., retry after a delay)
299 }
300 break; // Exit the loop if the connection is closed
301 } else {
302 // Other error conditions .
303 LOG_ERR ("Error receiving message : %d", result);
304 // Reconnect to the WebSocket server no matter the error , unless

it is nothing to read right now.
305 err = initialize_websocket (& ws_sock);
306 break; // Exit the loop on other errors
307 }
308 } else if (result > 0) {
309 // Message received successfully
310 // Get the timestamp in readable format .
311

312 LOG_INF (" Uptime before : %lld", k_uptime_get ());
313 LOG_INF (" Received message : %.*s", result , buf);
314

315 // Set time of last received websocket message
316 err = date_time_now (& last_received_message);
317 go_online ();
318 if (err) {
319 LOG_ERR (" Failed to get current time: %d", err);
320 }
321

322 // Reset flag
323 flag = 0;
324

48

325 // Parse and process the JSON message
326 cJSON * json_message = cJSON_ParseWithLength ((const char *)buf , (size_t

) result);
327 if (json_message != NULL) {
328 process_json_message (json_message , ws_sock);
329 cJSON_Delete (json_message);
330 LOG_INF (" Uptime after: %lld", k_uptime_get ());
331 } else {
332 const char * error_ptr = cJSON_GetErrorPtr ();
333 if (error_ptr != NULL) {
334 LOG_ERR ("Error before : %s", error_ptr);
335 }
336 }
337 // receive_ws_message (ws_sock); // Call the function again to check

for more messages
338 }
339 } while (result > 0);
340 }
341

342 // Function to handle sending heartbeat messages over WebSocket
343 void ocpp_heartbeat (int ws_sock){
344 // Compare current_time_ms and last_received_message
345 int err;
346

347 // Get the current time
348 err = date_time_now (& current_time_ms);
349 if (err) {
350 // Handle error
351 LOG_ERR (" Failed to get current time: %d", err);
352 } else {
353 // Success on getting current time
354 }
355

356 // Heartbeat hardcoded to send a heartbeat after 9 minutes of no messages
received , as connection closes after 10 minutes of idle time.

357 int64_t time_difference_ms = current_time_ms - last_received_message ;
358 // const int64_t nine_minutes_in_ms = 9 * 60 * 1000; // 9 minutes in

milliseconds
359 const int64_t nine_minutes_in_ms = 1 * 30 * 1000; // 30 seconds milliseconds
360

361 if (last_received_message > 0 && flag ==0 && time_difference_ms >=
nine_minutes_in_ms) {

362 // Do something if last_received_message is at least 9 minutes older
363 LOG_INF ("The last received message is at least 9 minutes older than the

current time.");
364 int messageId = generate_message_id ();
365 // Buffer to hold the formatted message
366 char ws_message [256];
367 snprintf (ws_message , sizeof (ws_message), "[2, \"%d\", \" Heartbeat \", {}]",

49

messageId);
368 send_ws_message (ws_sock , ws_message);
369 addRequest (messageId , " Heartbeat ");
370 flag = 1;
371 }
372 }
373

374

375 // Function to send a formatted message over WebSocket
376 void send_ws_message (int ws_sock , const char* message) {
377 char formattedMessage [2048]; // Buffer for the formatted message .
378 // Format the message into OCPP JSON structure complying with the created

server .
379 snprintf (formattedMessage , sizeof (formattedMessage), "{\" action \": \"

OCPP_request \", \" message \": %s}", message);
380 int ret = websocket_send_msg (ws_sock , (const uint8_t *) formattedMessage , strlen

(formattedMessage), WEBSOCKET_OPCODE_DATA_TEXT , true , true , -1);
381 LOG_INF (" Uptime when sending payload : %lld", k_uptime_get ());
382 if (ret < 0) {
383 // Handle send error
384 LOG_ERR (" Failed to send message over WebSocket ");
385 }
386 }
387

388

389

390 // Function to process received JSON messages
391 void process_json_message (cJSON * json_message , int ws_sock) {
392 // Extract messageType , messageID , action , and payload
393 cJSON * messageTypeItem = cJSON_GetArrayItem (json_message , 0);
394 cJSON * messageIDItem = cJSON_GetArrayItem (json_message , 1);
395 int messageID = messageIDItem -> valueint ;
396

397 // Check if received message is a request or a response
398 if (messageTypeItem -> valueint == 2) {
399 cJSON * actionItem = cJSON_GetArrayItem (json_message , 2);
400 cJSON * payloadItem = cJSON_GetArrayItem (json_message , 3);
401 char messageIDStr [20]; // Assuming a reasonable buffer size
402

403 // Convert the integer to a string
404 sprintf (messageIDStr , "%d", messageID);
405 // Handle the different requests from the server
406 if (strcmp (actionItem -> valuestring , " GetVariables ") == 0) {
407 handleGetVariablesRequest (payloadItem , messageIDStr , ws_sock);
408 }
409 else if (strcmp (actionItem -> valuestring , " SetVariables ") == 0) {
410 handleSetVariablesRequest (payloadItem , messageIDStr , ws_sock);
411 }
412 else if (strcmp (actionItem -> valuestring , " GetBaseReport ") == 0) {

50

413 get_base_report_response (payloadItem , messageIDStr , ws_sock);
414 }
415 else if (strcmp (actionItem -> valuestring , " RequestStartTransaction ") == 0){
416 request_start_transaction_response (payloadItem , messageIDStr , ws_sock)

;
417 }
418 else if (strcmp (actionItem -> valuestring , " TriggerMessage ") == 0){
419 trigger_message_response (payloadItem , messageIDStr , ws_sock);
420 }
421 else {
422 // Handle unknown request
423 LOG_ERR (" Unknown request : %s", actionItem -> valuestring);
424 }
425 } else if (messageTypeItem -> valueint == 3) {
426 // Received a response and act accordingly .
427

428 cJSON * payloadItem = cJSON_GetArrayItem (json_message , 2);
429 // Loop through the lastRequests array to find the matching messageId and

corresponding action
430 for (int i = 0; i < MAX_REQUESTS ; ++i) {
431 if (lastRequests [i]. messageId == messageID) {
432 // Found the matching messageId , now check the action
433 if (strcmp (lastRequests [i]. action , " BootNotification ") == 0) {
434 // Perform action for BootNotification
435 handle_bootnotification_response (payloadItem , ws_sock);
436 }
437 else if (strcmp (lastRequests [i]. action , " Heartbeat ") == 0){
438 // Perform action for Heartbeat . Nothing to do here.
439 }
440 else {
441 // Handle unknown action
442 if (i == MAX_REQUESTS - 1){
443 LOG_ERR (" Unknown action or missing action : %s",

lastRequests [i]. action);
444 }
445 }
446 }
447 }
448 }
449 }
450

451 void handle_bootnotification_response (cJSON *payload , int ws_sock){
452 cJSON * statusItem = cJSON_GetObjectItem (payload , " status ");
453 cJSON * intervalItem = cJSON_GetObjectItem (payload , " interval ");
454 uint16_t interval = intervalItem -> valueint ;
455 if (strcmp (statusItem -> valuestring , " Accepted ") == 0) {
456 LOG_INF (" Uptime when receiving accepted BootNotification Request : %lld",

k_uptime_get ());
457 myOCPPCommCtrlr . bootStatus = " Accepted ";

51

458 status_notification_request (ws_sock , 1, "");
459 status_notification_request (ws_sock , 2, "");
460 } else if (strcmp (statusItem -> valuestring , " Rejected ") == 0) {
461 myOCPPCommCtrlr . bootStatus = " Rejected ";
462 * myOCPPCommCtrlr . bootInterval = interval ;
463 status_change_time = k_uptime_get ();
464 } else if (strcmp (statusItem -> valuestring , " Pending ") == 0) {
465 myOCPPCommCtrlr . bootStatus = " Pending ";
466 * myOCPPCommCtrlr . bootInterval = interval ;
467 status_change_time = k_uptime_get ();
468 } else {
469 LOG_ERR (" Unknown status from Boot notification : %s", statusItem ->

valuestring);
470 }
471 }
472

473 void boot_notification_request (int ws_sock , const char* chargingStationVendor ,
const char* chargingStationModel ,

474 const char* chargingStationSerialNumber , const char
* firmwareVersion , const char* bootReason) {

475 // TODO: CREATE A STRUCT TO HOLD ALL INFORMATION ABOUT THE CHARGING STATION .
476 // Assign default values if NULL is passed .
477 chargingStationVendor = chargingStationVendor ? chargingStationVendor : "";
478 chargingStationModel = chargingStationModel ? chargingStationModel : "";
479 chargingStationSerialNumber = chargingStationSerialNumber ?

chargingStationSerialNumber : "";
480 firmwareVersion = firmwareVersion ? firmwareVersion : "";
481 bootReason = bootReason ;
482

483 cJSON * requestRoot = cJSON_CreateArray ();
484 cJSON_AddItemToArray (requestRoot , cJSON_CreateNumber (2)); // Message Type ID

for Call
485 int messageId = generate_message_id ();
486 cJSON_AddItemToArray (requestRoot , cJSON_CreateNumber (messageId)); // Unique

message ID
487 cJSON_AddItemToArray (requestRoot , cJSON_CreateString (" BootNotification ")); //

Action
488

489 // Creating the payload for the BootNotification request
490 cJSON * requestPayload = cJSON_CreateObject ();
491 cJSON_AddItemToObject (requestPayload , " reason ", cJSON_CreateString (bootReason)

); // Boot reason is a required field
492 cJSON_AddItemToObject (requestPayload , " chargingStation ", cJSON_CreateObject ())

;
493 cJSON * chargingStation = cJSON_GetObjectItem (requestPayload , " chargingStation "

);
494

495 // Model and vendorname are required fields . Serial number and firmware
version are optional .

52

496 cJSON_AddItemToObject (chargingStation , " vendorName ", cJSON_CreateString (
chargingStationVendor));

497 cJSON_AddItemToObject (chargingStation , "model", cJSON_CreateString (
chargingStationModel));

498 cJSON_AddItemToObject (chargingStation , " serialNumber ", cJSON_CreateString (
chargingStationSerialNumber));

499 cJSON_AddItemToObject (chargingStation , " firmwareVersion ", cJSON_CreateString (
firmwareVersion));

500

501 cJSON_AddItemToArray (requestRoot , requestPayload);
502

503 // Convert cJSON object to string (JSON format)
504 char * requestMessage = cJSON_Print (requestRoot);
505

506 // Send the request message over WebSocket
507 send_ws_message (ws_sock , requestMessage);
508

509 // Add the messageId and action to the lastRequests array.
510 addRequest (messageId , " BootNotification ");
511

512 // Free the cJSON object and string
513 free(requestMessage);
514 cJSON_Delete (requestRoot);
515 }
516

517 // Function to check if the bootStatus has been " Rejected " or " Pending " for more
than bootInterval

518 void check_boot_status_duration (int ws_sock) {
519

520 if (myOCPPCommCtrlr . bootStatus != NULL && myOCPPCommCtrlr . bootInterval != NULL
) {

521 int64_t current_time = k_uptime_get (); // Get current uptime in
milliseconds

522 // status_change_time is set when a bootnotification is sent and the
status is " Rejected " or " Pending ".

523

524 // Check if the status has just changed to " Rejected " or " Pending "
525 if ((strcmp (myOCPPCommCtrlr .bootStatus , " Rejected ") == 0 || strcmp (

myOCPPCommCtrlr .bootStatus , " Pending ") == 0)) {
526 // Calculate the elapsed time since the status last changed
527 int64_t elapsed_time = current_time - status_change_time ;
528

529 // Convert bootInterval to milliseconds for comparison
530 int64_t boot_interval_ms = *(myOCPPCommCtrlr . bootInterval) * 1000;
531

532 // Check if elapsed time is greater than the bootInterval
533 if (elapsed_time > boot_interval_ms) {
534 // Reset the status change time
535 status_change_time = k_uptime_get ();

53

536 boot_notification_request (ws_sock , " VendorX ", " SingleSocketCharger
", NULL , NULL , " PowerUp ");

537 }
538 }
539 }
540 }
541

542

543 void handleGetVariablesRequest (cJSON *payload , const char* messageId ,int ws_sock)
{

544 // cJSON * messageId = cJSON_GetArrayItem (payload , 1); // Assuming messageId is
part of the payload

545 cJSON * getVariableData = cJSON_GetObjectItem (payload , " getVariableData ");
546 int size = cJSON_GetArraySize (getVariableData);
547

548

549 cJSON * responseRoot = cJSON_CreateArray ();
550 cJSON_AddItemToArray (responseRoot , cJSON_CreateNumber (3));
551 cJSON_AddItemToArray (responseRoot , cJSON_CreateString (messageId));
552 cJSON * responsePayload = cJSON_CreateObject ();
553 cJSON * getVariableResult = cJSON_AddArrayToObject (responsePayload , "

getVariableResult ");
554

555 for (int i = 0; i < size; i++) {
556 cJSON *item = cJSON_GetArrayItem (getVariableData , i);
557 cJSON * componentName = cJSON_GetObjectItem (item , " component ");
558 cJSON * componentNameStr = cJSON_GetObjectItem (componentName , "name");
559 cJSON * variableName = cJSON_GetObjectItem (item , " variable ");
560 cJSON * variableNameStr = cJSON_GetObjectItem (variableName , "name");
561

562 // Fetch the actual value for each variable
563 char * variableValue = getVariableValue (variableNameStr -> valuestring ,

componentNameStr -> valuestring);
564

565 cJSON * resultItem = cJSON_CreateObject ();
566 cJSON_AddItemToArray (getVariableResult , resultItem);
567 cJSON_AddItemToObject (resultItem , " component ", cJSON_CreateString (

componentNameStr -> valuestring));
568 cJSON_AddItemToObject (resultItem , " variable ", cJSON_CreateString (

variableNameStr -> valuestring));
569 cJSON_AddItemToObject (resultItem , " attributeStatus ", cJSON_CreateString ("

Accepted "));
570 cJSON_AddItemToObject (resultItem , " attributeValue ", cJSON_CreateString (

variableValue));
571 }
572

573 cJSON_AddItemToArray (responseRoot , responsePayload);
574 char * responseMessage = cJSON_Print (responseRoot);
575 send_ws_message (ws_sock , responseMessage); // Send the response over

54

WebSocket
576

577 free(responseMessage);
578 cJSON_Delete (responseRoot);
579 }
580

581

582 void handleSetVariablesRequest (cJSON *payload , const char* messageId , int ws_sock)
{

583 cJSON * setVariableData = cJSON_GetObjectItem (payload , " setVariableData ");
584 int size = cJSON_GetArraySize (setVariableData);
585

586 // Prepare the response array
587 cJSON * responseArray = cJSON_CreateArray ();
588

589 for (int i = 0; i < size; i++) {
590 cJSON *item = cJSON_GetArrayItem (setVariableData , i);
591 cJSON * componentName = cJSON_GetObjectItem (item , " component ");
592 cJSON * componentNameStr = cJSON_GetObjectItem (componentName , "name");
593 cJSON * variableName = cJSON_GetObjectItem (item , " variable ");
594 cJSON * variableNameStr = cJSON_GetObjectItem (variableName , "name");
595 cJSON *value = cJSON_GetObjectItem (item , " attributeValue ");
596

597 // Determine the status of the variable setting
598 char * status = " Rejected "; // or " Rejected " based on your logic
599

600 if (cJSON_IsString (variableNameStr) && (strcmp (variableNameStr ->
valuestring , " OfflineThreshold ") == 0)) {

601

602 * myOCPPCommCtrlr . OfflineThreshold = (value -> valueint);
603 status = " Accepted ";
604 // Additional logic to determine if setting is successful
605 }else if (cJSON_IsString (variableNameStr) && (strcmp (variableNameStr ->

valuestring , " OfflineThreshold ") != 0)){
606 status = " UnknownVariable ";
607 }
608

609 // Construct response for this variable
610 cJSON * responseItem = cJSON_CreateObject ();
611 cJSON_AddItemToObject (responseItem , " component ", cJSON_CreateString (

componentNameStr -> valuestring));
612 cJSON_AddItemToObject (responseItem , " variable ", cJSON_CreateString (

variableNameStr -> valuestring));
613 cJSON_AddItemToObject (responseItem , " attributeStatus ", cJSON_CreateString (

status));
614 cJSON_AddItemToArray (responseArray , responseItem);
615 }
616

617 // Construct the complete response

55

618 cJSON * completeResponse = cJSON_CreateArray ();
619 cJSON_AddItemToArray (completeResponse , cJSON_CreateNumber (3)); // Message Type

ID for CALLRESULT
620 cJSON_AddItemToArray (completeResponse , cJSON_CreateString (messageId));
621 cJSON_AddItemToArray (completeResponse , cJSON_CreateObject ());
622 cJSON * lastItem = cJSON_GetArrayItem (completeResponse , 2);
623 cJSON_AddItemToObject (lastItem , " SetVariablesResponse ", responseArray);
624

625 // Convert to string and send
626 char * responseString = cJSON_Print (completeResponse);
627 send_ws_message (ws_sock , responseString);
628

629 // Free memory
630 free(responseString);
631 cJSON_Delete (completeResponse);
632 }
633

634

635 // Function to create and send GetBaseReportResponse based on request payload
636 void get_base_report_response (cJSON * requestPayload ,const char* messageId , int

ws_sock) {
637 // Extract requestId and reportBase from the request payload
638

639 cJSON * requestIdItem = cJSON_GetObjectItem (requestPayload , " requestId ");
640 cJSON * reportBaseItem = cJSON_GetObjectItem (requestPayload , " reportBase ");
641

642 int requestId = requestIdItem ? requestIdItem -> valueint : 0;
643 const char * reportBase = reportBaseItem ? reportBaseItem -> valuestring : "";
644

645 // Determine the status based on reportBase
646 char * status ;
647 if (strcmp (reportBase , " FullInventory ") == 0 || strcmp (reportBase , "

SummaryInventory ") == 0 || strcmp (reportBase , " ConfigurationInventory ") == 0) {
648 status = " Accepted ";
649 } else {
650 status = " NotSupported "; // If the reportBase is not supported or

recognized
651 }
652

653 // Create the response JSON object
654 cJSON * response = cJSON_CreateObject ();
655 cJSON_AddItemToObject (response , " requestId ", cJSON_CreateNumber (requestId));
656 cJSON_AddItemToObject (response , " status ", cJSON_CreateString (status));
657

658 // Create the complete OCPP response array
659 cJSON * completeResponse = cJSON_CreateArray ();
660 cJSON_AddItemToArray (completeResponse , cJSON_CreateNumber (3)); // Message

Type ID for CALLRESULT
661 cJSON_AddItemToArray (completeResponse , cJSON_CreateString (messageId));

56

662 // cJSON_AddItemToArray (completeResponse , cJSON_CreateNumber (requestId));
663 cJSON_AddItemToArray (completeResponse , response);
664

665 // Convert to string and send via WebSocket
666 char * responseString = cJSON_Print (completeResponse);
667 send_ws_message (ws_sock , responseString);
668

669 // Send NotifyReportRequest if status is Accepted . Otherwise , the request is
ignored .

670 if (strcmp (status , " Accepted ") == 0) {
671 // Send NotifyReportRequest
672 notify_report_request (requestId , reportBase , false , 0, ws_sock);
673 }
674

675 // Free memory
676 free(responseString);
677 cJSON_Delete (completeResponse);
678 }
679

680

681 // Function to create and send NotifyReportRequest
682 void notify_report_request (int requestId , const char* reportBase , bool tbc , int

seqNo , int ws_sock) {
683 cJSON * reportDataArray = cJSON_CreateArray ();
684 // Add report data items to reportDataArray
685 // Each item in the array should be a JSON object representing a piece of

report data
686

687 if (strcmp (reportBase , " FullInventory ") == 0) {
688

689 // Add outlet and avaliability of the outlet to the reportDataArray .
690 const ComponentVariable variables [] = {
691 {"EVSE", " power_ref_amp "},
692 {"EVSE", " group_fuse "},
693 {"EVSE", " power_data "},
694 {"EVSE", " trafo_rating "},
695 {"EVSE", " distributed_amp "},
696 {"EVSE", " trafo_pi_available "},
697 {" OCPPCommCtrlr ", " OfflineThreshold "}
698 // Add more component - variable pairs as needed
699 };
700 int numVariables = sizeof (variables) / sizeof (variables [0]);
701

702 for (int i = 0; i < numVariables ; ++i) {
703 cJSON * dataItem = cJSON_CreateObject ();
704 const char* variableValue = getVariableValue (variables [i]. variableName

, variables [i]. componentName);
705 cJSON_AddItemToObject (dataItem , " component ", cJSON_CreateString (

variables [i]. componentName));

57

706 cJSON_AddItemToObject (dataItem , " variable ", cJSON_CreateString (
variables [i]. variableName));

707 cJSON_AddItemToObject (dataItem , " variableAttribute ",
cJSON_CreateString (variableValue));

708 cJSON_AddItemToArray (reportDataArray , dataItem);
709 }
710 } else if (strcmp (reportBase , " SummaryInventory ") == 0) {
711 cJSON * dataItem = cJSON_CreateObject ();
712 cJSON_AddItemToObject (dataItem , " component ", cJSON_CreateString ("

ExampleComponent "));
713 cJSON_AddItemToObject (dataItem , " variable ", cJSON_CreateString ("

ExampleVariable "));
714 cJSON_AddItemToObject (dataItem , " variableAttribute ", cJSON_CreateString ("

ExampleValue "));
715 cJSON_AddItemToArray (reportDataArray , dataItem);
716 } else if (strcmp (reportBase , " ConfigurationInventory ") == 0) {
717 cJSON * dataItem = cJSON_CreateObject ();
718 cJSON_AddItemToObject (dataItem , " component ", cJSON_CreateString ("

ExampleComponent "));
719 cJSON_AddItemToObject (dataItem , " variable ", cJSON_CreateString ("

ExampleVariable "));
720 cJSON_AddItemToObject (dataItem , " variableAttribute ", cJSON_CreateString ("

ExampleValue "));
721 cJSON_AddItemToArray (reportDataArray , dataItem);
722 }
723

724 // Create NotifyReportRequest JSON
725 cJSON * notifyReportRequest = cJSON_CreateObject ();
726 cJSON_AddItemToObject (notifyReportRequest , " requestId ", cJSON_CreateNumber (

requestId));
727 cJSON_AddItemToObject (notifyReportRequest , "tbc", cJSON_CreateBool (tbc));
728 cJSON_AddItemToObject (notifyReportRequest , "seqNo", cJSON_CreateNumber (seqNo))

;
729 cJSON_AddItemToObject (notifyReportRequest , " reportData ", reportDataArray);
730

731 // Create the complete OCPP message array
732 cJSON * completeMessage = cJSON_CreateArray ();
733 cJSON_AddItemToArray (completeMessage , cJSON_CreateNumber (2)); // Message Type

ID for CALL
734 int messageId = generate_message_id ();
735 cJSON_AddItemToArray (completeMessage , cJSON_CreateNumber (messageId)); //

Unique message ID
736 cJSON_AddItemToArray (completeMessage , cJSON_CreateString (" NotifyReport ")); //

Action
737 cJSON_AddItemToArray (completeMessage , notifyReportRequest);
738

739 // Convert to string and send via WebSocket
740 char * messageString = cJSON_Print (completeMessage);
741 send_ws_message (ws_sock , messageString);

58

742

743 // Add the message ID and action to the lastRequests array.
744 addRequest (messageId , " NotifyReport ");
745

746 // Free memory
747 free(messageString);
748 cJSON_Delete (completeMessage);
749 }
750

751 void request_start_transaction_response (cJSON * requestPayload , const char*
messageId , int ws_sock){

752

753 // cJSON * evseId = cJSON_GetObjectItem (requestPayload , " evseId "); // Unused
for now , but can be retreived if needed .

754 // cJSON * remoteStartId = cJSON_GetObjectItem (requestPayload , " remoteStartId ")
; // Unused for now , but can be retreived if needed .

755 // cJSON * idToken = cJSON_GetObjectItem (requestPayload , " idToken "); // Unused
for now , but can be retreived if needed .

756 // cJSON * chargingProfile = cJSON_GetObjectItem (requestPayload , "
chargingProfile "); // Unused for now , but can be retreived if needed .

757 // cJSON * groupIdToken = cJSON_GetObjectItem (requestPayload , " groupIdToken ");
// Unused for now , but can be retreived if needed .

758

759

760 cJSON * responseRoot = cJSON_CreateArray ();
761 cJSON_AddItemToArray (responseRoot , cJSON_CreateNumber (3)); // Message Type ID

for CallResult
762 cJSON_AddItemToArray (responseRoot , cJSON_CreateString (messageId));
763

764 // Creating the payload for the response
765 cJSON * responsePayload = cJSON_CreateObject ();
766

767 // Basic response , used for testing .
768 if (strcmp (myOCPPCommCtrlr .bootStatus , " Accepted ")==0){
769 cJSON_AddItemToObject (responsePayload , " status ", cJSON_CreateString ("

Accepted "));
770 } else{
771 cJSON_AddItemToObject (responsePayload , " status ", cJSON_CreateString ("

Rejected "));
772 }
773

774

775 cJSON_AddItemToArray (responseRoot , responsePayload);
776

777 // Convert cJSON object to string (JSON format)
778 char * responseMessage = cJSON_Print (responseRoot);
779

780 // Send the response message over WebSocket
781 send_ws_message (ws_sock , responseMessage);

59

782

783 // Free the cJSON object and string
784 free(responseMessage);
785 cJSON_Delete (responseRoot);
786 }
787

788

789 void trigger_message_response (const char* Payload , const char* messageId , int
ws_sock) {

790

791 cJSON * triggerAction = cJSON_GetObjectItem (Payload , " requestedMessage ");
792

793

794 // Check which message is requested and prepare the response
795 cJSON * responseRoot = cJSON_CreateArray ();
796 cJSON_AddItemToArray (responseRoot , cJSON_CreateNumber (3)); // Message Type ID

for CallResult
797 cJSON_AddItemToArray (responseRoot , cJSON_CreateString (messageId));
798

799 cJSON * responsePayload = cJSON_CreateObject ();
800

801 if (strcmp (triggerAction -> valuestring , " BootNotification ") == 0) {
802 cJSON_AddItemToObject (responsePayload , " status ", cJSON_CreateString ("

Accepted "));
803 cJSON_AddItemToArray (responseRoot , responsePayload);
804 // Convert cJSON object to string (JSON format)
805 char * responseMessage = cJSON_Print (responseRoot);
806

807 // Send the response message over WebSocket
808 send_ws_message (ws_sock , responseMessage);
809

810 boot_notification_request (ws_sock , " VendorX ", " SingleSocketCharger ", "
SerialNumber_trigger ", " FirmwareVersion_trigger ", " Triggered ");

811 free(responseMessage);
812 } else {
813 // Handle other message types or unknown message
814 cJSON_AddItemToObject (responsePayload , " status ", cJSON_CreateString ("

Rejected "));
815 cJSON_AddItemToArray (responseRoot , responsePayload);
816 // Convert cJSON object to string (JSON format)
817 char * responseMessage = cJSON_Print (responseRoot);
818

819 // Send the response message over WebSocket
820 send_ws_message (ws_sock , responseMessage);
821 free(responseMessage);
822 }
823

824 // Free the cJSON object and string
825 cJSON_Delete (responseRoot);

60

826 }
827

828 void status_notification_request (int ws_sock , int connectorId , const char* evseId)
{

829 cJSON * requestRoot = cJSON_CreateArray ();
830 cJSON_AddItemToArray (requestRoot , cJSON_CreateNumber (2)); // Message Type ID

for Call
831 int messageId = generate_message_id ();
832 cJSON_AddItemToArray (requestRoot , cJSON_CreateNumber (messageId)); // Unique

message ID
833 cJSON_AddItemToArray (requestRoot , cJSON_CreateString (" StatusNotification "));

// Action
834

835 // Create the current time and date string
836 char time_buffer [30];
837 char* connector_status ;
838 // Getting the entire struct
839

840

841

842 if (connectorId == 1){
843 // charge_point_t * charge_point_1_ptr = get_charge_point_1 ();
844 // state_t outlet1 = charge_point_1_ptr ->state;
845 state_t outlet1 = get_state_1 ();
846 if (outlet1 == STATE_IDLE){
847 connector_status = " Available ";
848 } else if (outlet1 == STATE_CONNECTED){
849 connector_status = " Occupied ";
850 } else if (outlet1 == STATE_CHARGING){
851 connector_status = " Occupied ";
852 } else {
853 connector_status = " Faulted ";
854 }
855 }else if (connectorId == 2){
856 // charge_point_t * charge_point_2_ptr = get_charge_point_2 ();
857 state_t outlet2 = get_state_2 ();
858 if (outlet2 == STATE_IDLE){
859 connector_status = " Available ";
860 } else if (outlet2 == STATE_CONNECTED){
861 connector_status = " Occupied ";
862 } else if (outlet2 == STATE_CHARGING){
863 connector_status = " Occupied ";
864 } else {
865 connector_status = " Faulted ";
866 }
867 }else {
868 connector_status = " Faulted ";
869 }
870

61

871 get_current_time_and_date (time_buffer , sizeof (time_buffer));
872

873 // Creating the payload for the StatusNotification request
874 cJSON * requestPayload = cJSON_CreateObject ();
875 cJSON_AddItemToObject (requestPayload , " timestamp ", cJSON_CreateString (

time_buffer));
876

877 cJSON_AddItemToObject (requestPayload , " connectorStatus ", cJSON_CreateString (
connector_status)); // Change to get the status from the EVSE.

878 cJSON_AddItemToObject (requestPayload , " connectorId ", cJSON_CreateNumber (
connectorId));

879 cJSON_AddItemToObject (requestPayload , " evseId ", cJSON_CreateString (evseId));
880

881 cJSON_AddItemToArray (requestRoot , requestPayload);
882

883 // Convert cJSON object to string (JSON format)
884 char * requestMessage = cJSON_Print (requestRoot);
885

886 // Send the request message over WebSocket
887 send_ws_message (ws_sock , requestMessage);
888

889 // Free the cJSON object and string
890 free(requestMessage);
891 cJSON_Delete (requestRoot);
892 }
893

894

895 char* getVariableValue (const char* variableName , const char* componentName) {
896 static char value [20]; // Buffer to hold the string representation
897 // va_charge_point_t * va_charge_point_1_ptr = get_va_charge_point (); // Dont

know how to get this pointer correctly with information .
898

899 if (strcmp (componentName , "EVSE")==0){
900 if (strcmp (variableName , " power_ref_amp ") == 0) {
901 snprintf (value , sizeof (value), "%u", get_power_ref_amp_value ());
902 } else if (strcmp (variableName , " group_fuse ") == 0) {
903 snprintf (value , sizeof (value), "%u", get_group_fuse ());
904 } else if (strcmp (variableName , " power_data ") == 0) {
905 power_data_t * power_data = get_power_data ();
906 snprintf (value , sizeof (value), "%u", power_data -> data_source [3]);
907 } else if (strcmp (variableName , " trafo_rating ") == 0) {
908 snprintf (value , sizeof (value), "%u", get_trafo_rating ());
909 } else if (strcmp (variableName , " distributed_amp ") == 0) {
910 snprintf (value , sizeof (value), "%u", get_distributed_amp ());
911 } else if (strcmp (variableName , " trafo_pi_available ") == 0) {
912 snprintf (value , sizeof (value), "%u", get_trafo_pi_available ());
913 } else {
914 strncpy (value , " Unknown Variable ", sizeof (value));
915 }

62

916 } else if (strcmp (componentName , " OCPPCommCtrlr ") == 0) {
917 if (strcmp (variableName , " OfflineThreshold ") == 0) {
918 snprintf (value , sizeof (value), "%hu", * myOCPPCommCtrlr .

OfflineThreshold);
919 // strncpy (value , myOCPPCommCtrlr . OfflineThreshold , sizeof (value) - 1)

;
920 // value[sizeof (value) - 1] = ’\0’; // Ensure null - termination
921 } else {
922 strncpy (value , " Unknown Variable ", sizeof (value));
923 }
924 } else {
925 strncpy (value , " Unknown Variable ", sizeof (value));
926 }
927 return value;
928 }
929

930

931 // Function to add a messageID and corresponding action to the lastRequests array.
Holds 3 at the time and overwrites the oldest .

932 void addRequest (int messageId , const char* action) {
933 lastRequests [requestIndex]. messageId = messageId ;
934 strncpy (lastRequests [requestIndex]. action , action , sizeof (lastRequests [

requestIndex]. action) - 1);
935 lastRequests [requestIndex]. action [sizeof (lastRequests [requestIndex]. action) -

1] = ’\0’; // Ensure null - termination
936

937 requestIndex = (requestIndex + 1) % MAX_REQUESTS ; // Update index in a
circular manner

938 }
939

940 // Function to generate a random message ID between 1 and 99999999
941 int generate_message_id () {
942 return rand () % 99999999 + 1;
943 }
944

945 void perform_test (int ws_sock , char* test_case){
946 // Test case TC_B_01_CS
947 if (strcmp (test_case , " Boot_accepted ") == 0){
948 boot_notification_request (ws_sock , " VendorX ", " SingleSocketCharger ",

NULL , NULL , " PowerUp ");
949 }
950 // Test case TC_B_02_CS
951 else if (strcmp (test_case , " Boot_pending ") == 0){
952 boot_notification_request (ws_sock , " VendorX ", " SingleSocketCharger ",

NULL , NULL , " LocalReset ");
953 }
954 // Test case TC_B_03_CS
955 else if (strcmp (test_case , " Boot_rejected ") == 0){
956 boot_notification_request (ws_sock , " VendorX ", " SingleSocketCharger ",

63

NULL , NULL , " Unknown ");
957 }
958 }
959

960 // Function to create a thread for handling the incoming websocket communication .
961 void websocket_thread (void *data) {
962 int ws_sock = *(int *) data; // Cast and dereference the passed -in socket
963

964 const char* ocppHearbeat = "[2, \"19223201\" ,\" Heartbeat \", {}]";
965 // send_ws_message (ws_sock , ocppHearbeat);
966

967 k_sleep (K_MSEC (10000));
968

969 // k_sleep (K_MSEC (2000));
970

971 int8_t flag2 = 0;
972

973 perform_test (ws_sock , " Boot_pending ");
974 // perform_test (ws_sock , " Boot_accepted ");
975

976 while (1) {
977 // Call your receive_ws_message function
978

979 // This can be a blocking and non blockin call , depending on timeout value
within websocket_recv_msg ().

980 // If blocking , the heartbeat function will not be called until a message
is received , but receiving messages properly will be ensured .

981 // If non blocking , the heartbeat function will be called every time the
receive_ws_message function is called , but messages might be lost/ queued

982 // untill next incoming messages are received . Maybe call heartbeat in
main thread instead ? Remember this is blocking now , so it cant

983 // send messages over the websocket while waiting for a message to be
received . Timeout within the websocket_recv_msg () function is bugged in this
zephyr version ,

984 // and is fixed in newer versions of zephyr .
985 receive_ws_message (ws_sock);
986

987 // Add any additional logic needed for handling WebSocket communication
988

989 if (k_uptime_get () > 40000 && flag2 == 0){
990 flag2 = 1;
991 // change_state_from_other_file ();
992 // k_sleep (K_MSEC (2000));
993 // perform_test (ws_sock , " Boot_pending ");
994 // websocket_disconnect (ws_sock);
995 }
996

997 k_sleep (K_MSEC (10)); // Sleep for a short duration to yield CPU time
998 }

64

999 }

Listing 3: ACDC code

Custom Validation Code (client side)

Listing 4: connect route

65

WebSocket Server code

$connect code

1 import json
2 import boto3
3 import time
4

5 client = boto3. client (’apigatewaymanagementapi ’,endpoint_url ="https :// example .
execute -api.eu -west -2. amazonaws .com/ production ")

6

7 # Initialize DynamoDB client
8 dynamodb = boto3. resource (’dynamodb ’)
9 table_connectionId = dynamodb .Table(’OCPPConnectionIDs ’)

10

11

12 def lambda_handler (event , context):
13 print(event)
14 print("****")
15 print(context)
16

17 connectionId = event[" requestContext "][" connectionId "]
18

19 # Extract the Origin header
20 headers = event.get(" headers ", {})
21 origin = headers .get(" Origin ", "")
22

23 # Extract charger / device number from the Origin header
24 charger_device_number = origin .split(": ")[-1] if origin else " Unknown "
25

26 # Log the time of the connection
27 currentTime = time. strftime ("%Y-%m-%dT%H:%M:%S.000Z", time. gmtime ())
28

29 # Check for existing entry with the same charger_device_number
30 response = table_connectionId .scan(
31 FilterExpression =boto3. dynamodb . conditions .Attr(’Connected device ’).eq(

charger_device_number)
32)
33

34 # Delete existing entry if found
35 for item in response .get(’Items ’, []):
36 old_connection_id = item[’connectionId ’]
37 table_connectionId . delete_item (
38 Key ={’connectionId ’: old_connection_id }
39)
40

41

42 # Store connectionId and charger / device number in DynamoDB
43 response = table_connectionId . put_item (

66

44 Item ={
45 ’connectionId ’: connectionId ,
46 ’Connected device ’: charger_device_number ,
47 ’Connection created ’: currentTime
48 }
49)
50

51 return {" statusCode ":200}

Listing 5: connect route

67

$disconnect code

1 import time
2 import boto3
3 from boto3. dynamodb . conditions import Key , Attr
4

5

6 # Initialize DynamoDB client
7 dynamodb = boto3. resource (’dynamodb ’)
8 table_connectionId = dynamodb .Table(’OCPPConnectionIDs ’)
9 message_id_table = dynamodb .Table(’OCPPMessageIDs ’)

10

11 def lambda_handler (event , context):
12 print(event)
13

14 # Extract connectionId from the event
15 connectionId = event[" requestContext "][" connectionId "]
16

17 # Delete the entry with the given connectionId from DynamoDB
18 response = table_connectionId . delete_item (
19 Key ={’connectionId ’: connectionId }
20)
21

22 # Delete messageIDs older than 60 minutes .
23 delete_old_messages ()
24

25 # Optional : Add error handling based on the response
26

27 return {" statusCode ": 200}
28

29

30

31 def delete_old_messages ():
32 # Calculate the time threshold (60 minutes ago)
33 time_threshold = time. strftime ("%Y-%m-%dT%H:%M:%S.000Z", time. gmtime (time.time

() - 3600)) #3600s = 1h = 60m
34

35 # Query for messages older than 60 minutes
36 response = message_id_table .scan(
37 FilterExpression =Attr(’time ’).lt(time_threshold)
38)
39 messages = response .get(’Items ’, [])
40

41 # Delete each old message
42 for message in messages :
43 message_id_table . delete_item (
44 Key ={
45 ’messageId ’: message [’messageId ’]
46 }

68

47)

Listing 6: disconnect route

69

$ocpp_handler code

1 import json
2 import urllib3
3 import boto3
4 import time
5 import os
6 import random
7

8 client = boto3. client (’apigatewaymanagementapi ’,endpoint_url ="https :// example .
execute -api.eu -west -2. amazonaws .com/ production ")

9

10 # Initialize DynamoDB client
11 dynamodb = boto3. resource (’dynamodb ’)
12 table = dynamodb .Table(’Devices ’)
13 message_id_table = dynamodb .Table(’OCPPMessageIDs ’)
14 table_connectionId = dynamodb .Table(’OCPPConnectionIDs ’)
15

16

17 last_send_time = None
18

19 def get_station_address (connectionId):
20 # Query DynamoDB for the item with the specified connectionId
21 response = table_connectionId . get_item (Key ={’connectionId ’: connectionId })
22

23 # Check if the item was found
24 if ’Item ’ in response :
25 # Extract the charger / device number .
26 charger_device_number = response [’Item ’]. get(’Connected device ’, None)
27 return charger_device_number
28 else:
29 # Item not found , handle accordingly
30 return None
31

32

33 # Create a timer mechanism to make sure to never send two messages in a row. (
could introduce a timer in the database to ensure this over each

34 # called lambda handler to the same client)
35 # Call this before posting to client .
36 def ensure_message_delay (delay =0.2):
37 global last_send_time
38 current_time = time.time ()
39

40 if last_send_time is not None:
41 elapsed_time = current_time - last_send_time
42 if elapsed_time < delay:
43 time.sleep(delay - elapsed_time)
44 last_send_time = time.time ()
45

70

46

47 def lambda_handler (event , context):
48 print(event)
49 connectionId = event[" requestContext "][" connectionId "]
50 message_data = json.loads(event["body"])
51 inner_message_data = message_data [" message "]
52 message_id = inner_message_data [1]
53 message_type = inner_message_data [0]
54

55 if message_type == 2: # Request from Client
56 handle_client_request (connectionId , inner_message_data)
57 elif message_type == 3: # Response from Client
58 handle_client_response (connectionId , inner_message_data)
59 # response_message = {" Handled a response type call "}
60 # response = client . post_to_connection (ConnectionId = connectionId , Data=

json.dumps(response_message). encode (’utf -8’))
61 pass
62 elif message_type == 4: # Error from Client
63 response_message = {" Handle an error call"}
64 ensure_message_delay ()
65 response = client . post_to_connection (ConnectionId = connectionId , Data=json.

dumps(response_message). encode (’utf -8’))
66 pass
67 return {" statusCode ": 200}
68

69

70 def handle_client_request (connectionId , message):
71 message_id = message [1]
72 action = message [2]
73 payload = message [3]
74

75 if action == " BootNotification ":
76 # This sends a response message .
77 boot_notification_response (connectionId , payload , message_id)
78

79 elif action == " StatusNotification ":
80 connectorStatus = payload [" connectorStatus "]
81 evseId = payload [" evseId "]
82 connectorId = payload [" connectorId "]
83 # timestamp = payload [" timestamp "] # This is not working properly on the

board at the moment .
84 timestamp = currentTime = time. strftime ("%Y-%m-%dT%H:%M:%S.000Z", time.

gmtime ())
85 # Determine the attribute name based on connectorId
86 status_attr = f" ConnectorStatus { connectorId }"
87 response_message = [3, message_id ,""]
88 station_address_used = get_station_address (connectionId)
89

90 response_dynamodb = table. update_item (

71

91 Key ={’station_address ’: station_address_used },
92 UpdateExpression =f"set { status_attr } = :c, ConnectorChecked = :t",
93 ExpressionAttributeValues ={
94 ’:c’: connectorStatus ,
95 ’:t’: timestamp
96 },
97 ReturnValues =" UPDATED_NEW "
98)
99 ensure_message_delay ()

100 response = client . post_to_connection (ConnectionId = connectionId , Data=json.
dumps(response_message). encode (’utf -8’))

101 # Update database to set the appropriate status of the connectorId (outlet
), and set the status of the charging station to idle.

102 pass
103 elif action == " Heartbeat ":
104 send_get_variables_request (connectionId ,None ," baseReport ") # Used

heartbeat to test the call.
105 currentTime = time. strftime ("%Y-%m-%dT%H:%M:%S.000Z", time. gmtime ())
106 response_message = [3, message_id ,{
107 " currentTime ": currentTime ,
108 }]
109 ensure_message_delay ()
110 response = client . post_to_connection (ConnectionId = connectionId , Data=json.

dumps(response_message). encode (’utf -8’))
111 ensure_message_delay ()
112 pass
113 elif action == " Authorize ":
114 id = payload [" idToken "]
115 type = payload [""]
116 ensure_message_delay ()
117 response = client . post_to_connection (ConnectionId = connectionId , Data=json.

dumps(response_message). encode (’utf -8’))
118 pass
119 elif action == " NotifyReport ":
120 response_message = [3, message_id ,{}]
121 ensure_message_delay ()
122 response = client . post_to_connection (ConnectionId = connectionId , Data=json.

dumps(response_message). encode (’utf -8’))
123

124

125

126

127 # Handle a response from the EVSE
128 def handle_client_response (connectionId , message):
129 messageId = message [1]
130 payload = message [2]
131 action = get_action_from_messageId (messageId)
132

133 # Check what action is associated with the response .

72

134 if action == ’GetVariables ’:
135 handle_get_variables_response (connectionId , payload)
136 elif action == ’SetVariables ’:
137 # insert function to handle logic for the status of the setVariables

request .
138 pass
139 elif action == " RequestStartTransaction ":
140 # Handle the response from the RequestStartTransaction request .
141 pass
142

143

144 def send_get_variables_request (connectionId , componentName , variableName):
145 # Generate a unique messageId (random for now , can be made incrementing)
146 messageId = random . randint (1000000 , 9999999)
147

148 # Store messageId in DynamoDB
149 store_messageId_in_database (messageId , ’GetVariables ’)
150

151 if variableName == " baseReport ":
152 get_variables_request = [2, messageId , " GetVariables ", {
153 " getVariableData ": [
154 {" component ": {"name": "EVSE"}, " variable ": {"name": "

power_ref_amp "}},
155 {" component ": {"name": "EVSE"}, " variable ": {"name": " group_fuse "

}},
156 {" component ": {"name": "EVSE"}, " variable ": {"name": " power_data "

}},
157 {" component ": {"name": "EVSE"}, " variable ": {"name": " trafo_rating

"}},
158 {" component ": {"name": "EVSE"}, " variable ": {"name": "

distributed_amp "}},
159 {" component ": {"name": "EVSE"}, " variable ": {"name": "

trafo_pi_available "}}
160]
161 }]
162 else:
163 get_variables_request = [2, messageId , " GetVariables ", {
164 " getVariableData ": [
165 {" component ": {"name": componentName }, " variable ": {"name":

variableName }},
166]
167 }]
168 ensure_message_delay ()
169 client . post_to_connection (ConnectionId = connectionId , Data=json.dumps(

get_variables_request). encode (’utf -8’))
170

171

172 def boot_notification_response (connectionId , payload , message_id):
173 # Extracting specific values from the inner message_data

73

174 reason = payload [" reason "]
175 charging_station = payload [" chargingStation "]
176 model = charging_station ["model"]
177 vendor_name = charging_station [" vendorName "]
178

179 store_messageId_in_database (message_id ," BootNotification ")
180

181 status = ""
182

183 currentTime = time. strftime ("%Y-%m-%dT%H:%M:%S.000Z", time. gmtime ())
184

185 if reason == " PowerUp ":
186 status = " Accepted "
187 interval = 100 # Interval not needed , as it is accepted . Interval = time to

wait to resend bootnotification .
188 elif reason == " LocalReset ":
189 status = " Pending "
190 interval = 100
191 elif reason == " Triggered ":
192 status = " Accepted "
193 interval = 100
194 ensure_message_delay (0.15)
195 elif reason == " Unknown ":
196 status = " Rejected "
197 interval = 10
198 else:
199 status = " Rejected "
200 interval = 100
201

202 station_address_used = get_station_address (connectionId)
203

204 response_dynamodb = table. update_item (
205 Key ={’station_address ’: station_address_used },
206 UpdateExpression ="set Model = :m, VendorName = :v, #S = :s, LastBootTime =

:t",
207 ExpressionAttributeValues ={
208 ’:m’: model ,
209 ’:v’: vendor_name ,
210 ’:s’: status ,
211 ’:t’: currentTime
212 },
213 ExpressionAttributeNames ={
214 ’#S’: ’Status ’ # Substitute ’Status ’ with a placeholder
215 },
216 ReturnValues =" UPDATED_NEW "
217)
218

219 # Form a response message
220 response_message = [3, message_id ,{

74

221 " status ": status ,
222 " currentTime ": currentTime ,
223 " interval ": interval
224 }]
225 ensure_message_delay ()
226 client . post_to_connection (ConnectionId = connectionId , Data=json.dumps(

response_message). encode (’utf -8’))
227

228

229 # Handle pending status (Test TC_B_02_CS)
230 if status == " Pending " and reason == " LocalReset ":
231 # Set to default set OfflineThreshold = 300 right now.
232 # ensure_message_delay ()
233 set_variable_request (connectionId ,None ,None)
234 # ensure_message_delay ()
235 send_get_variables_request (connectionId , " OCPPCommCtrlr ", "

OfflineThreshold ")
236 # ensure_message_delay ()
237 get_base_report_request (connectionId ," FullInventory ")
238 # ensure_message_delay ()
239 request_start_transaction_request (connectionId , idToken =1234)
240 # ensure_message_delay ()
241 send_trigger_message_request (connectionId ," BootNotification ")
242 pass
243

244 def set_variable_request (connectionId , variableName , variableValue):
245 # Generate a unique messageId (random for now , can be made incrementing)
246 messageId = random . randint (1000000 , 9999999)
247

248 # Store messageId in DynamoDB
249 store_messageId_in_database (messageId , ’SetVariables ’)
250

251 # For a start , set the offline threshold for the bootnotification pending test
.

252 set_variables_request = [2, messageId , " SetVariables ", {
253 " setVariableData ": [
254 {" component ": {"name": " OCPPCommCtrlr "}, " variable ": {"name": "

OfflineThreshold "}, " attributeValue ": 300} ,
255]
256 }]
257 ensure_message_delay ()
258 client . post_to_connection (ConnectionId = connectionId , Data=json.dumps(

set_variables_request). encode (’utf -8’))
259

260

261

262 def get_base_report_request (connectionId , reportBase):
263 messageId = random . randint (1000000 , 9999999)
264

75

265 # reportBase = FullInventory , SummaryInventory or ConfigurationInventory .
266 get_base_report_request = [2, messageId , " GetBaseReport ", {
267 " requestId ": messageId ,
268 " reportBase ": reportBase # e.g., " FullInventory ", " SummaryInventory ", etc

.
269 }]
270 ensure_message_delay ()
271 client . post_to_connection (ConnectionId = connectionId , Data=json.dumps(

get_base_report_request). encode (’utf -8’))
272

273

274

275 def request_start_transaction_request (connectionId , idToken , evseId = None ,
chargingProfile = None , groupIdToken = None):

276 # Generate a unique messageId (random for now , can be made incrementing)
277 messageId = random . randint (1000000 , 9999999)
278

279 # remoteStartId number . Probably also save this in the database for later use.
280 remoteStartId = random . randint (1000000 , 9999999)
281

282 # Store messageId in DynamoDB
283 store_messageId_in_database (messageId , ’RequestStartTransaction ’)
284

285 # Create RequestStartTransactionRequest message
286 # For a start , set the offline threshold for the bootnotification pending test

.
287 request_start_transaction_request = [2, messageId , " RequestStartTransaction ",

{
288 " evseId ": evseId if evseId else "",
289 " remoteStartId ": remoteStartId ,
290 " idToken ": idToken ,
291 " chargingProfile ": chargingProfile if chargingProfile else "",
292 " groupIdToken ": groupIdToken if groupIdToken else "",
293 }]
294 ensure_message_delay ()
295 client . post_to_connection (ConnectionId = connectionId , Data=json.dumps(

request_start_transaction_request). encode (’utf -8’))
296

297

298

299 def send_trigger_message_request (connectionId , requestedMessage , evse = None):
300 """
301 Send a TriggerMessage request to the charging station .
302

303 :param connectionId : WebSocket connection ID to the charging station .
304 :param requestedMessage : The type of message to trigger , eg " BootNotification

".
305 """
306 messageId = random . randint (1000000 , 9999999) # Generate a unique messageId

76

307

308 # Store messageId in DynamoDB with the action ’TriggerMessage ’
309 store_messageId_in_database (messageId , ’TriggerMessage ’)
310

311 # Create TriggerMessage request
312 trigger_message_request = [2, messageId , " TriggerMessage ", {
313 " requestedMessage ": requestedMessage , # eg " BootNotification "
314 "evse": evse if evse else None ,
315 }]
316

317 # Send the request over WebSocket
318 ensure_message_delay ()
319 client . post_to_connection (ConnectionId = connectionId , Data=json.dumps(

trigger_message_request). encode (’utf -8’))
320

321

322

323 def get_action_from_messageId (message_id):
324 # Retrieve the item with the given messageId from DynamoDB
325 response = message_id_table . get_item (Key ={’messageId ’: message_id })
326

327 if ’Item ’ in response :
328 item = response [’Item ’]
329 return item.get(’action ’, None) # Returns the action type if available
330 else:
331 return None # Returns None if the messageId is not found
332

333

334

335 def handle_get_variables_response (connectionId , payload):
336 # Process the payload to extract and store data
337 for result in payload .get(’getVariableResult ’, []):
338 component_name = result [’component ’] # Access ’component ’ directly
339 variable_name = result [’variable ’] # Access ’variable ’ directly
340 value = result [’attributeValue ’]
341

342 # Update the database with the new values
343 update_database_with_variable (connectionId , component_name , variable_name ,

value)
344

345

346 def store_messageId_in_database (messageId , action):
347 # Store the messageId in DynamoDB
348 currentTime = time. strftime ("%Y-%m-%dT%H:%M:%S.000Z", time. gmtime ())
349 message_id_table . put_item (
350 Item ={
351 ’messageId ’: str(messageId), # Storing messageId as a string
352 ’action ’: action ,
353 ’status ’: ’sent ’,

77

354 ’time ’: currentTime ,
355 }
356)
357

358

359 def update_database_with_variable (connectionId , component_name , variable_name ,
value):

360 try:
361 station_address_used = get_station_address (connectionId)
362 response = table. update_item (
363 Key ={’station_address ’: station_address_used },
364 UpdateExpression ="set #var = :v",
365 ExpressionAttributeNames ={’#var ’: variable_name },
366 ExpressionAttributeValues ={’:v’: value},
367 ReturnValues =" UPDATED_NEW "
368)
369 return response
370 except Exception as e:
371 # Handle any exceptions (e.g., log the error , return an error message)
372 print(f"Error updating item: {e}")
373 return None

Listing 7: ocpp request route

78

	Abstract
	List of Tables
	List of Figures
	Introduction
	Why is OCPP necessary?
	Goals of the Thesis
	Structure of the Thesis

	Background
	Which OCPP version is to be implemented?
	OCPP 1.6
	OCPP 2.0.1
	The need for smarter features
	OCPP 2.0.1 for an Advanced Charging Infrastructure

	Core Certification Profile
	Security

	Methodology
	Requirements analysis
	Charging Station Integration Requirements
	CSMS implementation requirements

	Architecture - OCPP, WebSocket Server, Client-Side
	The Architecture of the OCPP
	CSMS - WebSocket Server
	CS - ACDC
	Communication - secure WebSocket

	Test cases
	Test Case Analysis: BootNotification
	Cold Boot Charging Station - Pending
	Responsiveness
	Heartbeat & Multiple Connections

	Implementation
	Basics/Setup
	The WebSocket Server - CSMS
	$connect
	$disconnect
	$ocpp_request

	The client - EVSE

	Results
	Tested cases
	Cold Boot Charging Station - Pending

	Responsiveness
	Heartbeat & multiple connections

	Discussion
	OCPP v2.0.1
	Evaluation of implemented WebSocket server and client code

	Conclusion
	Future Work

	Acronyms
	Bibliography
	Appendix

