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Abstract

This work assesses the potential of electric vehicles participating in frequency services in the Nordics. For this, data from a
workspace parking lot is used to create artificial load profiles to take the perspective from an aggregator. The study is then divided
into two parts: Firstly, a machine learning model is developed to forecast the parking lot load. In a second step, the predictions are
given to a rolling-horizon mixed integer linear program that optimally allocates the capacities to Frequency Containment Reserve
services. It is found that the machine learning approach almost doubles the profitability compared to offering bids just based on
historical values. Finally, a hypothetical market structure is considered, where the FCR-D late auction is moved to an hour-ahead
intra-day auction. The analysis shows that the opportunity to correct bids intra-day improves participation in frequency services
and triples profits compared to the day-ahead auction.

1 Introduction

According to the United Nations, climate change is the single
biggest threat humanity has ever faced [1]. The main driver for
the increase of the average global temperature is the emissions
of greenhouse gases, such as CO2 [2]. To mitigate the increase
in emissions, countries are implementing various carbon free
technologies, such as wind power and photovoltaic for energy
production and electric vehicles for transportation. Yet, switch-
ing to these intermittent renewable energy sources brings sev-
eral challenges, among others large power fluctuations, making
demand-supply balancing a crucial and challenging task. EVs
increase the overall electricity demand, and may introduce high
peak grid loading due to coincidence of the charging process.
However, the transition to distributed energy resources (DER)
also brings various opportunities. The Danish Transmission
System Operator (TSO), Energinet, states that the transition to
100% renewable energy requires innovative solutions to main-
tain a stable power system operation [3]. For this, technologies
can offer flexibility in their consumption or production as fre-
quency services. To facilitate the integration of DERs for grid
stabilisation in the Nordics, the TSOs allow flexible units to
offer bids to reserve markets according to a probability of
availability of at least 90%. A particular type of DERs are elec-
tric vehicles (EVs), which on top of transportation, can adjust
their power consumption during the charging process based on
the frequency of the grid, thus stabilising it. Specifically for
EVs, [4] classifies ancillary services for electric vehicles into
8 frequency and 32 flexibility services. A frequency regulation
control method is developed in [5], where the architecture also
considers charging urgency as defined by the user. In [6], the
focus is put on optimal participation in frequency markets with

an aggregation of electric vehicles, while accounting for net-
work constraints. The work in [7] uses battery electric storage
systems to optimally participate in Nordic frequency markets.
In [8], pools of domestic EVs charging are used to particip-
ate in the Nordic frequency services FCR-D up and aFRR. The
work in [9] and [10] investigates the potential of an aggrega-
tion of EVs to participate in frequency containment reserve for
disturbance operation (FCR-D). For this, charging patterns of
residential users are analysed and used in an aggregation. An
optimisation program is formulated that offers capacities. Since
the capacity bid on the ancillary services market needs to be
done the day before the activation of the service, forecasting of
EV charging demand is crucial for the economic feasibility of
providing frequency support with EVs. Artificial intelligence
(AI) is nowadays extensively applied for this kind of task. For
example, in [11], a machine learning approach is used to op-
timise the economic profitability of a residential users energy
management system. In [12] instead, the authors make use of
deep learning techniques to forecast electric vehicle charging
load in Spain, considering seasonality effects.

This study aims to quantify the economic gain from parti-
cipating in ancillary service markets with an aggregation EVs
consisting of 360 outlets. Specifically, FCR-D and FFR are
considered in this study. In order to do that, we perform load
forecasting via machine learning, and optimally bid the pre-
dicted capacities in several sequential ancillary service markets
of the Nordics. By doing so, this research supports the ob-
jectives of the Horizon Europe-funded EV4EU∗ and FLOW†

∗https://ev4eu.eu/portfolio-item/denmark/
†https://www.theflowproject.eu/meet-our-
demo-copenhagen/
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projects, providing valuable insights into the practical deploy-
ment and management of ancillary services with EVs. The
remainder of this paper is structured as follows: In chapter 2,
the applied methodology is explained. Chapter 3 introduces the
case study, while chapter 4 provides results. Conclusions are
drawn in chapter 5.

2 Methodology

In this section, the methodology behind the paper is described.
Firstly, the forecasting algorithm for EV load is going to be
described, and secondly, the decision-making market particip-
ation algorithm is introduced.

2.1 Forecasting Algorithm

In order to forecast the EV load in the parking lot at a spe-
cific hour, which is going to be used by the decision making
algorithm, a machine learning methodology is used. Formu-
lated as a supervised learning model, it aims to predict the
aggregated parking lot load in a minute resolution. The pre-
dictions are based on various features, which are the external
conditions influencing the EV load. As the behaviour of the
parking lot is strongly dependent on the time of the day and
the weekday, both are used as features. Moreover, since the
charging location is a university parking lot in Denmark, ad-
ditional information such as Danish public holidays and the
semester/exam/holiday periods are included as binary features.
Information about the weather is also considered, with data
taken from the Danish Meteorological Institute. The weather
station measurement point from which the observations are
taken is the Copenhagen airport CPH, as this station provides
all necessary measurements in the best resolution and with
the fewest empty measurements. Specifically, the precipita-
tion, ambient temperature, the visibility, the humidity and wind
speeds are used. The data points are resampled to match the
minute resolution of the load curve. Lastly, to accurately rep-
resent the prediction horizon of the model, the label load is
also used as a feature of the model, albeit with a lag. This is a
common practice in time-series forecasting, and describes the
information that the model has on the EV load at the instants
preceding the point in time it makes the prediction. Based on
an autocorrelation analysis, the lags introduced are 48, 72, 96
hours, as well as one and two weeks. For the late FCR-D auc-
tion, an additional lag is introduced with 24 hour lag, due to the
shorter prediction horizon. The same lags are repeated with a
feature that represents the amount of electric vehicles that are
charging. Finally, the data frame is split into two parts, where
the majority is used for training, and the remainder remains
unseen in the training process and is only used for testing. The
training data spans from September 2022 to September 2023,
while the testing data spans from September 2023 until Febru-
ary 2024. This split is made so that the model can be trained
with a full year of data, to accurately represent seasonal EV
load variations.
The machine learning model is based on Quantile Random
Forests, which can be seen as an extension to Random Forests.

The major benefit of this technique is that the ensemble of pre-
dictors has the possibility to return not only one deterministic
prediction, but a range of probabilistic predictions. There-
fore, to align with the requirements from Energinet, the model
predicts the 10th quantile of the load. Moreover, by default,
Random Forests are less prone to overfitting and generate ro-
bust models. The necessary hyperparameters of the Quantile
Random Forests, used to increased the accuracy, are the num-
ber of trees, the number of minimum sampled per leaf, the
minimum number of samples for a node to split and the max-
imum depth of each tree.
In the training process, the four hyperparameters of the model
are tuned with the cross-validation technique Grid Search. In
this process, various combinations of the hyperparameters are
tested, and the combination of the hyperparameters with the
best performance is returned. The performance measures con-
sidered are the Mean Absolute Error (MAE), the Root Mean
Squared Error (RMSE) and the R2 score.

2.2 Multi-Market Bidding Algorithm

The capacities that are forecasted by the machine learning
model need to be bid in the Nordic ancillary service markets,
hence a decision-making model based on a mixed-integer pro-
gramming approach is proposed. The services considered are
FCR-D upregulation and FFR, as both of them are not activ-
ated frequently and thus the charging process remains mostly
undisturbed. FCR-D consists of two Danish-Swedish auctions
on the day prior to operation (D-1), where the early auction
takes place at 00:30 and the late auction at 18:00. FFR is pur-
chased by Energinet in a national auction (Denmark only) on
D-1 at 15:00. The hourly demand for FCR-D up and down is
fixed, where each Nordic country is obliged to supply a share
of the total demand, based on the countries own electricity con-
sumption. Differently, the demand for FFR is not constant and
dependent on the systems inertia. Only in hours where the in-
ertia is low, FFR is demanded to stabilise the grid in case of
large frequency drops. Yet, the system inertia is based on the
units that produce electricity, and with fluctuating resources the
inertia of the system is coupled to uncertainty. Therefore, Ener-
ginet constantly forecasts the demand for FFR for the following
days, which they release at 10:00. The projected values for the
24 individual hours of the following day are binding and used
as a cap for the auction. Figure 1 shows a timeline of the gate
closure times for the different considered services: The model
considers four important time points, indicated in Figure 1 as
well:

1. At 10:00 two days prior to operation, the non-binding
forecast for FFR demand is released by Energinet.

2. At 00:30 on D-1, the early auction for FCR-D takes place.
In this auction, the decision variables for the early auction
pup−e
t , pdown−e

t and pFFR−pre
t are allocated based on the

predictions. Since the binding FFR demand for day D are
not public yet, the bid for FFR is only preliminary and not
binding.
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Fig. 1: Timeline for Decision Model

3. At 10:00 on D-1 the binding FFR demand is released by
Energinet, and the related auction takes place at 15:00.

4. At 15:00 on D-1, the FFR auction, as well as the FCR-D
late auction are optimised jointly. The capacities that can be
used in this late auction are the preliminary reserved values
for FFR from the early auction, as well as improvements in
the forecast. The decision variables are pup−l

t , pdown−l
t and

pFFR
t

Since the early and late auction models only differ in the
variables which are obtained, we present the formulation for
the early auction first, and then only/ point out the differ-
ences between the two. In the early auction decision model,
the problem objective is to maximise the daily revenue from
bidding in the frequency market:

max
δ∈D

πexp =

24∑
t=1

(
pu−e
t · λu−e

t + pd−e
t · λd−e

t

+ pFFR−pre
t · λFFR

t

)
(1)

where the decision variables δ are formulated as a set D:

D = {pu−e
t , pd−e

t , pFFR−pre
t , auxu

t , aux
d
t , y

u
t , y

d
t }

the capacities that can be offered are determined as in
equation (2):

Cup
t = P pred48

t (2a)

Cdown
t = ⌈P

pred48
t

Cavg
⌉ · Cnom − P pred48

t (2b)

As shown in (2a), capacities are based on the predictions with
a lag of 48 hours, according to the available information at the
time of the early auction. For the upward capacity Cup

t , it is
expected that the aggregation of EVs can briefly reduce their
charging power down to zero. For the downwards capacity,
it is assumed that every connected outlet increases the char-
ging power to the maximum capacity. Since there is no precise
information available about how many vehicles are charging
exactly, an assumption is made to determine the amount of
vehicles from the forecasted EV load. The average charging

rate per outlet during charging process Cavg = 7.61 kW, so
the predicted load is divided by this value and rounded to the
next integer number to find the number of vehicles charging, as
shown in (2b). The number of vehicles is then multiplied by the
nominal charging power per outlet Cnom = 11 kW, and finally
the predicted load is subtracted to obtain the down-regulation
capacity Cdown

t for the parking lot. The objective function is
based on price expectations for FCR-D and FFR. The prices for
FCR-D in the early auction λup−e

t and λdown−e
t are based on the

prices of the day before, as the prices of the early auction show
a strong autocorrelation. The prices for FFR are based on an
interpolation of historic prices of 2023, where the price λFFR

t

is expressed as a function of the volume x that is expected to
be demanded as in (3)

λFFR
t = 0.03x4 −−0.84x3 + 5.28x2 + 19.88x+ 9.45 (3)

The decision model is subject to the following constraints:
Constraint (4) ensures that the volumes offered in the bids

are only positive or null.

pu−e
t , pd−e

t , pFFR−pre
t ≥ 0 ∀t (4)

Constraints (5) restrict the bids to the available capacities.∑
pu−e
t + pFFR−pre

t ≤ Cu
t ∀t

pd−e
t ≤ Cd

t ∀t
(5)

Here, the sum of the two services that provide up-regulation
to the system FCR-D up and FFR need to be smaller than
Cup

t , while FCR-D down needs to be smaller than Cdown
t .

Constraints (6), (7), and (8) ensure that the Limited Energy
Reservoir (LER) regulation is considered. This means that 20%
of the FCR-D bids in the opposite direction need to be re-
served for energy management. However, the constraint needs
to be linearised using auxiliary variables auxup

t and auxdown
t ,

as linear programming only allows for linear constraints.

auxu
t ≥ Cu

t − 0.2pd−e
t (6a)

auxu
t ≥ 0 (6b)

auxu
t ≤ Cu

t − 0.2pd−e
t +M(1− yu

t ) (6c)

auxu
t ≤ Myu

t (6d)
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auxd
t ≥ Cd

t − 0.2pu−e
t

auxd
t ≥ 0

auxd
t ≤ Cd

t − 0.2pu−e
t +M(1− yd

t )

auxd
t ≤ Myd

t

(7)

pu
t ≤ auxu

t

pd
t ≤ auxd

t

(8)

The constraints (6) and (7) are implemented in the same way,
thus only (6) is explained in detail, but the same logic applies
to the downwards regulation in (7).
Due to the LER regulation, the bid volumes for FCR-D up de-
pend on the bid volume of FCR-D down, and the other way
around, respectively. However, in case that 20% of the bid for
FCR-D up- or down is larger than the capacity in the other dir-
ection, the resulting maximum offer volume would be negative,
which is not possible due to (4). In this case, the model would
not be solvable. Therefore, the auxiliary variables auxup

t are
introduced to linearise a maximum function, taking a value of
either 0 or the upwards capacity Cup

t minus 20% of the bid for
FCR-D down pdown−e

t . The linearisation is achieved by using
four constraints. Firstly, (6a) ensures that auxup

t is larger or
equal than Cup

t − 0.2pdown−e
t . (6b) ensures that auxup

t is lar-
ger than 0. The next two constraints work inversely by making
use of a binary variable yup

t , and M , which is a big number. In
case yup

t is 0, auxup
t needs to be smaller than the sum of the

big number M and Cup
t − 0.2pdown−e

t . If yup
t takes a value of 1,

auxup
t needs to be smaller than M. As a result, auxup

t can only
take two values: either 0 or Cup

t − 0.2pdown−e
t . In (8), it is then

ensured that the offers are smaller than the corresponding max-
imum capacity determined by the auxiliary variables. Finally,
the constraint in (9) ensures that the bids can not be larger than
the capacity that is demanded by Energinet. This constraint is
mainly relevant for FFR, since in the majority of hours FFR
is not requested, ensuring that the model only makes a bid for
FFR in case it is demanded. The notation for the FFR demand
in the early auction shows the two day ahead demand forecast
by Energinet.

pu−e
t ≤ Du−e

t ∀t
pd−e
t ≤ Dd−e

t ∀t
pFFR−pre
t ≤ DFFR−d2

t ∀t
(9)

For the late auction, the maximum capacities that can be
offered consist of the preliminary reserved volume for FFR and
of improvements in forecast in between the two auctions:

Cu−l = Cu
t − pu−e

t − 0.2 · pd−e
t

Cd−l = Cd
t − pd−e

t − 0.2 · pu−e
t

(10)

and in all the equations (1)-(9), the decision variables with the
e apex need to be changed to l, indicating the auction type
"late". Moreover, the price expectation for FCR-D in the late

Fig. 2: Relationship of FCR-D late auction prices and spot
prices

auction can not be based on the prices of the day before any-
more, since the autocorrelation for the late auction prices is
low. Thus, the price expectations for down and up-regulation
are modelled using their relationship with spot prices, which is
shown in Figure 2. The equation of the interpolation is given
in (12).

λd−l
t = 8.6 · 10−8x4 − 7.6 · 10−5x3+

0.02x2 − 2.4x+ 162.5 (11)

λu−l
t = −2.6 · 10−10x4 − 3.7 · 10−6x3+

0.002x2 − 0.2x+ 28.4 (12)

3 Case Study

The case study is based on a real-world workspace parking
lot, located at the Lyngby campus of the Technical University
of Denmark in Copenhagen (Denmark). The parking lot con-
sists of six charging stations of the type EVlink 2S22P22R by
Schneider Electric, each holding two outlets, for a total of 12.
Data for every charging session is provided by the e-mobility
service provider Spirii for a period of 1.5 years, from Septem-
ber 2022 until February 2024. The relevant information from
the dataset are: i) the connection/disconnection time of each
EV; ii) the timestamps for the starting and stopping of each
individual charging process; and iii) the total energy charged
in the session. Out of the provided information, a load curve
was generated under the assumption that the charging power is
constant over the full duration of the charging process, as de-
scribed in [13]. On average, the whole parking lot accounts for
187.64 kWh of charged energy on weekdays and 60.58 kWh on
weekends, indicating higher usage on working days. Addition-
ally, the average duration per charging process is 5.5 hours on
weekdays and 4.7 hours on weekend days. However, the aver-
age energy charged per session is 18.34 kWh on weekdays and
23.53 kWh on weekends. The charging pattern in the parking
lot can be seen in the boxplot from Figure 3, where a sim-
ilar pattern occur for every weekday from Monday to Friday,
while in the weekend days are characterised by less load. On
the working days, the majority cars arrive in the morning hours



8th E-Mobility Power System Integration Symposium | Helsinki, Finland | 07-08 October 2024

Fig. 3: Boxplot of the EV load in one of the considered parking lots.

Table 1 10th quantile of parking lot aggregated EV load in kW.
Hour Mo Tu We Th Fr Sa Su
0 - 6 0 0 0 0 0 0 0

7 24.3 9.9 23.7 28.2 24.6 0 0
8 134.9 49.5 103.5 74.7 55.6 0 0
9 255.7 95.4 181.1 155.8 118.9 0 0
10 213.7 85.3 200.8 133.3 115.5 0 0
11 136.1 111.2 150.9 104.3 45.2 0 0
12 100.9 59.3 85.7 62.0 10.4 0 0
13 27.4 13.6 30.3 27. 2.6 0 0
14 0 6.8 11.0 26.11 0 0 0

15-23 0 0 0 0 0 0 0

and start the charging process. The daily peak is around 9:00 to
10:00 AM.

To simulate the behaviour of an aggregator, the load curve
of the single parking lot is used to create 30 artificial parking
lots, each one with 12 outlets and similar charging patterns.
For the creation of artificial parking lots, the connection and
disconnection times of every single charging session from the
real data are by a value extracted from a normal distribution
with a zero mean and standard deviation of 60 minutes. This
simulates different user behaviors, accounting for variations in
their arrival times due to daily fluctuations. In compliance with
the requirement by Energinet, the hourly 10th quantile load per
day for the aggregation is seen in Table 1. This is referred to as
baseline and is used as a benchmark. The table clearly shows
that the requirement is met only in the working hours on week-
days. In the night and afternoon, as well as in the weekends,
the value of the 10th quantile is 0.

4 Results and Discussion

The following section provides an overview of the results for
frequency service participation of an aggregation of electric
vehicles in a time period of 150 days from September 2023
to February 2024. The study considers four scenarios:

1. Benchmark: the baseline historical load (10th quantile of
the hourly EV load) is bid in the different services using the
decision model but without any prediction process.

2. ML prediction scenario: the ML model is applied and the
predictions are offered in the markets.

3. Perfect foresight scenario: both the prices and the avail-
able EV capacity are perfectly known in advance. This step
is used to find a profit ceiling, representing the maximum
possible profit that can be expected.

4. Hypothetical intra-day market scenario: the aggregator can
offer capacities on the day of operation, since the late auc-
tion is an intra-day one, closing one hour before operation.

4.1 Baseline Results

To create a benchmark for the results, firstly a case is con-
sidered where the bidding is based only on the baseline, which
are the 10th quantiles of the historical EV load, without con-
sidering any forecasting. Therefore, the values from Table 1
are used as an input to the decision model. Then, for every day,
the rolling horizon optimisation is run. The model allocates the
available capacity to the frequency services firstly in the early
auction. Then, in the late auction, the model has the opportun-
ity to correct the bids from the early auction. However, as the
baseline is not dynamic and consists of fixed volumes, there
are no additional capacities expected for the late auction. Thus,
there is only one possible scenario where FCR-D can be offered
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in the late auction, which is when the model reserves capacity
for FFR in the early auction based on the D-2 demand fore-
cast from Energinet, but then this need is not confirmed in the
binding D-1 demand. In that specific case, the leftover capa-
city can be offered for FCR-D in the late auction. By using the
baseline, a profit of 2053.5AC can be achieved in the considered
time period. The profit broken down into the early and late auc-
tion can be seen in Table 2 where it is clear that the majority of
the profit is generated with the FCR-D up service.

Table 2 Profit from frequency services using the baseline [AC]

FCR-D up FCR-D
down

FFR Sum

Early 1385.4
(67.47%)

622.7
(30.30%)

Late 17.7
(0.87%)

12.7
(0.63%)

14.9
(0.73%)

Sum 1403.1
(68.34%)

635.4
(30.93%)

14.9
(0.73%)

2053.5
(100%)

4.2 Results based on ML predictions

Firstly, the accuracy of the predictions is evaluated. Two fore-
casts are assessed, based on the gate closure times of the early
and the late auctions. For the early auction, we evaluate the
performance of the algorithm when predicting the EV load two
days in advance (48h). For the late auction, the predictions are
combined from one day ahead and two days ahead. Since the
gate-closure time of the late auction is at 18:00 a lag of 24 hours
can be used for the hours 00:00-17:00, while the remainder of
the day from 17:00 to 24:00 is based on the predictions with a
lag of 48 hours. Table 3 shows different metrics for the accur-

Table 3 Performance metrics for 24 and 48 hour prediction
horizon
Prediction
Horizon

MAE [kW] RMSE [kW] R2 [p.u.]

48h 104.91 195.533 0.5433
24h 102.64 191.362 0.5626

acy of the load predictions with the two time horizons. From
the table, it can be seen that overall the accuracy of the fore-
casts improves only little by moving one day closer to real time
operation. For both time horizons, the RMSE, that weights lar-
ger errors stronger, is significantly higher than the MAE. This
indicates, that the model frequently does predictions that have
large differences to the real data. Using the predictions from
the machine learning model as an input to the decision model
provides the profits presented in Table 4.

The results show that a profit of 3749.3AC is achieved, which
is significantly larger compared to the baseline benchmark.
Even though the model has the possibility to correct the of-
fers in the late auction, due to the small difference between the

Table 4 Profit from frequency services [AC]

FCR-D up FCR-D
down

FFR Sum

Early 2529.2
(67.5%)

1115.4
(29.7%)

Late 59.9
(1.6%)

24.9
(0.7%)

19.9
(0.5%)

Sum 2589.1
(69.1%)

1140.3
(30.4%)

19.9
(0.5%)

3749.3
(100%)

predictions in the two forecast horizons, the participation in the
late auction is low, and so are the profits. Moreover, it can be
seen that the profits from FFR are neglectable. The reason for
this is that FFR is mostly demanded at night in the summer
period from May to October. Since the considered period is
from September to February, the demand for FFR is only little.
Furthermore, the parking lot aggregation provides the majority
of capacity during the working hours, and not during the night
where more FFR is demanded.

4.3 Perfect Foresight Results

To evaluate the profitability ceiling, in this section the decision
model considers perfect foresight for both FCR-D and FFR
prices, as well as available capacities from the parking lot ag-
gregation. This means that an offer can be made according to
the capacity that is available 90% of the time within a certain
hour, scaling the minute resolution load curve into hourly resol-
ution. This corresponds to the hourly 10th quantile of the minute
resolution load curve. The profit in the considered time period
is significantly larger, 26065AC in the considered time period.
The breakdown of the profits into the different services and
auctions is provided in Table 5. From the table it can be seen

Table 5 Profit from frequency services under perfect foresight
[AC]

FCR-D up FCR-D
down

FFR Sum

Early 7157.8
(27.46%)

3496.7
(13.42%)

Late 13544.9
(51.97%)

1582.4
(6.07%)

283.3
(1.08%)

Sum 20702.7
(79.43%)

5079.1
(19.49%)

282.3
(1.08%)

26065.1
(100%)

that a large amount of profit can be obtained in the late auc-
tion for FCR-D. Moreover, it shows that for the parking lot
aggregation, FCR-D up is the most profitable service, with a
contribution of almost 80% of the total profit. This tendency
can be explained by the average charging rate Cavg, which cor-
responds to a larger capacity for upwards regulation. FFR has a
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very low contribution to the overall profits, due to the afore-
mentioned mismatch between the period when it is usually
required, and the availability time of the EVs.

4.4 Results with hypothetical intra-day structure

The previous results show that the day-ahead structure com-
bined with a confidence level of 90% makes it difficult to
effectively use EVs for ancillary services. Therefore, a hypo-
thetical market structure is evaluated, where the early auction
for FCR-D and the FFR auction take place at the same time on
D-1, while the late auction is considered to be an "intra-day"
auction, with a gate-closure time one hour before the opera-
tion (H-1). The movement closer to real-time operation in the
late auction, allows to do forecasts with a considerably higher
accuracy. While the difference between 48 and 24 hours fore-
cast horizon in Table 3 showed only little improvement, the
accuracy with a forecasting horizon of 1-2 hours improves the
results drastically, as shown in Table 6. With a gate-closure

Table 6 Performance metrics for shorter time horizons
Prediction
Horizon

MAE [kW] RMSE [kW] R2 [p.u.]

2h 79.61 154.16 0.72
1h 47.66 100.39 0.89

time of H-1, the predictions with a forecast horizon of two
hours can be used as an input. The results of the hypothetical
market structure are summarised in Table 7. Table 8 provides

Table 7 Gate closure times for frequency service markets with
intra-day FCR-D late

Service Gate-
closure

Auction
type

FCR-D up/down
early

D-1 15:00 Day-ahead

FCR-D up/down
late

D H-1 Intra-day

FFR D-1 15:00 Day-ahead

an overview of the results with the intra-day late auction. From
the table, a significant improvement in profitability can be seen,
that is achieved by unlocking a large amount of flexibility that
would remain unused otherwise. In the considered time period,
a profit of 11,522.23AC results from the participation in fre-
quency services. It can be seen that the The majority of the
profits is generated in the late auction (68.14%). It can also
be seen that more than half of the earnings are realised with
the FCR-D up service, while 44.2% are realised with FCR-
D down. On the other hand, as the early auction remains as
a day-ahead auction, it is visible that the profits achieved only
changed slightly, compared to the current market structure from
Table 4.

Table 8 Profit from frequency services with hypothetical mar-
ket scheme [AC]

FCR-D up FCR-D
down

FFR Sum

Early 2528.9
(22.0%)

1115.9
(9.7%)

25.0
(0.2%)

3669.8
(31.9%)

Late 3874.7
(33.6%)

3977.7
(34.5%)

7852.4
(68.1%)

Sum 6403.6
(55.6%)

5093.6
(44.2%)

25.0
(0.2%)

11522.2
(100%)

In Table 9, the results are scaled linearly to a full year for
all four scenarios, so the reader can have a clearer idea of the
yearly profit.

Table 9 Overview of profits in AC

Baseline Day-
Ahead
ML

Perfect
Foresight

Intra-
Day
ML

Sep-Feb 2035.5 3749.3 26065.1 11522.2

Full year 4996.8 9122.0 63425.0 28039.3

Yearly per outlet 13.9 25.4 176.2 77.9

4.5 Discussion

The results also have some limitations that should be con-
sidered. Since the analysed dataset is based on a single parking
lot that is used to create artificial parking lots, the load curve
could be affected by anomalies in the original dataset, which
would be transferred to all 30 artificial parking lots. This intro-
duces some instability, that would be unlikely in a real-world
aggregation. Thus, with a more stable load curve it is assumed
that the profitability per outlet is larger in reality. Moreover,
the study considers a time span from September to February,
which mostly represents winter months. This time period is
linearly scaled to a full year in the study. However, since in
the winter months the profitable FFR service is rarely deman-
ded, it can be assumed that the profitability for a full year is
higher than the one we calculated. Furthermore, the revenues
could also be higher considering that both up and down FCR-
D services commonly see an increase in prices in the spring and
summer months. Additionally, it is debatable if an aggregation
of electric vehicles should be considered as a limited energy
reservoir. Even though an individual electric vehicle is limited
by the battery capacity, an aggregation of many individual cars
can possibly manage a continuous activation for two hours. In
this study, LER constraints were applied, as user convenience
is prioritised and the charging process of vehicles should not be
disturbed. Finally, the hypothetical market structure with intra-
day should be considered. On the one hand, giving an option
for intra-day correction of bids greatly improves the availabil-
ity of fluctuating energy resources, such as EVs. Recent price
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spikes of FCR-D services in the Nordics also show the need
for additional supply of capacity, and the demand for ancillary
services is expected to increase further with larger shares of
DER in the system. On the other hand, safe and secure opera-
tion of the power system is essential. Thus, adjustments of the
market structure need to be assessed carefully, considering all
outcomes including benefits, drawbacks and risks.

5 Conclusions

As a benchmark, the decision model receives the hourly 10th

quantile load per day baseline as input, where the late auction
remains largely unused, as the historical baseline is static and
there is no possibility to correct the bids. With the baseline, the
model can achieve a revenue of 13.88AC per outlet per year. An
improvement of the profitability can be achieved when using
machine learning based load forecasting. By making load pre-
dictions for every hour on each day specifically, the capacities
that are given to the decision model are increased. Thus, the
yearly profit per outlet increases to 25.38AC. Nevertheless, even
though the model has the possibility to improve the forecast
in between the early and the late FCR-D auction, the late auc-
tion remains largely unused. The reason for this is that both the
two-day ahead and the day-ahead forecasts of the load that oc-
curs with a probability of at least 90% are very similar. In this
way, a large amount of available resources remain unused, as
seen by comparison to the case when the decision model optim-
ises the available capacities considers perfect foresight. In that
case, a yearly profit of 176.18AC per outlet is estimated. There-
fore, a hypothetical market structure is assessed, where the late
FCR-D auction is considered to be an intra-day auction, that
takes place one hour before the operation. By moving the fore-
cast horizon closer to real-time, the machine learning model
can make more accurate predictions. Thus, a large amount of
available flexibility is unlocked and the participation in the late
auction increases significantly. Under the hypothetical market
structure, a profit of 77.89AC per outlet per year is achieved.
Future studies will assess if machine learning and artificial in-
telligence can be applied successfully integrate the flexibility of
EVs into the power system. Moreover, it should be examined
how synergies with different technologies or different charging
patterns can be used to improve the business case for DER
participating in frequency services.
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