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Abstract

The transportation sector is developing itself in two distinctive paths. On one side, Electric Vehicles (EVs)

are emerging and have been rapidly expanding their market share for the past decade, generating an

opportunity to decrease the direct fossil fuel dependency in the sector. On the other side, Autonomous

Vehicles (AVs) are an announced revolution that will soon transform how the transport sector is seen.

These two developments combined will reshape transportation and provide new horizons for science to

intervene. This dissertation investigates the multifaceted impacts and opportunities of Autonomous Elec-

tric Vehicles (AEVs), particularly in energy integration, grid management and efficiency enhancement.

By taking advantage of their autonomous capabilities, AEVs have the potential to serve as distributed

energy storage units, facilitating greater integration of renewable energy sources and supporting overall

energy efficiency. In this thesis, a mixed-integer linear programming algorithm is presented to demon-

strate how managing a whole fleet of AEVs could benefit the energy sector regarding grid limitations and

energy management through a regulated charging operation. Effective integration of AEVs into exist-

ing power systems requires a thorough understanding of their impacts and careful planning to optimize

their benefits while mitigating potential drawbacks. The results of this project emphasise the need for

a collaborative effort between stakeholders in the transportation and energy sectors to realize the full

potential of this emerging technology.

Keywords

Autonomous electric vehicles; Public charging stations; Intelligent charging management.

iii





Resumo

O setor automóvel tem se desenvolvido em dois prismas distintos. Por um lado, os veı́culos elétricos

têm emergido rapidamente, aumentando imenso a sua cota de mercado na última década, criando a

possibilidade de haver uma menor dependência direta de combustı́veis fósseis no setor. Por outro lado,

os veı́culos autónomos constituem uma revolução anunciada, que em breve transformará a forma como

o setor é percecionado. Estes dois desenvolvimentos combinados irão redesenhar o sector automóvel

e abrirão novos horizontes para a intervenção cientı́fica. Este artigo investiga os impactos e as opor-

tunidades apresentadas pelos veı́culos elétricos autónomos, especialmente na integração energética,

gestão de rede elétrica e melhoria da eficiência energética. Tirando partindo da capacidade autónoma

destes veı́culos, estes podem ser vistos como unidades distribuı́das de armazenamento de energia, fa-

cilitando uma maior integração de fontes de energia renovável e apoiando a eficiência energética geral.

Neste artigo, é apresentado um algoritmo de programação misto-inteira linear que pretende demonstrar

como gerir uma frota inteira de veı́culos elétricos autónomos, por forma a beneficiar o setor de energia

em termos de limitações da rede e gerir energia por via de um carregamento regulado dos veı́culos. A

integração eficaz destes veı́culos nos sistemas de energia existentes requer uma compreensão detal-

hada dos impactos e um planeamento cuidadoso para otimizar benefı́cios enquanto se mitiga possı́veis

desvantagens. Os resultados deste projeto enfatizam a necessidade de um esforço colaborativo entre

as partes interessadas, nos setores de transporte e energia, no sentido de alcançar todo o potencial

desta tecnologia emergente.

Palavras Chave

Veı́culos elétricos autónomos; Estações públicas de carregamento; Gestão inteligente de carrega-

mento.
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1.1 Motivation

Electric Vehicles (EV) are changing the transport sector. Yet, another revolution can arrive soon.

Autonomous Electric Vehicles (AEV) are emerging and are seen by several entities as a bright tech-

nology to be adopted soon [1].

AEVs can eventually work as an autonomous distributed energy storage, potentially allowing for

greater integration of renewable energy sources and improved energy efficiency [2]. However, the future

high-rated adoption of AEVs also presents challenges, such as power demand increase and the need for

infrastructure upgrades [1]. It is essential for power systems to carefully consider the impacts of AEVs

to integrate them and optimize their benefits effectively.

1.2 Objectives and Contributions

The goal of this master’s thesis is to create a methodology that capitalizes on the impacts of AEVs on

power systems in favour of the systems themselves. More precisely, this thesis aims to develop a control

model that, on the one hand, considers the technical constraints of the distribution network and, on the

other hand, optimizes the charging process of a fleet of AEVs. Considering network limitations, the

proposed solutions will address congestion problems by managing the voltage at the distribution level.

Within the scope projected, there are some points to be addressed.

• Is it possible to consider network constraints, such as voltage levels and grid congestion, in the

AEVs management?

• Is it possible to apply the combination of price signal methods and network constraints in the AEVs

management?

• What is the impact of AEVs on the operation of power systems and in the resolution of attended

conditions?

1.3 Related Projects

The work carried out as part of this dissertation was developed under the scope of the following research

project:

• Horizon Europe EV4EU – Electric Vehicles Management for carbon neutrality in Europe project,

funded by the European Union under grant agreement no. 101056765. Views and opinions ex-

pressed are however those of the authors only and do not necessarily reflect those of the European

2



Union or CINEA. Neither the European Union nor the grating authority can be held responsible for

them.

1.4 Outline

This document is structured as follows. The purpose and key contributions of this thesis are outlined

in the current chapter. Chapter 2 presents the ongoing state of the automobile industry in terms of

automation and electrification. Further on, it introduces the available and in-development EVs charging

technologies, and also the charging and discharging methods being implemented so far.

Chapter 3 explores studies developed concerning the impact of EVs on power systems. It ap-

proaches congestion management, the impact of charging vehicles at peak demand hours, and how

to avoid this problem. How EVs can cooperate in frequency and voltage regulation is also addressed.

Finally, the way EVs can support a higher penetration of renewable energies is also approached.

Section 4 details the mathematical development of the algorithm to optimize the charging process for

AEVs, considering key factors to ensure vehicles’ charging efficiency and cost-effectiveness, and also

exposes the environment in which the algorithm was developed. Chapter 5 reveals a series of Scenarios

generated by the appliance of the algorithm and its nuances and also the results and explanations of

those simulations attempt to manage a fleet of AEVs, according to the determined inputs and constraints.

Finally, Chapter 6 presents the overall findings concerning the developed methodology, as the utilized

system limitations and a perspective for future improvements.
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2.1 Autonomous Vehicles

Autonomous Vehicle (AV) are making their way to be entirely independent of human capacities to be

driven safely. Equipped with onboard sensors and actuation networks supported by computational ro-

bustness and a great amount of stored data [2], AVs will play a key role in how mobility will be seen

shortly. The massive adoption of this technology will bring social and economic benefits in the shape

of fewer road accidents and fatalities, upgraded access to transportation, an exponential decrease in

greenhouse gas emissions, congestion reduction, less space needed in urban areas and a capacity to

cooperate in the energy management and storage, hugely important these days due to the increasing

investment in renewable energy sources [1,3].

Within this technology, six levels of driving automation were established, being Level 0 the non-

existence of automation and Level 5 the correspondence to self-driving vehicles [4]. To fully accomplish

all the benefits appointed above, Level 5 AVs have to dominate roads worldwide [2].

As of today, Tesla, for example, is only capable of commercializing vehicles with a Level 2 of automa-

tion [5]. Dedicating all its fleet to Electric Vehicles, Tesla ended 2021 with a 2.02% share in the U.S.

light vehicle market according to Statista, which is still far from the 15.18% share of the market’s leader

General Motors [6]. Nevertheless, many other automobile manufacturers already have Level 2 models

on the market, such as Escalade from Cadillac General Motors, BMW X5, or Volvo S90, all launched

during the year 2022. Meanwhile, Mercedes-Benz launched the world’s first completely certified Level

3 autonomous driving system [7], already available in Germany. This system can be used on 13.000

km of German highways and can go up to 60 km/h. Volkswagen partnered with Microsoft to speed up

the automation of the German manufacturer’s fleet [8] that has a 6.4% share of the global automotive

market, only behind Toyota, the market leader, with 10.5%, as reported by Statista [9].

Despite these firm steps that are being taken towards total automation, practical application of fully

autonomous vehicles, in a realistic context, showed that full automation is still not prepared to be com-

mercialized due to safety issues related to urban environment complexity [3]. On top of that, there are

a lot of concerns about how vehicles, with different levels of automation, will be able to share the road

network.

Up to this point, predictions suggest that fully self-driving vehicles with, under specific constraints,

automation level 4 will be available in many countries by 2030, despite being expensive and performance

limited [10], leaving level 5 out of the projections for now. Nonetheless, forecasts indicate that self-

driving taxis and micro-transient vehicles will be widely available by 2030. In São Francisco, California,

a company called Cruise is already providing driver-less rides from 10 pm to 5:30 am [11]. In Japan,

level 4 vehicles are now allowed to be used as public transportation and for delivery services from April

2023 [12].

6



2.2 Electric Vehicles

In the European Union, one-quarter of annual man-made Green-House Gas (GHG) emissions come ex-

clusively from the transportation sector. This statistic includes aviation and excludes maritime shipping.

Even so, 75% of those emissions are produced by road transport alone [3]. Having the European Com-

mission aimed to decrease GHG emissions by at least 55% until 2030 to achieve climate neutrality by

2050 within its territory [13], it is now urgent to reduce and change transportation all over the continent.

That said, conventional vehicles with internal combustion engines and fuel tanks must be replaced

by EV equipped with all-electric motors and batteries. EVs are not only less pollutant in terms of GHG

emissions, but also more energy efficient. A gasoline-powered vehicle has an efficiency of 15% up to

35% and this means that around three-quarters of the fuel used to fill up the vehicle’s tank corresponds

to energy lost [14, 15]. However, an EV only loses 31% up to 35% of the energy used to charge its

battery and due to the energy regenerated by the brakes, the efficiency of an EV can get to 90% [14,15].

So, a massive transition to EVs will not only reduce the amount of GHG emitted by road transport

but will also, due to its energy efficiency, save tons of fuel from being wasted. During the past decade,

there was a stable increase in EV registrations per year, in the EU. In 2010, there were only 600 EVs

registered, and by the year 2020, there were more than a million units in circulation. By the end of 2021,

this number almost doubled. Still, despite this respectable increase, these almost 2 million vehicles

registered account for only 18% of the total number of new registrations and it still represents a deficient

level of market penetration [16].

Globally speaking, in 2021, 16.5 million EVs were circulating worldwide, three times the amount

reported in 2018. Nevertheless, it only represents 10% of the vehicles sold that year [17]. These

percentages of EVs sold, either in Europe or worldwide, are conditioned by countries still in development,

where EVs are still unattainable by mass-market consumers. On one hand, during 2021, China led the

market selling 3.3 million EVs [17], in Norway, almost 90% of the vehicles sold were electric, followed by

Iceland with more than 60%, Sweden with almost 50% and in Germany, the number falls to 30%, but it

represents more than half a million EVs sold [16]. On the other hand, in countries like Brazil, India, or

Indonesia less than 0.5% of car sales are electric [17].

2.3 Charging Technologies

Section 2.3 of the document addresses different technologies used for charging EVs. 2.3.1 discusses

conductive charging, 2.3.2 examines wireless charging, and finally, 2.3.3 addresses the battery swap-

ping method.

7



2.3.1 Conductive Charging

Conductive charging is the simplest and the most common charging technology, where the power sup-

ply connects physically with the battery. The evolution of the EVs penetration on the vehicle market

is, despite not being the only relevant factor, strictly correlated with the ongoing growth of charging

stations and street chargers installed. This was seen in Norway, where a study showed that charging

infrastructure diffusion was able to increase EV ownership by 200% in five years [18].

This technology can be either unidirectional or bidirectional. Unidirectional charging only allows the

EV to be charged from the grid and bidirectional permits the same as unidirectional and also allows the

power to flow from the EV into the grid, building or house [15].

Conductive charging can also be divided into 3 charging levels according to the SAE J1772 standard,

being Level 1 the slowest charging method where a wall outlet can be used to assess the EV at a 1.9kW

peak power. It takes a lot of time to charge and it has a low impact on the power system due to its low

power rating. Level 2 can go up to 19.2kW, consequently, it takes less time to charge than Level 1 and

it needs dedicated supply equipment. Finally, Level 3 can reach 100kW and operate as a fast charger

because it can take less than one hour to charge the EV. Although Level 3 has its positive points from

the user’s perspective, it can overload the distribution network equipment and a dedicated installation is

extremely expensive [15].

2.3.2 Wireless Charging

Wireless Charging allows an EV to be charged without physically connecting the vehicle to the power

supply. The technology can be either inductive or capacitive, it can work statically or dynamically and it

can operate at different voltage levels [15,19].

Inductive wireless charging involves using a transmitting coil on the power supply side and a receiving

coil on the vehicle side, with power transfer occurring through electromagnetic induction. Capacitive

wireless charging, which uses metal plates called capacitors instead of coils, is cheaper to install but

has lower efficiency, requires a shorter distance between the power supply and the vehicle, and is only

suitable for low-power applications. Inductive wireless charging is preferred due to its ability to work with

both high and low power.

Static wireless charging involves parking a vehicle on a charging pad on the ground, eliminating

the need for connectors and reducing the risk of maintenance issues and accidents. Dynamic wireless

charging allows the charging of a vehicle while it is in motion, improving range, and safety, and reduc-

ing maintenance needs. Dynamic wireless charging can be implemented using inductive or capacitive

systems, but inductive systems are preferred due to their ability to function at higher power and shorter

ranges.
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Wireless charging is still in development, so, a lot of studies on static and dynamic charging have

been performed. In terms of stationary wireless systems, for example, Oak Ridge National Laboratory

developed a prototype capable of working at 120kW, 88.5kHz with a 152 mm air gap and reaching a

95% efficiency in 2018 [20], WiTricity Corporation developed another system working at 11kW, 85kHz

with a 150mm air gap and a 90% efficiency in 2019 [21]. Concerning dynamic charging systems, the

Korean Advanced Institute of Science and Technology, for example, developed a system working at

62/100kW, 130/200mm air gap, reaching 75% efficiency [22] and the University of Auckland developed

another system that works at 20kW, 15kHz with a 500mm air gap and an efficiency of 85% [23].

Figure 2.1: Wireless Charging illustration

2.3.3 Battery Swapping

A battery swapping station works as a charging station where an EV swaps its battery in a few minutes,

replacing a used battery with a fully charged one [15, 24]. This structure requires space to stock and

charge a considerable amount of batteries that can operate in a bidirectional way. In other words, the

station schedules batteries to operate in Grid-to-Battery and also in Battery-to-Grid or Battery-to-Battery,

if the batteries’ energy exceeds its demand [24]. These batteries could be owned by the station and

rented to the EV owner. Nevertheless, this system is limited by the uncertainty in the battery requisition

and electricity price, by the high equipment cost, by the nonexistence of battery standardization, and by

the station’s large space demand [15, 24]. Although the Chinese EV manufacturer NIO is set to install

20 battery swapping stations in Germany and aims to have 120 all over Europe, by the end of 2023 [25].

The company claims to be able to swap batteries within 3 minutes [26].
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2.4 Charging-Discharging Methods

Charging methods are divided into two categories, unidirectional and bidirectional methods [15]. Unidi-

rectional charging means that the energy only flows from the grid to the vehicle, although in bidirectional

charging the energy can flow both ways, from the grid to the vehicle and from the vehicle to the grid,

home, or building.

2.4.1 Unidirectional Charging

Within Unidirectional charging, there are three main methods [15], uncontrolled, controlled, and delayed

charging.

• Uncontrolled charging is the current most used way to charge an EV. The vehicle is connected to

the grid at the maximum power rating possible until it is fully charged.

• In delayed charging, there is time control and no energy management. In other words, the vehicle

is plugged in and programmed to start charging at a certain hour and from that point, it is charged

at the maximum power rating until the battery is full.

• In controlled charging, both time and energy are managed. So, there is not only charging start

control but also charging duration is managed through power control.

2.4.2 Bidirectional Charging

In bidirectional charging, there are also three different methods, Vehicle to Grid (V2G), Vehicle to Building

(V2B), and Vehicle to Home (V2H) [15].

• V2G refers to the capability of having an EV working as an energy storage device that can provide

power to the distribution network. To optimize the power system’s reliability and efficiency, the EV

should charge when the energy demand is lower than its generation and should supply energy into

the grid when energy consumption is higher than its production.

• In V2B, the process is similar to V2G, but in this case, the vehicle is only connected to the building.

The battery of the EV is charged at off-peak hours when the energy price is lower. Then supplies

energy to the building in peak hours when the energy price is higher. This method is simpler since

it is only building-connected, but it also provides less assistance to the power system.

• In V2H, the vehicle only communicates with the home without any connection to the grid, in a

similar process when compared to the V2B method. The energy flows from the house to the

vehicle and when it justifies, the EV supplies energy to the house. It can be used to reduce house
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expenses with electricity services since the vehicle can be used to store energy when the electricity

price is lower and to supply energy at peak hours. It can also be used to store local energy

production surplus from photovoltaic panels or other kinds of small renewable energy sources.
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Since the purpose of this thesis is to understand how AEV can affect power systems, it is crucial

to understand how the management of their connection to the grid can benefit utilities in terms of con-

gestion management, voltage, reactive power, frequency regulation, and also how they can positively

influence power quality in renewable energy dependent grids. Due to the lack of literature about AEVs’

influence on power systems, this section is supported by studies regarding EVs’ impact, since these

papers’ conclusions are still applicable to AEVs.

3.1 Congestion Management

Uncontrolled charging along with EV high penetration level is expected to create negative impacts on

power systems that should be mitigated through power congestion management by incorporating the

methods previously described [15]. Concerning the comprehension of the problem, numerous studies

have been conducted to understand the real impact of charging vehicles at peak demand hours.

In [27], with an EV penetration rate of 30% and using uncontrolled charging, the peak demand

increased by more than 50%. Another study presented in [28] approached the negative impact of un-

controlled charging on the Great Britain grid and how controlled charging can change it positively. For

a 100% electric country fleet, uncontrolled charging would increase the peak demand by 8 GW at the

transmission and generation level and create the need to upgrade 28% of the low voltage distribution

networks. Although, it was also concluded that controlled charging could improve this scenario, reducing

by 2 GW the increase at the peak demand and distribution networks would only need to be upgraded by

9%.

In the paper [29], delayed charging was applied and compared to the effect of uncontrolled charging

in New Toshka City, Egypt. It was concluded that delayed charging can effectively reduce distribution

network stress through voltage drop and power loss reduction when compared to uncontrolled charging.

The authors in [30] also addressed the impact of uncontrolled charging in New Zealand’s power sys-

tem and, through a Monte Carlo modelling simulation, it was demonstrated how delayed and controlled

charging can mitigate uncontrolled charging negative effect. It showed that without charging manage-

ment, for instance in Auckland, peak demand could increase up to 31% while applying delayed and

controlled methods, peak demand can increase by 9% at most, suspending any need to upgrade the

network components.

In this other study [31], it was shown how V2G systems can reduce transmission congestion and

increase grid stability in Germany. These results are even more important since it was proven that the

German transmission network would not be capable of handling uncontrolled charging with a high EV

penetration level. V2B strategy was used in a smart building microgrid concept, incorporating EVs,

independent battery storage, and photovoltaic panels in several Universities in [32]. The study was able
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to achieve a significant peak load reduction, consequently diminishing the building’s electricity bill and

its necessary power rating subscription. Therefore, the study concluded that if more buildings had the

possibility of having similar power management, it would diminish the stress in the distribution network

and decrease the demand of the whole grid at the peak load.

Based on the studies cited in this paragraph, it is clear that uncontrolled charging of EVs can have

negative impacts on power systems, including increased peak demand and the need for upgrades to

transmission and distribution networks. However, these negative impacts can be mitigated through the

use of controlled and delayed charging methods and through Vehicle to Everything (V2X) systems.

These methods have been shown to effectively reduce stress on distribution networks and decrease the

overall demand on the grid at peak load times. Power systems need the implementation of effective con-

gestion management strategies, particularly as the penetration level of EVs increases, to avoid adverse

impacts on the grid.

3.2 Frequency Regulation

In a power system, frequency is a constantly changing variable that allows the control between demand

and production, and it should be kept at the nominal value of 50Hz or 60Hz [33]. The misalignment be-

tween demand and production affects the frequency value. This occurs due to permanent load variations

and renewable energy production fluctuations hugely conditioned by weather behavior [15]. Through the

past decades, frequency has been regulated at power plants using synchronous generators. In the near

future, EVs will play an important role in frequency regulation since EVs batteries respond faster than

normal generation units [29,33].

Many studies were made to understand EVs’ impact on frequency regulation. In [34], a control

method that takes advantage of EVs operating in V2G in coordination with traditional generation, to

manage load frequency is proposed. The concept was tested on the Great Britain power system and

results showed that this method is capable of improving frequency regulation, consequently reducing

power imbalance, and even proved to be capable of reducing power oscillations at the traditional gener-

ation level. To provide primary frequency control, a regulation method was proposed in [35], coordinating

EV charging and discharging. An upper-level control system distributes the power management through

smaller regions, diminishing frequency deviations in all controlled areas. The study [36] also showed

how EVs can collaborate in load frequency control operating in a microgrid. Scheduling EV charg-

ing/discharging, the study proved that EVs can successfully contribute to a more stable frequency as

well as minimize power losses from renewable energy sources.

All in all, it is safe to say that EVs can play a significant role in frequency regulation in power systems.

Through the use of controlled charging and discharging, EVs can respond quickly to level demand
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and production and by that assure a stable frequency. Coordinated control methods that involve EVs

operating in V2G have been shown to be effective in improving frequency regulation and reducing power

imbalances and oscillations. As such, EVs could potentially be used as a tool for frequency regulation

in the future.

3.3 Voltage Regulation/Reactive Power Compensation

The voltage value has to be kept within stipulated limits at every stage of the power system [15]. At

the distribution level, the voltage is high when the network is moderately loaded and it is low when the

network is hugely loaded. Decentralized generation can make voltage exceed its upper limit, while long

connections can make it harder to keep voltage above its lower limit. For this reason, it is important

to have devices capable of regulating the voltage value, otherwise, this voltage instability can damage

connected loads. To control voltage, active and reactive power must be controlled, being active power

controllable by decentralized generators, energy storage systems, or EVs.

Numerous studies were made concerning voltage regulation and reactive power compensation that

takes advantage of EVs availability. As so, a decentralized controlled charging method that regulates

charging power having local voltage and battery state of charge in consideration was proposed in [37]

and it was compared with uncontrolled charging. The method was capable of reducing voltage drop and

improving its profile by manipulating charging power having voltage value as a reference. Therefore,

when the voltage was at a normal value, the charging power was kept high, and when the voltage value

was low, the charging power decreased or even stopped charging. This control system does not depend

on a communication infrastructure that allows utility operators to communicate with EV chargers, making

this system cheaper than those commonly proposed.

In [38], the particle swarm optimization algorithm was used to create a centralized smart charging

and discharging control system, so it can flatten the load curve. The study was capable of satisfying its

purpose and it was also able to reduce the voltage, flattening its profile when compared to uncontrolled

charging. A bidirectional DC fast charging station with a new control topology, to minimize voltage drop

when EVs are fast charging, is proposed in this paper [39]. A direct voltage control gives EV chargers

the capacity to inject reactive power into the grid, regulating bus voltage and reducing power losses.

In another study, it was proposed a multi-agent system to coordinate a distributed fleet of EVs and to

provide reactive power compensation through a V2G system [40]. By this reactive power compensation,

it was possible to improve the voltage profile and the paper concluded that, economically, this is a less

expensive way of regulating the voltage value.

Overall, it is clear that voltage stability is important in power systems and that it can be maintained

through the use of active and reactive power control. EVs and energy storage systems can be used as
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tools for voltage regulation and reactive power compensation, either through decentralized or centralized

control methods. These methods can help reduce voltage drop and improve the voltage profile, as well

as minimize power losses. Using EVs for voltage regulation and reactive power compensation can also

be a cost-effective solution compared to other methods.

3.4 EVs coordination with Renewable Sources

As it was exposed before, uncontrolled charging can harm power systems. On the other hand, controlled

charging can not only decrease the system imbalance but can also support renewable energy generation

to mitigate its constant variations [15]. Renewable Energy Sources (RES), such as photovoltaic and wind

generation, are intermittent due to their dependence on weather conditions which are hard to forecast.

This leads to sudden fluctuations in these sources’ output power, resulting in voltage fluctuations and

consequently a quality decrease of the power in distribution systems, where these RES have a high rate

of penetration.

To attenuate the intermittency of renewable energy sources’ effect on power systems, several studies

were developed. An interactive method that combines photovoltaic panels and EVs to minimize voltage

imbalance and diminish power losses was proposed in [41]. This particular V2G strategy proved to be

capable of achieving its objectives and consequently improving the energy efficiency of the grid. Rele-

vant to notice, that this study did not consider battery degradation throughout its course. Author in [42]

approaches the development of an efficient method to minimize voltage fluctuations at the distribution

level, containing solar and wind generation. It takes advantage of a Gravitational Search Algorithm to

optimize EVs’ charging and discharging control to respond to those voltage oscillations generated by

RES instability. The study results proved the effectiveness of the method and also proved to be capable

of extending the lifespan of the batteries. Another similar study evaluates, throughout three different sce-

narios, the capacity of controlled charging to minimize voltage rapid variations created by photovoltaic

energy generation [43]. These scenarios are used to stipulate the impact of three different levels of solar

panels installed, based on the growing adoption of this renewable source. The paper proved its reliability

in mitigating voltage fluctuation in low-voltage networks.

Another optimization process was proposed, within an isolated microgrid environment supported by

wind and PV generation, to schedule EV charging, in [44]. In this paper a bi-level programming model

is applied, being the upper level responsible for minimizing the microgrid’s costs, while the lower one is

for EV’s charging cost maximum reduction, having a real-time pricing mechanism connecting these two

levels. This method was able to flatten the load curve as well as reduce microgrid operating and EV

charging costs. In [45], the aim was to increase RES’ penetration, through the management of charging

and discharging of EVs. A genetic algorithm was used to increase solar power installation gradually.
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This strategy was employed by a segment of the Danish low-voltage grid and it was capable of ensuring

a 50% increment of photovoltaic penetration.

Given these points, EVs can be used as a tool to support the integration of RES in power systems

and to mitigate the negative impacts of their intermittent nature. Through optimization algorithms and

control methods, EVs can also help reduce voltage fluctuations, power losses, and operating costs as

well as flatten the load curve.

Table 3.1: Relevant topics, technologies, and methods mentioned in Section 3

Ref. Relevant Topics, Methods and Technologies
[27] Congestion management and uncontrolled charging
[28] Congestion management, uncontrolled and controlled charging
[29] Congestion management, frequency regulation, uncontrolled and

delayed charging
[30] Congestion management, uncontrolled, controlled and delayed

charging
[31] Congestion management, uncontrolled charging and V2G
[32] Congestion management, V2B and RES penetration
[34] Frequency regulation, controlled charging and V2G
[35] Frequency regulation, controlled charging
[36] Microgrid, frequency regulation, controlled charging and RES

penetration
[37] Voltage regulation, uncontrolled and controlled charging
[38] Voltage regulation, uncontrolled and controlled charging
[39] Voltage regulation, reactive power compensation and controlled

charging
[40] Reactive power compensation, V2G and voltage regulation
[41] RES penetration, voltage regulation and V2G
[42] Voltage regulation, RES penetration and controlled charging
[43] Voltage regulation, controlled charging and RES penetration
[44] Microgrid, RES penetration and scheduled charging
[45] RES and controlled charging
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4.1 General description and assumptions

The presented system aims to manage and optimize the AEVs’ charging process, given a range of

chargers within a defined timeline. It was fundamental to consider a set of critical factors to develop this

system. From the vehicle’s perspective, it was relevant to evaluate the vehicle’s battery capacity and

the state of charge throughout the assessed period. On the charging stations side, it was imperative to

consider each one maximum power, its availability, and also the charging price fluctuations, which can

change according to the grid operation conditions.

Having the key factors defined, it was imperative to define a decision-making path, specifying a

guideline for the algorithm’s development. As seen in Figure 4.1, the first premise is to have an available

vehicle, which is not being used or already charging. Secondly, the vehicle’s State of Charge (SOC) must

be evaluated to decide the necessity to charge. Afterwards, if there is a demand to charge, charging

prices are examined to deduce the most financially convenient period to charge, within the chosen

timeline. This procedure is aimed to be applied to a whole fleet simultaneously.

Figure 4.1: Algorithm’s behaviour representative flowchart

Throughout the development of the algorithm, some assumptions were taken into account which

are worth mentioning. All vehicles were considered to be AEVs, meaning they would all be at a level

of autonomy that allows them to be driverless while moving from a parking lot to a charging station.

Therefore, all chargers were assumed to be wireless, since the method can not rely on human help to
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connect the vehicle to the charger to keep its purpose and effectiveness. Also, the implementation of the

algorithm depends on a centralized controller, where all key factors, both from the vehicles and charging

stations, are weighted, so the decision-making process is optimised at the minimum cost possible.

The algorithm development intention described above is aligned with studies made throughout the

past decade to optimize EVs charging operation, and the price signal strategy, which is based on fluctu-

ating electricity costs, is one of the most common methods applied for this purpose. In [46], the impacts

of EVs uncontrolled charging are compared with smart charging strategies that respond to dynamic

price signals, demonstrating the usefulness of a fuzzy logic control system in handling uncertainties and

oscillations in electricity price and grid conditions. The Author in [47] proposes a sophisticated price

guidance mechanism using advanced predictive models, forecasting long-term electricity prices, and

fractional-order control to provide a more subtle and versatile response to price signals. Another exam-

ple of price signal applicability is presented in [48], where a cooperative interaction strategy for an EV

network guided by price signal is studied, using a linear programming approach to minimize the costs

and optimize the distribution of charging loads across the grid. EVs were coordinately charged based

on price signals and the carrying capacity of the distribution network.

4.2 Mathematical Modulation

The developed algorithm seeks the optimized correlation between the amount of energy transmitted

to the vehicles and the accumulated charging cost. Having this said, the adopted solution will always

be the one that provides the most significant increment on the fleet’s SOC for the smallish cost. The

prominent inputs of the algorithm are, on the vehicle side, the initial state of charge SOCinitial(V,t=0)

and the vehicle’s battery capacity SOCmin(V ) and, on the charger side, its maximum charging power

Pchargemax(C,t) and its charging cost ccharge(C,t). For the decision-making process, it is also crucial to set

the total number of vehicles NV , the entire charging system NC , and the whole considered timeline T ,

where each t is separated by a 15-minute gap. To obtain an algorithm that performs exactly as expected,

it is crucial to define precise constraints to guide its behaviour.

Pcharge(V,C,t) ≤ Pchargemax(C,t) ·X(V,C,t) ∀V ∈ {1, . . . , NV };∀C ∈ {1, . . . , NC};∀t ∈ {1, . . . , T} (4.1)

NC∑
C=1

X(V,C,t) ≤ 1 ∀V ∈ {1, . . . , NV };∀t ∈ {1, . . . , T} (4.2)
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NV∑
V=1

X(V,C,t) ≤ 1 ∀C ∈ {1, . . . , NC};∀t ∈ {1, . . . , T} (4.3)

The first defined constraint (4.1) aims to control the power transmitted from the chargers to the

vehicles Pcharge(V,C,t), so it does not surpass the limit imposed by each charger Pchargemax(C,t). On this

equation, it is also introduced the X(V,C,t), which is a binary variable that handles the decision of which

vehicle V connects to each charging station C on each period t. Equation (4.2) ensures that each V

connects to only one charging station C, and following the same approach Equation (4.3) guarantees

that each charging station C is exclusively connected to one vehicle V .

SOC(V,t=1) = SOCinitial(V,t=1) +

NC∑
C=1

Pcharge(V,C,t=1) ∀V ∈ {1, . . . , NV } (4.4)

SOC(V,t>1) = SOC(V,t−1) +

NC∑
C=1

Pcharge(V,C,t) ∀V ∈ {1, . . . , NV };∀t ∈ {1, . . . , T} (4.5)

SOC(V,t=T ) + SOCrelax(V,t=T ) ≥ SOCmin(V ) ∀V ∈ {1, . . . , NV } (4.6)

Concerning the AEVs, the limitations are imposed by their batteries. The three constraints defined

in Equations (4.4), (4.5) and (4.6) were built to manage the state of charge of all vehicles SOC(V,t)

throughout the entire simulation process. In the first Equation (4.4), the vehicles’ state of charge is

updated by adding the energy transmitted on the first period, to their state of charge by the beginning

of the simulation. In Equation (4.5), the objective and the updating process follow the same logic as the

one in (4.4). Finally, the third constraint (4.6) was established to integrate a variable SOCrelax(V,t=T )

that could hold the value of the energy needed to fulfil the vehicles’ battery capacity by the end of the

simulation, in case of being impossible to have all vehicles charged at that point. Also, SOCmin(V ) holds

each vehicle battery capacity, whose, in this frame, are the objective values for the charging process to

be concluded.

Connect(V,C,t=1) ≥ X(V,C,t=1) ∀V ∈ {1, . . . , NV };∀C ∈ {1, . . . , NC} (4.7)

Connect(V,C,t) ≥ X(V,C,t) −X(V,C,t−1) ∀V ∈ {1, . . . , NV };∀C ∈ {1, . . . , NC};∀t ∈ {1, . . . , T} (4.8)

On the pair of Equations (4.7) and (4.8), another binary variable is included Connect(V,C,t). In this

case, the aim is to hold, at each t, the number of new connections established between vehicles and

chargers. This auxiliary variable purpose is related to the fact that in a practical environment, before
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the charging fee, there is a cost attached to the decision to move each vehicle V towards a charging

station C, and energy is consumed to establish that connection. Therefore, by holding the number of

new connections, this variable is used to prevent vehicles from an unrealistic behaviour, where AEVs

keep changing the charging station to which they are connected, every when there is a slight charging

price fluctuation.

f =

NV∑
V=1

NC∑
C=1

T∑
t=1

[
Pcharge(V,C,t) · ccharge(C,t) + SOCrelax(V,t=T ) ·K1 + Connect(V,C,t) ·K2

]
(4.9)

Ultimately, the objective function presented in Equation (4.9) is integrated into the developed algo-

rithm, working as a cost function that should be minimized. This function correlates the unitary charging

cost with the charged power at each t. It also adds two penalties to the system. One for the unfulfilled

vehicles’ battery capacity SOCrelax(V,t=T ), and the other for the total number of new connections a ve-

hicle establishes with a charger Connect(V,C,t), promoting the completion of a charging process in one

single connection. In both cases, the variables are multiplied by a constant value K1 and K2 so their

relative weight on the decision-making process can be manipulated.

4.3 Modulation Nuances

Posterior to the implementation of the algorithm described above, some modifications were applied, so

it was possible to analyze, having this algorithm as a baseline, its response to a distinct behaviour from

some, already mentioned, inputs and even new ones.

Firstly, maximum charging power Pchargemax(C,t) was manipulated instead of staying static as it was in

the first four simulations as it will be demonstrated in the following Chapter 5. As seen in Subsection 3.1,

the manipulation of the maximum transmitted charging power is one way to deal with grid congestion. To

give another example, in [49], a control strategy for managing charging stations’ maximum power output

was investigated. This involved the usage of bidirectional DC/DC converters to dynamically adapt the

charging power based on grid conditions. The strategy aimed to align EV charging with grid demands,

enhancing grid stability and efficiency. Therefore, throughout this thesis’ algorithm development, the

modulation of the maximum power available for each charging station became an interesting factor

to explore, knowing that its management could benefit load distribution and even the integration of

renewable energy sources.

Afterwards, the algorithm was subjected to some modifications focused on grid constraints, more

precisely, the voltage variations at the charging station level. As observed in Subsection 3.3, voltage

regulation can positively influence grid stability, and it could be achieved by controlling EVs charging
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process. As an additional instance, in [50], where a deep learning approach to coordinate EV charging

scheduling and distribution network voltage control is studied, the authors aimed for a method that could

stabilize the voltage in the distribution network while optimizing the charging schedule. So accordingly,

in this thesis, voltage regulation was approached from two different perspectives.

The first voltage regulation strategy was to attach voltage oscillations at the charging station level to

the charging cost ccharge(C,t) throughout the defined timeline.

Ucharger(C,t) ≤ 1.05 ∀C ∈ {1, . . . , NC};∀t ∈ {1, . . . , T} (4.10)

Ucharger(C,t) ≥ 0.95 ∀C ∈ {1, . . . , NC};∀t ∈ {1, . . . , T} (4.11)

ccharge(C,t) = 1 + (1− Ucharger(C,t)) ∀C ∈ {1, . . . , NC};∀t ∈ {1, . . . , T} (4.12)

It was important to define voltage variation limits for both voltage-related algorithm alterations. Fol-

lowing the IEEE standards [51], the constraints (4.10) and (4.11) were delineated, knowing that voltage

should not deviate by more than +/- 5% of its nominal value under normal operating conditions. Having

boundaries clarified, the Equation (4.12) defines the charging cost dependency from voltage variations

in an inverse relation, so when having lower voltage values, which can occur due to high electricity de-

mand, the charging cost is kept high, and when voltage values escalate beyond its nominal value, as in a

low congested grid, the ccharge(C,t) drops to promote charging in those periods. This nuance application

to the algorithm aims to enable the correlation between a specific grid constraint and the price signal

strategy in managing the considered AEVs fleet.

The other voltage-related adjustment was designed to ensure that voltage variations could directly

influence the charging process. For this purpose, an electrical busbar was conceptualized on which each

node would represent a charging station, with all stations connected in series. In these circumstances,

the load introduced by the active charging station will influence the voltage level experienced by the other

stations. Charging an AEV increases the current flow through the busbar, which causes a voltage drop

on it due to its inherent resistance. Also, this series configuration means all charging stations share the

same busbar impedance [52]. However, the charging activity at one station can change the impedance

characteristics seen by the other stations, leading to variations in the voltage supplied.

U(bus,t) =

NV∑
V=1

NC∑
C=1

FS(bus,c) · Pcharge(V,C,t) bus ∈ {1, . . . , Nbus};∀t ∈ {1, . . . , T} (4.13)

Uref(bus,t) = 1− U(bus,t) bus ∈ {1, . . . , Nbus};∀t ∈ {1, . . . , T} (4.14)
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Uref(bus,t) ≥ 0.95 ∀bus ∈ {1, . . . , Nbus};∀t ∈ {1, . . . , T} (4.15)

This voltage-related modification is ruled by these three Equations exposed above. On the first

Equation (4.13), the voltage drop value U(bus,t) is linked to the charging power Pcharge(V,C,t) through

the sensibility factor matrix FS(bus,c), which holds the charging stations’ correlation element, acquired

by the busbar inherent resistance and each station operational voltage. Furthermore, this is a square

matrix due to the dimension equivalence between the bus and the charging stations C sets, therefore,

the bus set guarantees the matrix necessary length to establish a correlation between every station. The

Equations (4.14) and (4.15) ensure that the load applied by the charging power do not force a voltage

deviation beyond its lower boundary for normal operating conditions. Finally, this nuance influence is

added to the objective function, through the voltage drop U(bus,t), aiming to penalize the operational cost

as much as the charging process impacts the voltage deviation. This transformation 4.16 adds another

constant value K3 so voltage variation has its adaptable weight on the algorithm decision-making.

f =
∑

V,C,t,bus

[
Pcharge(V,C,t) ·ccharge(C,t)+SOCrelax(V,t=T ) ·K1+Connect(V,C,t) ·K2+U(bus,t) ·K3

]
(4.16)

4.4 Development Environment

The algorithm was developed using General Algebraic Modelling System (GAMS), a sophisticated sys-

tem designed to mathematically address linear, non-linear, and mixed optimization problems in a fast,

reliable, and platform-independent environment [53]. This platform allows the creation of flexible applica-

tions and models that can be easily adapted to new challenges. GAMS stands out from other modulation

systems due to its distinctive modelling approach, which employs solvers to identify the optimal solution.

In this project, the adopted Discrete an Continuous Optimizer (DICOPT) solver, was chosen specif-

ically for its suitability in handling problems with binary and linear variables and solving Mixed-Integer

Nonlinear Programming (MINLP) problems. It employs a MINLP algorithm to address a series of Non-

linear Programming Nonlinear Programming (NLP) and Mixed-Integer Programming Mixed-Integer Pro-

gramming (MIP) sub-problems within GAMS, the performance of the sub-solvers significantly influenced

by the overall effectiveness of the solution.

Also, knowing that modern grids are anticipated to become increasingly complex with the integration

of intelligent devices, the necessity for robust optimization tools becomes indispensable [54]. GAMS has

emerged as a crucial asset for this purpose, due to its refined capacity to handle optimization challenges

within large-scale systems [55]. Its versatility extends to various applications within the energy sector,

including power-systems modelling, optimal power flow, load management, and integrated transmission-
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systems planning, making it the most accurate tool to use within this project’s scope.
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5.1 Implementation description

The algorithm described in Chapter 4 was tested in different scenarios, each with a distinct intention

and level of complexity. The purpose of these simulations is to provide clarity on how all key factors and

inputs affect the decision-making process. Throughout these experiments, it was considered an 8-hour

time period for all scenarios, and 12 hours for the final one. The maximum charging power, Pchargemax,

was defined as around 12 kW for all considered chargers, based on output power from Tesla Wall

Connector [56]. Lastly, all vehicles, despite having different initial states of charge, were considered

to have a 40 kWh battery capacity to simplify the simulation process, a value defined considering an

average EVs battery capacity estimation [57].

In the first Scenario 5.2.1, 6 vehicles and 3 charging points were considered. As the first and most

simple case, its objective was only to show that the algorithm works and how it reacts to a simple

oscillation in the charging price. Secondly, in Scenario 5.2.2, 9 vehicles and 2 chargers were taken

into account. The main objective was to demonstrate the algorithm’s performance when vehicles have

significantly different distances from the charging stations. In Scenario 5.2.3, even more vehicles were

integrated, 20 in total, and 5 charging points were considered. This case intends to display the algorithm

response to a more complex situation regarding the number of vehicles and charging price variations.

The fourth Scenario 5.2.4 added even more complexity to the problem by integrating 50 vehicles and 8

charging points.

To test different metrics, three other scenarios were developed. In the fifth one 5.2.5, the objective

was to recreate a highly congested grid, in which the available maximum power was regulated. In this

case, 40 vehicles and 8 chargers were considered. In the sixth Scenario 5.2.6, the purpose was to

index the unitary price to voltage oscillations at the chargers level, conditioning the algorithm’s decision-

making to a grid constraint. In the seventh Scenario 5.2.7, the charging impact on voltage values at

the charger level was integrated into the objective function, conditioning the charging process through

its direct influence on the voltage at each charger. The final Scenario 5.2.8 combines the price sig-

nal methodology from the first experiments and the voltage manipulation executed in 5.2.7, within an

extended vehicle and time frame.
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Table 5.1: Scenarios’ summary

Scenario Nº of Vehicles Nº of Chargers Purpose

A 6 3 SOC/charging price relation

B 9 2 Vehicles/chargers distance impact

C 20 5 SOC/charging price relation

D 50 8 SOC/charging price relation

E 40 8 High grid congestion management

F 30 8 Index charging price to voltage oscillations

G 20 8 Controlled charging to regulate voltage

H 60 8 Charging prices & regulated voltage

5.2 Obtained results

5.2.1 Scenario A

The main purpose of Scenario A was to demonstrate a functioning algorithm within a simple approach.

As such, it was relevant to visualize the vehicles’ SOC evolving into its maximum capacity and its reaction

to a charging price drop.

Figure 5.1: Charging process per vehicle through time
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Figure 5.2: Unitary charging cost per charger through time

This first test succeeded in terms of getting into the vehicles’ SOC maximum capacity as seen in

Figure 5.1. Also, it was possible to visualize in Figure 5.2 that the chosen period for charging matches

the most economically advantageous. Having that said, it is possible to affirm that the charging costs

were minimized to their best in this Scenario, as intended.

Figure 5.3: Total power injected by chargers through time
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Figure 5.4: Number of chargers being used at each data point

The Figures 5.3 and 5.4 provide a more insightful perspective from this first Scenario. Considering

the defined time range, the algorithm holds the charging process until the charging price drops, employ-

ing all chargers simultaneously at first, managing then the charging process until the end of the defined

time range.

5.2.2 Scenario B

In this second test, it was imperative to demonstrate the impact of having vehicles positioned signifi-

cantly far from the charging points. The illustration in Figure 5.5 intends to present the objective for this

Scenario, where it is possible to identify two vehicles out of the radial preference for a connection. To

complement the exposure of this differentiation, in Figure 5.2, it is possible to visualize the implemented

penalization. In this case, it was applied the same charging costs from Scenario A (see Figure 5.2).
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Figure 5.5: Illustration of charging station radial preferences

Table 5.2: Distance to charging points penalization factor

V1 V2 V3 V4 V5 V6 V7 V8 V9

C1 10 10 10 90 80 10 10 10 10
C2 10 10 10 90 80 10 10 10 10

Figure 5.6: Charging process per vehicle through time

First of all, in this demonstration, it was crucial to dimension it so that having all vehicles fully charged

wouldn’t be possible, within the adopted time frame. As such, compared to the first Scenario, the number

of vehicles was incremented and one charger was removed from the equation. This approach intends

to put the algorithm in a position where it has to choose, from the vehicles available, those which will

not be fully charged by the end of the test. As it can be seen in Figure 5.6, there are five vehicles which

were not fully charged. From those, only two, vehicles 4 and 5, were not charged, precisely those with a
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higher penalization, as seen in Table 5.2, proving the functionality of the applied distance penalty.

5.2.3 Scenario C

In this third approach, the objective was to test the algorithm’s robustness by challenging its response

to an environment with a significant increment in the number of vehicles and charging points. Also, the

charging costs presented in Figure 5.8 were manipulated so it was possible to identify, throughout the

timeline, three distinctive periods: one where it is cheaper to charge, and two other more expensive

periods in which there is only a slight difference between them. Pertinent to notice, this is the equivalent

of time-of-use tariffs, widely used in EV public charging [58] or for home charging [59]. The appliance of

these rates allows vehicle owners to manage their vehicle charging process according to lower charging

prices. Our intention in these developments is to optimize these similar processes, by applying them to

AEVs and consequently to automate the charging decision.

Figure 5.7: Charging process per vehicle through time

Figure 5.8: Unitary charging cost per charger through time
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Figure 5.9: Total power injected by chargers through time

Figure 5.10: Number of chargers being used at each data point

Analysing the charging process of this Scenario, Figure 5.7, it is demonstrable that it succeeded in its

purpose. All vehicles are fully charged by the end of the simulation, and it is also clear that the algorithm

chose to fully charge right before the last third of the timeline, which was the most expensive one.

Since this demonstration was more dense in terms of vehicles accounted, another two metrics were

displayed. In Figure 5.9, it is possible to visualize the total transmitted power from the charging points,

and in Figure 5.10 the number of occupied chargers by each data point. In both, the considerations

made above to this test are applied and reinforced, making clear the tendency to charge when charging

costs are lower.

5.2.4 Scenario D

This fourth Scenario is aligned with the previous one in its objective. The algorithm’s validity was tested

by adding even more variables, in this case, by incorporating 50 vehicles and 8 chargers. The response

to this Scenario is positively similar to the one in Subsection 5.2.3, with almost all vehicles being fully

charged by the end of the experiment.
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Figure 5.11: Charging process per vehicle through time

Figure 5.12: Unitary charging cost per charger through time

Figure 5.13: Total power injected by chargers through time

Analyzing the results of this Scenario, it is possible to conclude that the increment in vehicles and

chargers didn’t affect the algorithm’s key points. The whole fleet was charged and the charging process
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occurred preferentially when prices were lower, as it is possible to confirm through Figures 5.12 and

5.13.

5.2.5 Scenario E

In this Scenario, the objective was to understand how the method would react to a congestion grid

situation. To perform this, the maximum power per charger was controlled, lowering it to simulate a

period of high electricity demand. In this case, it was considered 40 vehicles and 8 chargers. The

unitary charging price for all chargers was not changed throughout the full experiment timeline, so every

decision regarding the charging process was only influenced by the maximum power available.

Figure 5.14: Charging process per vehicle through time
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Figure 5.15: Maximum power per charger trough time

Figure 5.16: Total power injected by chargers through time

As seen in Figure 5.15, maximum power increases after the first hour of the experiment and it is kept

high for 5 hours. In Figure 5.16, it is possible to confirm that there is a match between the period where

the injected power was significantly higher, and the one with the most charging power availability, as

intended.

5.2.6 Scenario F

In this experiment, 30 vehicles and 8 chargers were considered, and the key decision factor was once

again the unitary charging cost at each data point. However, in this case, the price variations were

indexed to voltage oscillations on each charger throughout the defined timeline.
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The unitary charging cost was fixed at 1 monetary unit per kWh for a stable voltage value. It would

get higher when the voltage drops, discouraging the charging process, and simulating a situation where

the network is overloaded. On the other side, when the voltage increased, the price would fall, promoting

charging and functioning as a case of low electricity demand.

Figure 5.17: Charging process per vehicle through time

Figure 5.18: Voltage oscillations through time
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Figure 5.19: Indexed to voltage variations charging price

Figure 5.20: Total power injected by chargers through time

The voltage oscillated between +/- 5% around its normal value, which was considered to be 100%,

as exposed in Figure 5.18, and the direct impact of those oscillations on the charging cost is reflected in

Figure 5.19.

The experiment ran as expected and all vehicles were fully charged by the end of the defined timeline.

By analyzing the voltage 5.19 and the unitary charging price 5.18 behaviours, it is possible to affirm that

the algorithm behaved as expected, corresponding high voltage values to low prices, and vice-versa.

Finally, in Figure 5.20, it is possible to acknowledge that the lower prices period equals a higher demand

for charging as intended with this simulation.

5.2.7 Scenario G

In this scenario, the second voltage-related nuance was applied as described in Subsection 4.3. The

objective was to pursue the charging impact on voltage at the charging station level. To attempt this topic,

a busbar was conceptualized, as seen in Figure 5.21, aligning all chargers across its extension, being

charger C1 at the reference node, where the voltage is assumed to be stable. Knowing that voltage drop
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increases as much far as the charging process occurs from the reference node, the sensibility factor

matrix (see Table 5.3) was estimated. It intends to reflect the charging impact from the charger in use

on its and other chargers’ voltage drop. This approach aimed to stimulate the nearest charging process

to the reference node, so voltage oscillations, enabled by charging, are as slight as possible. For this

analysis, all charging prices were kept at 1 monetary unit, removing their impact on the decision-making

procedures.

Figure 5.21: Charging stations aligned on a busbar

Table 5.3: Sensibility factor matrix

C1 C2 C3 C4 C5 C6 C7 C8

1 0 0 0 0 0 0 0 0
2 0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3 0 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
4 0 0.0001 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003
5 0 0.0001 0.0002 0.0003 0.0004 0.0004 0.0004 0.0004
6 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0005 0.0005
7 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0006
8 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

Figure 5.22: Charging process per vehicle through time
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The developed experiment took 20 vehicles and 8 chargers into account. The Scenario proportional-

ity was intentionally delineated to provide more charging points than needed to fulfil all AEVs batteries.

By doing this, the algorithm is forced to choose within the available chargers, those whose charging

impact is less harmful to voltage stability along the busbar. The charging process presented in Figure

5.22 demonstrates the algorithm’s capability to fully charge all vehicles, as expected.

Figure 5.23: Injected power per charger through time

Figure 5.24: Voltage oscillations per charger through time

In Figure 5.23, it is possible to analyze the charging development per charger throughout the defined

timeline. For this experiment, the maximum power of the chargers was adjusted to improve the visu-

alization of the algorithm’s decision-making, within a range of 9 kW to 12 kW. Therefore, the charging

decision behaviour demonstrates a clear preference for the chargers C1, C2 and C3, in this order, as

these are those whose charging performance is more stable, proving the algorithm preference for those

with the lowest impact on voltage oscillations, as seen in Figure 5.24. These results are unmistakable

in proving the algorithm’s capability to mitigate the charging impact on the grid, as long as it is supplied
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with voltage references and charging information concerning its effect on voltage levels.

5.2.8 Scenario H

In this last Scenario, the objective was to ultimately demonstrate the robustness of the algorithm de-

veloped, by challenging its performance with an extended time frame, 12 hours, an ample fleet of 60

vehicles, and most importantly, by combining the price signal methodology applied until the fifth Sce-

nario 5.2.5 and voltage regulation from the previous one. The charging prices are described in the

Figure 5.26. The conceptualized busbar 5.21 and its corresponding sensibility factor matrix (see Table

5.3) are the same as those used in the previous experiment.

Figure 5.25: Charging process per vehicle through time

Figure 5.26: Unitary charging price per charger through time
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Figure 5.27: Total power injected by chargers through time

Firstly, in Figure 5.25, it is possible to visualize that this Scenario succeded in its main objective,

to charge all vehicles within the defined data frame. Afterwards, it is important to understand if the

algorithm’s price signal dimension functioned as intended. By analysing the Figures 5.26 and 5.27,

there is a clear pattern between them that can be envisioned. Higher charging prices correspond to a

clear diminish in the total power injected by charging points and vice versa, proving the existence of an

influence from charging costs on the charging decision.

Figure 5.28: Injected power per charger through tim
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Figure 5.29: Injected power per charger through tim

Figure 5.30: Voltage oscillations per charger through time

Lastly, Figures 5.28 and 5.29 demonstrate the injected power per charger throughout the timeline.

This analysis was made through two different figures, so it could provide a better understanding of this

scope. Following the environment defined by the busbar 5.21 and its corresponding sensibility factor

matrix (see Table 5.3), the results shown by these figures prove the algorithm behaviour correctness by

choosing to charge mostly where the charging process impacts the lowest the voltage intermittency at

the charging station level.

Having proven the accurate behaviour from both dimensions of the algorithm decision-making, the

price signal component and the charging impact on voltage, simultaneously, performing under a large

scope of 60 vehicles and 12 hours, this Scenario demonstrates the significant capacity and robustness

of the developed algorithm in terms of handling a noteworthy number of constraints and variables.
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This chapter concludes the thesis by summarising conclusions and identifying points for future de-

velopment and even limitations associated with the proposed solution and algorithm.

6.1 Conclusions

In this thesis, a vehicle charging management algorithm is proposed, which by taking advantage of

autonomous electric vehicles’ capabilities aims to make the charging process less costly to the vehicle

owners, more energy efficient and less harmful to the energy grid. This mixed linear programming project

was developed seeking the establishment of charging priorities by co-relating charging price oscillations,

vehicles’ SOC, the distance between AEVs and charging stations and finally, grid limitations, such as

controlled chargers’ maximum power simulating high grid congestion situations and controlled charging

associated to voltage oscillations at chargers level.

The main objective of this framed work was to have a whole fleet charged by the end of each scenario

and simulation, at the minimum possible cost while respecting all the imposed constraints. By assuming

a state of full autonomy from the considered vehicles and only using wireless chargers, this project was

developed under no restrictions due to human action.

Within the conceptualized environment, the algorithm proved its capability to handle a whole fleet

minimizing its charging cost and following strictly all sets of constraints. Although the graphic results

reflect the impact of each constraint on the decision-making process in each framed scenario, the system

still has its limitations. When analyzing the implementation results in detail, it was possible to identify

a few situations where the chosen charger, at some given data point, was not the most inexpensive

when compared with other data points with a lower charging price which was not used. Those few

isolated situations were possible to identify at the beginning of the simulations. However, as the number

of constraints increased, it became harder to identify those opportunities for improved minimization. So,

having this said, the results were valid and met the main objective of this scope, solving the minimization

problem initially identified.

6.2 System Limitations and Future Work

Despite providing a robust mathematical problem-solver capacity, GAMS system may struggle with ex-

tremely large and complex models due to its solvers, processing and memory limitations. As more deci-

sion variables, constraints and non-linear relationships were added to the model, it became progressively

less time-efficient in providing a solution. Therefore, the addition of complexity was counter-balanced

with the diminishment of vehicles under analysis.

For future improvements and developments, it would be interesting to apply the whole complexity of
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the method under a platform with a higher amplitude of computational capability, so it could be applied

to even more vehicles, chargers and data points. To the established method, might be interesting to

incorporate a bidirectional charging variant, providing a more robust perspective of how these vehicles

would be able to support grid and energy management. Finally, since all inputs used were delineated to

serve the scope, a real-time system in which the algorithm could be tested will certainly deliver a more

concise, applicable, real-framed perspective of its purpose.

GAMS might struggle with extremely large or highly complex models due to memory and processing

limitations. Models with many decision variables, constraints, or non-linear relationships can sometimes

be challenging to solve efficiently.
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