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Abstract—With the continuous increase of electric vehicle (EV)
adoption, deploying smart charging techniques offer a practical
solution to mitigate the impact of grid overloading caused by
simultaneous EV charging. At the same time, smart charging
can help to stabilize the fluctuations in the production from
local renewable energy sources (RES). This article introduces a
receding horizon optimization model for the distributed control
of EV chargers at charging stations, focusing on maximizing the
profit of the charging station, while enhancing the utilization
of local PV generation. The proposed model operates in 5-
minute intervals, determining the power reference for the EV
cluster at the charging station. Results demonstrate that the
proposed model effectively lowers electricity cost for charging
stations, while ensuring more than 90% energy delivery for
charging EVs. Future research will be focused on integrating
wind energy and refining the model in controlled lab tests for
practical implementation and validation.

Index Terms—electric vehicles, receding horizon, distributed
control, EV charging station

I. INTRODUCTION

An increase in the number of electric vehicles (EVs) on
the roads leads to higher power loading of grid infrastruc-
ture, necessitating costly system hardware upgrades. However,
smart charging can postpone these upgrades [1] by providing
grid flexibility through methods such as power sharing and
charging scheduling, among others. Smart charging can offer
grid flexibility services, mitigate fluctuations in local renew-
able energy sources (RES), and reduce electricity costs by
scheduling charging during lower-cost hours [2].

The greater part of smart charging research is focusing on
a centralized control architecture, where one global controller
dispatches the control signals to the chargers. Such control
has advantages in terms of straightforward implementation
and optimal operation, however it is exposed to several disad-
vantages: scalability problems, single-point failure prompting,
potential privacy corruption under cyber attacks. A decen-
tralized architecture mitigates all centralized issues, but may
be sub-optimal as each charger’s controller is stand-alone
in taking decisions and not getting any information from
other units. Distributed control is a combination of centralized
and decentralized architectures and brings advantages of both
while also ensuring the optimality and easier implementation
compared to decentralized one [3].

At the same time, receding horizon control is considered
one of the most successful optimal control strategies for
constrained systems [4]. In this approach, the system state
is continuously updated, and the computational unit produces
decisions for a set time horizon, which rolls forward in
real time. However, most receding horizon applications for
EV smart charging rely on centralized architectures [5], [6].
Additionally, the majority of research on receding horizon
with distributed architecture is done in other fields of power
system studies, such as building management [7] and hybrid
power plant management [8], among others. This study bridges
the gap between receding horizon optimization and distributed
control architectures for EV smart charging.

The remainder of this paper is structured as follows. Sec-
tion II describes the charging station setup. Section III details
the general model structure and presents the mathematical
formulation of the optimization problem. Section IV outlines
the studied scenarios, model inputs, and assessment metrics.
Section V presents the results of the developed model for
different scenarios. Finally, Section VI provides the conclusion
and discusses prospects for future model development.

II. CHARGING STATION SETUP

The researched charging station setup is illustrated in Fig-
ure 1. The charging station consists of six slow chargers with
a 22 kW power limitation per charger. Each charger has two
11 kW charging plugs. The charging station is connected to
the rest of the system through a point of cluster connection
(PCC) with an overall power limitation of 43 kW. The system
is further connected to the main grid through power trans-
former. Depending on the investigated scenario, the research
is conducted with presence and absence of a 60 kWp rooftop
PV system.

III. METHODOLOGY

A. General model structure

The structure of the model is shown in Figure 2. All
scripts within the light green frame are running with the
receding horizon method and are updated continuously. The
initial parameters and settings such as simulation time horizon,
optimization horizon, scenarios setups, and other auxiliary
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Fig. 1. The illustration of the charging station setup.

variables are set before the model run and thus lay outside
of the receding horizon light green frame. The model consists
of two sub-models: an upper-level and a lower-level model.
This corresponds to distributed control algorithms, where the
upper-level decides on a charging station level and the lower-
level on a chargers and plugs level. The model is structured for
running continuously, ready for further field test validations.

The sequential order of the model run is following: the
inputs (electricity prices, PV data, EV cluster data) are updated
and communicated to the upper-level model, which is a mixed-
integer linear programming (MILP) optimization model with
the objective to minimize costs. The upper-level optimization
allocates Pref (power reference) as a maximum limit of power
consumption for the whole charging station and communicates
it to the lower-level. The lower-level model dispatches allowed
Pref equally among the connected EVs in a power-sharing
fashion. It receives information about EVs from the EV
database which is updated on an event basis and checked
every model run (EV is connected, disconnected). An EV
will always comply with its maximum power limitations, and
therefore if dispatched power to this EV is higher than its
capability it will stick to its power limits.

To comply with EV energy requests, an anonymous feed-
back loop is introduced. In every model run, the lower-level
model calculates the minimum power necessary for each EV
to deliver 100% of the requested energy to the EV. The sum
of these power minima is sent to the upper-level model as a
minimum power floor for Pref allocation. The summed power
requirement is the only information flowing from the lower-
level model (and thus the EVs) into the upper-level decision.
The upper-level has no access to any inputs from EVs, helping
to ensure information security and avoid single-point failures,
which are key features of distributed control algorithms.

The receding horizon method is shown in Figure 3. From
the set dates of the simulation and the periodicity of runs (∆t),
the number of model run steps τ is calculated. This formulates
the simulation time horizon (t ∈ τ ). The optimization horizon
(h ∈ H) is the number of time steps the model foresees
into the future. The prices are considered 100% certain for
the model’s observation horizon as they are published on
the previous day [9]. Other model inputs are uncertain and
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Fig. 2. General model structure scheme.

therefore formulated with forecasts and measurements (PV
data, EV cluster data). Every ∆t minutes in simulation time
the upper-level model optimizes Pref for the charging station
for the current and future H steps. However, the model
implements only the first value of this vector, which is the
decision for the current step. Then, the horizon moves further.
The remainder of the Pref vector values are not needed as
long as the model runs without any issues. However, for future
considerations in the field model implementation of this setup,
if an error occurs, e.g. due to communication failure, the last
produced Pref decisions will be considered for the next H
time steps.
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Fig. 3. Receding horizon method scheme.

B. Mathematical formulation of optimization problem

The simulation time horizon and optimization horizon are
set to a week and six hours, respectively, with a five-
minute time resolution. Thus, the simulation steps are t =
1, 2 . . . τ = 1, 2 . . . 2016; and optimization horizon steps are
h = 1, 2 . . . H = 1, 2 . . . 73.

1) Constraints: Equations (1) – (4) represent transformer
power throughput variable P grid

t,h decomposition into the import
P import
t,h and export P export

t,h power variables as the system import
power from the main grid or exports excessive production into
it. These constraints also determine that import and export
can not happen simultaneously by introducing binary variables
f import
t,h and f export

t,h , and should not exceed the fuse limit of the
transformer in absolute values.



P grid
t,h = P import

t,h + P export
t,h ∀ t ∈ T, h ∈ H (1)

0 ≤ P import
t,h ≤ f import

t,h · Pmax
trafo ∀ t ∈ T, h ∈ H (2)

− f export
t,h · Pmax

trafo ≤ P export
t,h ≤ 0 ∀ t ∈ T, h ∈ H (3)

f import
t,h + f export

t,h ≤ 1 ∀ t ∈ T, h ∈ H (4)

Constraint (5) is the power balance constraint of the system,
where P ref

t,h is a main output variable of the optimization, P PV
t,h

is PV data input, P grid
t,h is transformer throughput. Equation

(6) constrains the decision variable within the permissible
power limits, where the lower limit is set by the lower level
control as power request from chargers to comply with energy
delivery for the cars and upper limit is the same as transformer
limit of 43 kW. The constraints (7) and (8) compute the
energy that will be charged into the vehicles with the power
distribution of power reference decided at the current time step
and implemented within the remaining time, and enforces the
satisfaction of the energy requirement. Formula (9) calculates
the energy requirement by summing forecasted power profiles
of the charging station P forecast

t,h over the optimization horizon.

P ref
t,h = P PV

t,h + P grid
t,h ∀ t ∈ T, h ∈ H (5)

Pmin
t,h ≤ P ref

t,h ≤ Pmax
t ∀ t ∈ T, h ∈ H (6)

Ecluster
t =

∑
H

P ref
t,h ·∆t ∀ t ∈ T, h ∈ H (7)

Erequired
t ≤ Ecluster

t ∀ t ∈ T (8)

Erequired
t =

∑
H

P forecast
t,h ·∆t ∀ t ∈ T, h ∈ H (9)

2) Objective function: The objective function aims to min-
imize electricity costs for charging station:

min
∑
H

(C import
t,h · P import

t,h + Cexport
t,h · P export

t,h ), (10)

where C import
t,h is a total import price including spot price and

variable grid tariffs, while Cexport
t,h is only the spot price. Thus,

local renewable excess production is sold at a lower price than
drawing energy from the grid.

IV. SCENARIOS AND METRICS

A. Model inputs

In Figure 2, the inputs depicted inside the receding horizon
frame are continuously updated: electricity prices, PV data,
EV cluster data and EVs database. Electricity prices are based
on spot prices from the Danish bidding zone DK2 (Eastern
Denmark) [9] and dynamic grid tariffs [10]. The data on
solar PV comprise a daily persistence forecast and actual
PV measurements. Within the model optimization horizon,
the current PV measurement is fixed for next thirty minutes
of model observation as the most probable power output
value. A description on the PV data composition is detailed
in a previous work [11]. The EV database is a summary of

recorded charging sessions at a charging station at DTU Lyn-
gby Campus. The EV database includes arrival and departure
times, maximum power consumption capability of individ-
ual EVs, and their energy requests. The EV cluster power
consumption forecasts (provided by INESC-ID, Portugal) are
obtained for one week in summer (August) and one week in
winter (January), using the recorded charging sessions of the
DTU charging station. The machine learning algorithm used
for the obtaining the forecasts is a Light Gradient Boosting
Machine (LightGBM) algorithm and the metric used for its
performance evaluation is the Normalized Root Mean Square
Error (NRMSE). A detailed explanation of the forecasting and
the results is presented in [12].

B. Investigated scenarios

The introduced model is tested with the three scenarios
presented in Table I. All scenarios have been run for a
simulation horizon of one week in both summer (August
1st − 8th 2023) and winter (January 1st − 8th 2023) and hence
allow for a performance evaluation with different levels of
PV production, prices and EVs presence. The scenarios are
applied to the upper-level model as a key research component
of this study, while the lower-level model always remains a
power sharing model.

TABLE I
SCENARIOS OVERVIEW COMPARISON

Cost
minimization

Cluster
power limit

RES
integration

Scenario 0: Uncontrolled charging × ✓ ×
Scenario 1: Cluster limit ✓ ✓ ×
Scenario 2: RES integration ✓ ✓ ✓

Scenario 0: Uncontrolled charging serves as a reference
case for the model assessment. In this scenario the cost
optimization is excluded and Pref is fixed to the cluster limit
of 43 kW. In Scenario 1: Cluster limit, the cost optimization is
introduced, and therefore Pref is constantly updating through-
out the model run. Scenario 2: RES integration is directed at
the optimal operation of the charging station connected not
only to the main grid but also local RES, specifically solar
PV in this study.

C. Metrics

The metrics along which the model performance is assessed
are:

• Energy delivery fulfilment to individual EVs (in %)
• Electricity cost of cluster operation (includes expenses of

purchasing from the grid and revenues from selling to the
grid, in C)

• Total profit of charging station (EVs payments for deliv-
ered energy with 0.34 C/kWh minus electricity cost, in
C)

• Self-sufficiency and self-consumption of the EV cluster
(in %). Self-sufficiency defines the share of energy de-
livered to EVs from local PV production, while self-
consumption defines the share of PV production con-
sumed locally by EVs [13].



V. RESULTS AND DISCUSSION

The simulations were performed for both summer and
winter weeks. However, due to space limitations, only the
summer results are presented graphically. Specifically, two
days from each week were selected for illustration: the 2nd and
3rd of August, 2023. Additionally, Scenario 0: Uncontrolled
Charging is only included in the metrics since no price or
PV dependency is observed in this case. Nevertheless, the
final metrics comparison encompasses all four scenarios for
the entire weeks in both summer and winter.

A. Scenario 1: Cluster limit
Figure 4 shows the results for Pref allocation of the model

for the two selected days of the summer week. The figure
structure is the same for all scenarios: the top plot shows
Pref with Pmin

ref (Pmin
t,h in optimization formulation terms) and

cluster limit; the middle plot illustrates Pref together with
electricity prices and aggregated power consumption of the
EVs; and the bottom plot provides the power consumption of
each EV charging on a specific day. The model fully follows
the price signals considering the minimum power request
from the EVs (Pmin

ref ) and power consumption forecasts. Thus,
the model allocates most power for EV charging during the
cheapest hours, with a foresight of prices for the next six hours.
When EVs are present at the charging station, the upper-level
model receives the Pmin

ref signals, forcing it to allocate at least
Pmin
ref for EVs to fulfill their charging needs in the connection

time, despite prices being higher. The spikes of Pmin
ref are

due to the approaching departure time of the individual EVs
and their respective charging power needs to increase with
shrinking remaining charging time. Finally, the model never
sets Pref above the cluster limit of 43 kW, and therefore fully
complies with the set grid connection limit.

Fig. 4. Simulation results of Scenario 1: Cluster limit. Summer week case:
2nd and 3rd of August, 2023

B. Scenario 2: RES integration

The results of Scenario 3 are shown in Figure 5. This
scenario introduces the possibility to use a local PV system in
the power reference allocation algorithm. The PV production is
in this scenario considered without cost for local consumption,
and the production measurements are displayed in orange
in the top plot of Figure 5. The power reference follows
the measured PV production where economically reasonable.
During the day, a large part of the PV production is exported
to the grid whenever it exceeds the consumption of the EV
cluster to generate revenue for the charging cluster operator. As
the considered workplace charging processes tend to coincide
with the bell curve of PV production, most of the charging
is covered by local generation, leading to a self-sufficiency of
up to 76.9% in the summer week.

Fig. 5. Simulation results of Scenario 3: RES integration. Summer week
case: 2nd and 3rd of August, 2023

C. Scenario comparison

Table II provides the full assessment of scenarios for both
summer and winter weeks. First, the control model performed
well in all scenarios with regards to the fulfillment of energy
requests from EVs, considering that the allowed cluster power
at 43 kW is only one-third of the sum of the total installed
charger power (132 kW). Both Scenario 1: Cluster limit and
Scenario 2: RES integration deliver more than 90% of EVs
requested energy, which is quite close to full delivery and to
the reference case of Scenario 0: Uncontrolled charging.

The economic assessment is conducted using several met-
rics. The electricity cost is the sum of electricity import
expenses and export income. The export income only applies
to the RES integration scenario as the EV chargers are uni-
directional and cannot export power. Compared to Scenario 0
electricity cost is reduced by 12% in summer and 7.5% in



TABLE II
SUMMER AND WINTER ASSESSMENT OF ALL SCENARIOS.

Summer
Uncontrolled
charging

Cluster
limit

RES
integration

Delivery, % 99.1 91.3 91.9
Electricity cost (positive: income), C -70.9 -62.4 36.2

Import expenses, C -70.9 -62.4 -18.1
Export income, C 0.0 0.0 54.2

EVs payments income, C 232.2 214.0 215.3
Total profit, C 161.3 151.6 251.5

Self-sufficiency, % - - 76.9
Self-consumption, % - - 27.3

Winter
Uncontrolled
charging

Cluster
limit

RES
integration

Delivery, % 99.5 91.7 91.7
Electricity cost (positive: income), C -196.6 -181.8 -156.0

Import expenses, C -196.6 -181.8 -157.8
Export income, C 0.0 0.0 1.8

EVs payments income, C 359.8 331.4 331.4
Total profit, C 163.2 149.6 175.4

Self-sufficiency, % - - 13.0
Self-consumption, % - - 84.3

winter for Scenario 1, and by 151% in summer and 21% in
winter for Scenario 2. The reduction of electricity cost more
than 100% means that the export income is larger than import
expenses in summer week for Scenario 2. Electricity costs are
higher in the winter week compared to the summer week due
to higher electricity prices during this period and increased
EV consumption, as more EVs are charged. The electricity
export income from the PV system is significantly higher in the
summer than in the winter week, as there is more excessive PV
power. Despite the reduced electricity costs, the total profit for
Scenario 1 is lower than that for Scenario 0 in both seasons.
This is related to the reduced energy delivery for EVs (91.3%
instead of 99.1% for the summer week and 91.7% instead
of 99.5% for the winter week), leading to a decrease in EV
payment income. While Scenario 2 shows greater total profit
than Scenario 0, the initial capital cost of PV installation must
be considered. Based on [14], the cost for a 60 kWp rooftop
PV system is C800 per kWp. Extrapolating annual profits
from the summer and winter weeks, the payback period is
around 4.32 years. This does not account for potential savings
from the PV system’s contribution to the building’s electricity,
which is beyond the scope of this study but would further
improve the economics of Scenario 2. The high summer PV
production allows the system to have self-sufficiency of 77%
meaning that most of the charged energy is coming from PV
system. The 27% of self-consumption indicate that the system
has extensive potential for consuming generation locally and
allowing to have more consumption. However, the situation is
flipped for the winter week as there is almost no excessive
PV generation present in the system. Therefore, most of the
energy charged to the EVs is coming from grid import power
which is indicated by self-sufficiency of 13%. The majority of
PV is consumed locally, with a self-consumption of 84%.

VI. CONCLUSION

This paper introduces a receding horizon optimization
approach for the distributed control architecture of electric

vehicle chargers at charging stations. This method unlocks the
potential for continuous deployment of smart charging with an
economic objective while ensuring scalability, optimality, and
robustness compared to other control architectures. Hence, de-
spite limited and anonymous information from EVs, the model
ensures more than 90% fulfillment of EVs’ energy requests.
Additionally, it reduces electricity costs for charging stations,
especially unlocking economic potential for those connected
to local RES. Nevertheless, total profits need to be addressed
and improved further by integrating EV payments into the
objective function of the model. Further research will focus
on exploring flexibility services for the grid, integrating wind
power as a local generation source, and field test validation of
the model.
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