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Abstract

We present an open-source web-based system, called Open V2X Management Platform (O-V2X-MP), which facilitates the man-
agement of charging points for electric vehicles with the goal of realizing Vehicle-to-Everything (V2X) scenarios. First, we describe
its backend, which comprises several components connected through a microservices architecture leveraging Docker containers.
Then, we elaborate on its frontend, which provides numerous functionalities for common users (i.e., EV drivers) and administra-
tors. Finally, we demonstrate its data analytics capabilities, showing that O-V2X-MP can seamlessly integrate AI pipelines from
the Python ecosystem. In particular, we examine two tasks of particular interest for charging point operators: (i) the clustering of
EV drivers into profiles of predictable behavior, and (ii) the prediction of the overall daily load for each individual charging station.
In our experiments, we use proprietary and public real-world data, verifying the high effectiveness achieved in both tasks.
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1. Introduction

In the energy sector, vehicle-to-everything (V2X) is the vi-
sion of leveraging electric vehicles (EVs) as a means of improv-
ing grid stability by taming the stochasticity of renewable en-
ergy resources [1]. V2X is actually a broad vision that includes
specialized scenarios like vehicle-to-grid (V2G) [2], where EVs
act as a mobile energy storage, charging and discharging to the
power grid. Indeed, treating a fleet of EVs as a huge battery
can help balance grid load, reduce emissions, and even provide
emergency power during outages [3]. V2X also plays a crucial
role in demand-response scenarios, which manage electricity
demand, particularly during peak periods when the grid is un-
der stress; the goal is to incentivize consumers (EV drivers in
our case) to reduce their electricity consumption, by shifting the
charging of their vehicles to off-peak times [4].

As a major charging point operator (CPO), Public Power
Corporation strives to realize the V2X vision by making the
most of the largest network of EV chargers in Greece, with
more than 2,000 charging stations nationwide1. Maintain-
ing this large network of EV chargers is a complex task that
involves a wide diversity of technical challenges. To ad-
dress them, the R&D group of PPC has been developing an
open-source, web-based Charging Station Management System
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1Please refer to https://www.deiblue.gr for more details.

(CSMS) that supports V2X scenarios, called Open V2X Man-
agement Platform (O-V2X-MP). This platform enables the re-
mote control, monitoring, and maintenance of charging sta-
tions. It can also retrieve remote diagnostics, detailing the
charger’s health status, real-time availability, and audit logs. To
the best of our knowledge, O-V2X-MP is the first open-source
CSMS platform with a wide range of value-added services like
advanced cyber-security mechanisms and data analytics on top
of the transactional data gathered from the EV chargers.

We provide a thorough description of O-V2X-MP, delving
both into its backend and frontend. At its core lies the Open
Charge Point Protocol (OCPP)2, which specifies the commu-
nication between the platform and the charging points. O-V2X-
MP supports the latest version of OCPP, 2.0.1 [5], which offers
more advanced features, like additional smart charging func-
tionalities, improved transaction handling, and device manage-
ment. It also provides backward compatibility for chargers im-
plementing earlier OCPP versions, like the popular 1.6 [6].

The O-V2X-MP backend comprises several individual com-
ponents that are effectively integrated through a microservices
architecture. We visualize this architecture through the C4
model [7], which unfolds four levels:

1. At the highest level, it elaborates on the principal entities
engaged with the platform, such as the EV users and the
platform manager (see Section 4.1).

2. At the second level, it delves into the auxiliary services that
support the O-V2X-MP platform and the communications
between them (see Section 4.2).

2Please refer to https://openchargealliance.org/protocols/

open-charge-point-protocol for more details.
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3. At the third level, it zooms into the interior of the O-V2X-
MP platform, providing details about the modules it encom-
passes (see Section 4.3).

4. The lowest level focuses on implementation details like
UML and entity relationship diagrams, but is omitted for
brevity.

The frontend of O-V2X-MP satisfies a series of non-
functional and functional requirements. The latter are distin-
guished into three types:

1. The generic ones, which apply to all types of accounts and
include the authentication and the overview of charging sta-
tions along with their daily tariff and capacity schedules and
the corresponding weather conditions.

2. The user ones, which are crafted for EV drivers and in-
clude the registration form, the update of their preferences
and most importantly, the routing recommendations and the
charging history management.

3. The administrator ones, which are crafted for CPOs and per-
tain to the update of charging station information (i.e., their
location and their technical characteristics), to the live mon-
itoring of charging stations and their sessions as well as to
the manual specification and update of tariffs.

These functionalities are demonstrated through a video
that is available at: https://www.youtube.com/watch?v=

FzjwQQ0XEKI&ab_channel=EV4EUDashboard. The source
code of the O-V2X-MP backend is publicly available at https:
//github.com/EV4EU/ov2xmp and of the O-V2X-MP fron-
tend at https://github.com/EV4EU/ov2xmp-gui. Both
repositories will be maintained for at least the next five years,
in the context of PPC’s R&D program.

We also focus on the value-added services that equip O-V2X-
MP with unique characteristics. These services are mostly of-
fered by the data analytics module, which allows for combining
any ML model from the Python ecosystem into pipelines that
provide insights into the data gathered by the platform. This
is demonstrated through extensive experiments involving real,
operational data. Two use cases are experimentally examined:

1. The clustering of EV drivers into meaningful user profiles
that allow for predicting their behavior.

2. The prediction of the demand for the energy to be delivered
by each charging station for the day ahead.

Both tasks are crucial for forecasting the overall load in a net-
work of charging stations, ensuring the stability of the energy
grid.

To sum up, O-V2X-MP is the first open-source platform that
combines OCPP with a wide range of value-added services like
data analytics on top of the transactional data gathered from
EV chargers. To this end, O-V2X-MP comprises numerous in-
dividual components that are effectively integrated through a
microservices architecture. We delve into its backend and fron-
tend in Sections 4 and 5, respectively, while Section 6 exper-
imentally evaluates two data analytics services. We conclude

our work with a brief discussion about the future extension to
the O-V2X-MP platform in Section 7.

2. Preliminaries

OCPP constitutes a standardized communication protocol
designed to facilitate seamless data exchange between EV
chargers and a CSMS. Developed and maintained by the Open
Charge Alliance (OCA)3, OCPP has been established as an
open-source protocol, ensuring vendor neutrality and fostering
interoperability within the EV charging infrastructure.

In summary, OCPP defines a message structure and a set of
functionalities that govern the communication flow between EV
chargers and the CSMS. This enables:

1. Monitoring and Control: The CSMS can remotely monitor
the status of EV chargers, including power delivery, connec-
tor availability, and fault conditions. Additionally, control
commands can be issued to initiate, stop, or schedule charg-
ing sessions.

2. Metering and Billing: OCPP facilitates the exchange of en-
ergy consumption data between the EV chargers and the
CSMS, enabling accurate metering and subsequent billing
of EV drivers.

3. Plug & Play Compatibility: An OCPP-compliant EV
charger can seamlessly integrate with any OCPP-compliant
CSMS, regardless of the specific vendor.

The O-V2X-MP platform supports the two main versions of
the OCPP protocol: v1.6 [6] for smart charging scenarios, and
v2.0.1 [5] for V2X scenarios.

2.1. OCPP 1.6

This version was released in 2015 and remains widely de-
ployed, constituting the de-facto standard implemented by com-
mercial EV chargers, due to its robust feature set and its low
complexity. The O-V2X-MP platform supports all OCPP 1.6
operations. In fact, the following OCPP 1.6 messages [6], com-
ing from the EV charger, can be processed by the O-V2X-MP:

• BootNotification: It runs during the initiation of the charging
station to signal its availability to the CSMS and to provide
information about its capabilities.

• Heartbeat: It is periodically transmitted by the charging sta-
tion to confirm its operational status and connection to the
CSMS.

• StatusNotification: It notifies the CSMS about the status of
the charging station.

• Authorize: It is a command issued by the charging station to
the CSMS, whenever a customer plugs their EV to initiate
the customer authorization process.

3https://openchargealliance.org
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• StartTransaction: It initiates the charging session, after user
authorization, conveying details about the charger, the cus-
tomer, and the charging parameters.

• StopTransaction: It notifies the CSMS about the termination
of the charging session, including relevant details.

• MeterValues: It retrieves the current energy consumption of
the charging station.

• Notification messages like DiagnosticsStatusNotification and
FirmwareStatusNotification.

Moreover, the O-V2X-MP platform can use the following
OCPP 1.6 messages [6]:

• Reset: It is used for restarting an EV charger.

• RemoteStartTransaction/RemoteStopTransaction: Issued by
the EV user to start and stop an EV charging transaction
through an app (e.g., a mobile app like eMSP – see Section
4.1).

• ReserveNow: Issued by the CSMS, on behalf of the EV user,
to reserve an EV charger connector.

• CancelReservation: Used to cancel a reservation.

• ChangeAvailability: Used by the CPO to manually change
the availability of an EV charger (e.g., to render it unavailable
for preventing EV users from using it).

• ChangeConfiguration: It is used for changing a configuration
parameter on the targeted EV charger.

• ClearCache: Clears the authorization cache of the targeted
EV charger.

• UnlockConnector: Manually unlocks an EV charger connec-
tor.

• GetConfiguration: Retrieves the value of one or multiple
configuration parameters from an EV charger.

• GetCompositeSchedule: Retrieves the composite schedule of
the given duration.

• ClearChargingProfile: Deletes a charging profile from the
targeted EV charger.

• SetChargingProfile: Sets a charging profile to the targeted
EV charger and connector.

• GetDiagnostics: Instructs the EV charger to upload log files
to a specific HTTP or FTP server.

• UpdateFirmware: Instructs the EV charger to download a
firmware upgrade from a specific HTTP or FTP server.

• TriggerMessage: Instructs the EV charger to send a specific
OCPP message to the CSMS.

• GetLocalListVersion: Retrieves the version of the local au-
thorization list installed on the EV charger.

• SendLocalList: Sends a new local authorization list to the
specified EV charger.

2.2. OCPP 2.0.1

First released in 2020, this remains the latest version of
OCPP, conveying the numerous enhancements and additional
functionalities. More specifically [5]:

• It offers advanced authorization techniques, such as remote
transactions, PIN-Code, ISO 15118 Plug & Charge, Simple
start button, Credit/debit card, Server-generated ID.

• It eliminates the need for a dedicated Virtual Private Net-
work (VPN) tunnel between the EV charger and the CSMS
as a means of ensuring security and encrypted communica-
tion. Instead, data packets are encrypted at the protocol level,
inherently providing a secure connection.

• It incorporates security profiles for authentication, security
logging, secure firmware updates, and security event log no-
tifications.

• It minimizes the messages exchanged between the EV
charger and the CSMS, thereby reducing data usage.

• It enables EVs to request the desired amount of energy in
kilowatt-hours (kWh). This way, the CSMS is aware of the
energy needs per EV, adjusting charging outputs accordingly.

Most importantly, OCPP 2.0.1 supports smart charging sce-
narios through the following commands:

• ReserveNow: It enables an EV user to reserve a specific
charger for a designated period of time.

• CancelReservation: It revokes a reservation made by the pre-
vious command.

• GetCompositeSchedule: It retrieves a plan of the charging
station’s availability for a specific time period. This plan in-
cludes its current state, the planned maintenance, and any
existing reservations of the charger.

• SetChargingProfile: It defines a charging profile for a spe-
cific time period, which is crucial in V2G applications with
variable charging rates.

Note that these commands appear as part of OCPP 1.6, too,
but their implementation in OCPP 2.0.1 has been enhanced,
with every message distinguished into Request and Response
Protocol Data Unit.

2.3. Related Works

O-V2X-MP supports both OCPP 1.6 and 2.0.1. In this re-
spect, the work most relevant to ours is SteVe4, an open-source
CSMS that implements all versions of OCPP up to 1.6, enabling
simple smart charging scenarios. Its backend is implemented in
Java, and its frontend in JavaScript. However, SteVe has the
following limitations:

4https://github.com/steve-community/steve
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Figure 1: The System Context diagram of the O-V2X-MP platform.

• Its architecture is intricate and hard to extend with new mod-
ules and functionalities.

• It cannot support OCPP 2.0.1 without substantial modifica-
tions to its backend.

• It offers no value-added services on top of the transaction
data.

• It lacks any effective cybersecurity mechanisms.

Our goal is to go beyond SteVe through an extensible open-
source platform that leverages the Python AI ecosystem to
combine the OCPP 2.0.1 functionalities with advanced ser-
vices like data analytics and resilience mechanisms. Note that
O-V2X-MP is equipped with advanced cybersecurity mech-
anisms, which ensure the confidentiality, availability and in-
tegrity of the sensitive information handled by the platform, but
we omit them, as they are analyzed in a separate work [8].

3. System Overview

The O-V2X-MP platform was designed and developed such
that it meets the following non-functional requirements:

1. Scalability with respect to the number of users and the num-
ber of integrated charging stations.

2. High efficiency (i.e., low run-times) so that all operations are
carried out without delays.

3. Modularity to enhance the reuse of core components, reduc-
ing the code base and facilitating its maintenance.

4. Extensibility to reduce the development effort and time for
adding new functionalities that are necessary for the smart
charging and V2X scenarios of the EV4EU demos.

5. Usability in the sense that it enables users and administrators
to perform any operation with a few clicks. Special care has
been taken to support novice EV drivers that have no expert
knowledge.

The first two requirements are met through a zero-
intelligence interface, which moves all complex functionalities
(e.g., joins between database tables) to the backend. The next
two are met by the microservices architecture of the backend, as
discussed in Section 4, while the last one is met by the intuitive
user interface described in Section 5.

4. Backend

We now present the architecture of the O-V2X-MP backend,
based on the C4 model [7],

a set of abstractions and diagrams that facilitate the descrip-
tion of the inner architecture of complex software systems. Fol-
lowing it,

the O-V2X-MP is analysed with the help of the following
three diagrams:

1. The System Context diagram, which depicts the users and
the external systems that interact with our CSMS.

2. The Container diagram, which provides a high-level
overview of the CSMS architecture, highlighting how the
responsibilities are distributed across the individual compo-
nents and how they communicate with one another.

3. The Component diagram, which delves into a specific con-
tainer and identifies its major structural building blocks and
their interactions.

We elaborate on each diagram in a separate subsection below.
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4.1. System Context View
Figure 1 depicts the system context diagram of O-V2X-MP,

which involves the following primary entities:

1. The EV user, i.e., a driver who is using the O-V2X-MP plat-
form in order to find the nearest and cheapest charging sta-
tions to charge their cars as well as to manage their payments
and charging history.

2. The CPO user, who owns and manages the charging sta-
tions that have been registered to the platform. The goal
is to ensure that the chargers are operational, and available
around the clock. This encompasses tasks such as regular
remote and on-site maintenance, diagnostics, price settings,
and point-of-interest data management.

3. The Platform Manager, who administers the O-V2X-MP
system. This entails maintenance duties (e.g., observation of
the overall health of the O-V2X-MP services, troubleshoot-
ing and restart of services) as well as deployment and con-
figuration of O-V2X-MP.

4. The eMSP5 user, who is responsible for the mobile app that
is typically used by EV users to connect to a charging sta-
tion. The role of eMSP is to provide EV charging services to
drivers by offering access to multiple charging points within
a geographic area. To this end, the eMSP user manages the
authentication credentials of drivers that are used for autho-
rising EV charging transactions (e.g., their RFID card IDs).

O-V2X-MP interacts with the following external systems:

1. The Authentication Backend is an external directory or
database of the organisation operating O-V2X-MP, which
stores all the users accessing the O-V2X-MP. This backend
can be an LDAP server or an Identity Provider compliant
with the OpenID Connect protocol.

2. The DSO Support System is the platform operated by the re-
gional or national Distribution System Operator (DSO). Its
purpose is to monitor and control the electric power distribu-
tion network, ensuring that the distribution system operates
safely and within its technical limitations. This interaction
involves the DSO operator, an external user who represents
the DSO and is responsible for managing the DSS.

4.2. Container View
Figure 2 depicts the container diagram of O-V2X-MP. Ac-

cording to the C4 model, a container represents an applica-
tion or a data store. It is a software that runs independently
and needs to be running for the whole system to work as in-
tended. Note that the C4 model definition clearly highlights
that its containers should not be confused with Docker contain-
ers (even though the latter share many similarities with the for-
mer). Therefore, Figure 2 depicts the containers based on the
C4 model approach.

5eMSP stands for eMobility Managed Service Provider.

The containers of O-V2X-MP are distinguished into two cat-
egories: (i) the essential ones, which comprise the core of the
O-V2X-MP system that is responsible for managing the EV
charging stations, and (ii) the auxiliary ones, which facilitate
the operation of O-V2X-MP and provide management options
to the Platform Manager and the CPO user.

The essential containers are the following:

• OCPP Server: This service handles all the connections with
the EV charging stations. It is the main interface of O-V2X-
MP with the EV charging stations, allowing O-V2X-MP to
get the real-time status from the EV charging stations as well
as to issue OCPP commands on them. Two are the major
technologies implementing this service:

1. the Python Sanic framework6, which is a versatile and ro-
bust HTTP2/WebSocket webserver, and

2. the mobilityhouse/ocpp7 Python package, which imple-
ments the OCPP 1.6 and 2.0.1 protocols.

• O-V2X-MP Core: It provides all the web-based services to
the O-V2X-MP users. It stores the state of the system, in
terms of EV charging stations and EV users, and establishes
the associations/relationships between the various entities of
the system, in terms of Django models. It is implemented
with the Python Django framework8.

• Task Manager: It is responsible for executing asynchronous
tasks, e.g., for issuing requests to the EV charging stations
and for getting the results. The tasks are submitted through
the O-V2X-MP core. The technology of this service is based
on the Python Celery framework9.

• Relational Database: It provides permanent storage of the
O-V2X-MP Django models, mainly related to the associa-
tions/relationships behind the O-V2X-MP core entities. The
enabling technology is PostgreSQL 10.

• Internal Message Broker: Based on Redis11, this service en-
ables the Django backend to create and feed WebSocket end-
points, which can be consumed by the platform’s frontend or
third-party applications.

The following containers provide auxiliary services:

• Database Manager: Based on pgAdmin12, this is a web-
based GUI that allows the Platform Manager to inspect the
contents of and administer the database, troubleshooting, or
correcting possible issues and inconsistencies.

• Docker Manager: Based on Portainer13, this is a web-based
GUI that allows the Platform Manager to inspect and manage

6https://sanic.dev/en
7https://github.com/mobilityhouse/ocpp
8https://www.djangoproject.com
9https://github.com/celery/celery

10https://www.postgresql.org
11https://redis.io
12https://www.pgadmin.org
13https://www.portainer.io
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Figure 2: The Container diagram of the O-V2X-MP core and its auxiliary services.

the Docker containers comprising O-V2X-MP, supposing
that the containers are deployed using Docker. Through the
GUI, the logs of each docker container can be inspected in
real-time, while individual docker containers can be stopped
and started on demand.

• File Datastore: This is a file storage to be utilised by the EV
charging stations. Through the HTTP file server or the FTP
server, an EV charging station can upload log files or down-
load a specific firmware. Regardless of the protocol (HTTP
or FTP), this is the single storage that the EV charging sta-
tions can access.

• HTTP File server: Allows EV charging stations to upload
files via HTTP POST requests or download files via HTTP
GET requests. By default, basic user authentication is ap-
plied, with the EV charging station providing the correct cre-
dentials in order to perform any request. This container has
been implemented using the Python Sanic framework.

• FTP Server: Allows EV charging stations to upload or down-
load files via FTP. This container has been implemented us-
ing a custom Python script.

• File Browser: Based on the open-source FileBrowser
project14, it allows the CPO user to gain user-friendly ac-
cess to the contents of the file datastore through a dedicated
web-based GUI. Through this container, the CPO user can
easily upload a new firmware file that should be downloaded
by the EV charging stations using HTTP or FTP. Moreover,
the CPO user can easily download a log file uploaded by an
EV charging station via FTP or HTTP.

• Log Manager: Based on Logstash15, this service processes
the system logs sent by O-V2X-MP (e.g., Django logs, OCPP
messages) and dispatches them to multiple destinations.

14https://github.com/filebrowser/filebrowser
15https://www.elastic.co/logstash

6

https://github.com/filebrowser/filebrowser
https://www.elastic.co/logstash


Figure 3: The Component diagram of the O-V2X-MP platform.

• Document-oriented Database: Based on Elasticsearch16, this
database provides permanent storage for the platform logs.

• Log Viewer: Based on Kibana17, this is a web-based GUI
application that visualises the contents of the document-
oriented database storing the O-V2X-MP logs. Through cus-
tom visualisations, the Platform Manager and the CPO user
can observe statistics about the O-V2X-MP operation, in-
spect the logs and detect possible issues on the EV charging
stations or on the O-V2X-MP operation.

4.3. Component View
Figure 3 depicts the component diagram of O-V2X-MP,

analysing its two major containers: the O-V2X-MP Core (on
the left) and the OCPP Server (on the right) – the auxiliary ser-
vices discussed in Section 4.2 are not analysed with component
diagrams, given that they are used without any further changes.

The OCPP server consists of the following components:

• HTTP2/WebSocket server: This is the entry point of the
OCPP server. When a new HTTP request comes in, spec-
ifying the OCPP 1.6 or 2.0.1 subprotocols, the server cre-
ates a new Python mobilityhouse ChargePoint16 or Charge-
Point201 object, respectively, by using the Python Web-
Socket object that corresponds to the new connection. The
new object is saved into a Python list, which can be accessed
at anytime by the rest of the OCPP server components.

16https://www.elastic.co/elasticsearch
17https://www.elastic.co/kibana

• EV Charging Stations: This component refers to the Python
list that contains the objects representing the EV charg-
ing stations of the mobilityhouse library. The classes of
those objects (ChargePoint16 and ChargePoint201) inherit
the ocpp.v16.ChargePoint and the ocpp.v201.ChargePoint
classes respectively. The Python lists are attached to the
ctx object of the Sanic app, and thus they can be globally
accessed at anytime by other code blocks of the process.
The ChargePoint16 and ChargePoint201 subclasses imple-
ment the custom logic of O-V2X-MP for handling incoming
OCPP messages and passing arguments to OCPP requests
initiated by the CSMS. For example, the objects of those
classes authenticate an RFID tag when an OCPP 1.6 Autho-
rize message is received and, depending on the outcome, they
send an “Accepted” or “Rejected” response. These classes
are the glue between the OCPP server and the Django-based
O-V2X-MP core. Since the classes import the Django set-
tings file, they can use the Django Object-Relational Mapper
(ORM) to update the Django model instances, propagating
the changes back to the relational database of Django. For
any update concerning an EV charging station, the compo-
nent uses the unique ID of the EV charging station to update
the corresponding model instance of Django via the Django
ORM Python interfaces.

• REST API: This component is a collection of REST API end-
points served by the HTTP2/WebSocket server. These end-
points allow Django to utilise CSMS-initiated OCPP com-
mands. By using the unique ID of the targeted EV charging
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station, the Django backend sends an HTTP POST request
to the endpoint of the desired OCPP command (the POST
request includes all the necessary parameters of the OCPP
command). The REST API of the OCPP server retrieves the
corresponding Chargepoint object in the ctx list and sends
the OCPP command through the correct WebSocket session.

• Log Handler: This component sends all Python logs, mainly
including OCPP messages, to the Log Manager (Logstash).

The components of O-V2X-MP Core are the following:

• ASGI Server: Based on the Daphne web server18, this is the
entry point for the users accessing the web services of the O-
V2X-MP. Daphne serves the web pages and views of Django.
It also supports WebSocket, allowing Django to create Web-
Socket endpoints and other Python components to send dy-
namically new data. For example, the OCPP server can feed
a WebSocket endpoint with new meterValues concerning an
ongoing transaction. The WebSocket endpoints can be used
by frontend components to get and visualise the live feed of
data transmitted by the backend components.

• User Management: This component encompasses all the
functionalities relevant to users and permissions. Multiple
categories of users are granted access the Django system,
however, their access permissions are limited depending on
their role. For example, a Platform Manager can access every
aspect of O-V2X-MP (superuser access), an EV user can ac-
cess only their transactions, etc. Moreover, this component
can associate the users with external identities provided by
an LDAP server or Identity Provider. For Single-Sign-On,
the OpenID-Connect protocol is supported.

• EV Charging Infrastructure Management: This component
corresponds to the Django models that represent the EV
charging infrastructure. The users utilise the Django models
to get the current status of the infrastructure, e.g., the avail-
able EV charging stations, their connectors and their loca-
tions. The models are automatically updated by the OCPP
server.

• Charging Profiles Management: This component allows the
creation and management of charging profiles. The charg-
ing profiles follow the OCPP 1.6 and 2.0.1 formats, and they
can be applied at any time by the CPO to any connected EV
charging station.

• Transactions Management: This component maintains all
the EV charging transactions, be it ongoing, failed or com-
pleted. Moreover, it allows only users with the appropriate
privileges to see the transactions. For example, the eMSP
user can see all transactions, while an EV user accesses only
their own transactions.

• Billing Engine: This component maintains the tariffs and cal-
culates the Charge Detail Record (CDR) of a transaction.

18https://github.com/django/daphne

When a transaction is finished, the Billing Engine processes
it and generates the corresponding CDR, which is used to bill
the eMSP for using the EV charging station. The tariffs al-
low the nuanced assignment of cost rates, such as utilizing
the AC cost rate for AC charging connections and the DC
charging rate for DC charging connections. This dynamic
tariff management structure facilitates a flexible and adapt-
able cost framework. O-V2X-MP can create cost rates for
the following categories:

– One-time charging session fee.

– Consumption-based fee for the charging session (price per
kilowatt-hour, kWh).

– Time-based fee for the charging session.

– Combinations of the aforementioned fees.

The CDR encapsulates the details of a concluded charging
session and stands as the sole billing-relevant object. A CDR
is the cumulative Session object combined with pertinent tar-
iff information. Following a successful charging session, the
CPO transmits a CDR to the eMSP associated with the reg-
istered driver. The eMSP subsequently collects the payment
from the driver and remits the difference to the CPO.

• Reservation Management: This component manages the
reservations created by the EV users, who book a specific
EV charging station for a specific timeframe in the future.
Each time a user creates a reservation, a corresponding OCPP
command is issued to the appropriate EV charging station,
and a Django model instance is created.

• REST API: This component provides access to all Django
models and available OCPP commands, through a RESTful
API that is publicly exposed. Its purpose is to offer all the
possible interactions for operating O-V2X-MP, thus decou-
pling the backend from the frontend. This approach allows
the independent development of web-based frontend applica-
tions or mobile apps. Moreover, it is possible for third-party
applications to interact with the O-V2X-MP for specific pur-
poses, e.g., creation and installation of charging schedules by
the DSS. In terms of security, this REST API is protected by
JSON Web Token (JWT) authentication and authorisation.
The application or user that needs access to the API, issues a
JWT token by providing their username and password. Then,
for all requests, they use the JWT token instead.

• Swagger Page: This is a web page that provides a user-
friendly interface for accessing the REST API based on
Swagger19. Every time the user accesses this page, Django
dynamically generates the OpenAPI specification of the
REST API, by processing the Python source code with the
help of the Django REST Framework. Then, the OpenAPI
specification is visualised in this page.

19https://swagger.io
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• Task Manager: This component is responsible for managing
asynchronous tasks. When an asynchronous task concerning
the execution of an OCPP command is submitted through
the REST API, the task manager submits the task through
the Python Celery framework. The component monitors the
progress of the task and returns the results by updating the
Task instance (Django model).

• Predictive Analytics: This component trains and applies AI
pipelines to the data stored in the Relational Database of O-
V2X-MP (see Figure 2) to extract insights from the registered
users and EV chargers. As an example, consider the task ex-
amined in Section 6.2, where the goal is to forecast the fu-
ture energy consumption of an EV charger. The component
receives the options about the preferred AI model and the ID
of the EV charger. Then, pre-defined Django queries are ex-
ecuted to retrieve recent historical data, on which the model
is trained. As output, the component provides its forecasts.

• Log Handler: This component sends asyn-
chronously all Python logs to Logstash, utilising the
python-logstash-async Python library20.

5. Frontend

The O-V2X-MP dashboard
is a dynamic and multifunctional web application that lever-

ages the Node.js runtime environment21 along with the Vue.js
JavaScript framework22. These frameworks were combined
through the VRISTO template23. To cover all functional re-
quirements, the dashboard incorporates the following libraries:

• Leaflet24 for rendering maps,

• Leaflet Routing Machine25 for adding routing capabilities,

• Windy26 to display weather information on the map,

• Axios27 for handling HTTP GET/POST requests, and

• the AES library from CryptoJSf28 for encrypting sensitive
content in GET/POST methods using Axios.

By integrating these libraries and frameworks, the O-V2X-
MP dashboard ensures a robust, secure, and user-friendly expe-
rience for two types of accounts: (i) the EV drivers, and (ii) the
CPOs. For short, the former accounts are simply called users
and the latter administrators. In this context, the functional
requirements are distinguished into three categories: (i) those
targeting both user types, (ii) those applying exclusively to EV
drivers, and (iii) those crafted for CPOs. We elaborate on each
category in the following.

20https://pypi.org/project/python-logstash-async
21https://nodejs.org
22https://vuejs.org
23https://vristo.sbthemes.com
24https://leafletjs.com
25https://www.liedman.net/leaflet-routing-machine
26https://www.windy.com/
27https://axios-http.com
28https://www.npmjs.com/package/crypto-js

Figure 4: The platform’s (A) sign in, and (B) sign up forms.

5.1. Generic functionalities
The following operations are common to both administrators

and common users:

• Account authentication: The basic login functionality for ac-
cessing the platform. Password reset is supported. The cor-
responding menu is shown in Figure 4A.

• Charging station overview: Any account can view and select
any of the available charging stations to inspect its precise
location and technical characteristics (i.e., number, type and
nominal power of sockets). Quite crucial are also the follow-
ing two aspects:

1. The tariff schedule, which determines the overall charging
cost. Tariffs are dynamic, with a different value for each
hour within the day, because they depend on the power
generation of renewables (RES). In fact, in demand re-
sponse scenarios, the objective is to promote green charg-
ing, aligning the charging load of EVs with RES power
generation by lowering the tariffs accordingly.

2. The capacity schedule, which determines the power that
can be delivered to an EV per hour of the day. Note that
the DSO can save capacity for other services by procur-
ing and activating contracts with the CPO that reduce the
capacity of specific charging stations for the day ahead
or even in real-time (with a pre-determined cost). This
way, the DSO reduces the constraints on the distribution
system in cases with excessively high loads. For exam-
ple, this might involve halving the power of EV chargers
(e.g., from 22kW to 11kW), which inevitably doubles the
duration of the charging sessions.

The O-V2X-MP GUI provides this information by devoting
the central, largest part of the screen to a map, centralized
to the location of the user, as it is determined by the (ap-
proximate) information provided by the browser based on
the client IP. See Figure 5A for an example. Note that ev-
ery charger near this location is indicated through a marker,
whose colour indicates its status: green denotes active charg-
ing stations, orange indicates charging stations that are un-
available, i.e., occupied by another EV driver, and red stands
for charging stations that are out of order or out of capacity.
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Figure 5: The O-V2X-MP dashboard’s (A) main menu, (B) weather prediction, and (C) routing instructions.

• Weather prediction: The map visualizing the location of
the charging stations can be enriched with a prediction of
weather conditions, as shown in Figure 5B. These conditions,
which are extracted for free from Windy29, are critical, be-
cause they typically affect the capacity of the battery and,
thus, the charging time.

These generic operations complement the type-specific ones
described below, ensuring a holistic set of operations for both
user types.

5.2. User functionalities
The main operations offered to EV drivers are the following:

• Sign Up: Users can easily register to the platform for free.
To minimize the volume of sensitive information that is pro-
cessed by the O-V2X-MP platform, the registration requires
only the following information from the user, as shown
in Figure 4B: (i) e-mail address, (ii) password, (iii) tar-
iff preference, which indicates the maximum charging cost
that the EV driver is willing to pay (i.e., chargers with a
higher cost are automatically excluded from the charging

29https://www.windy.com/

point overview), and (iv) EV power type, which indicates
the charging connector type of the user’s EV (e.g., CCS2 or
CHAdeMo). Optionally, the users can also provide their first
and last names. Even though no personal information is re-
quired, the user content is stored in encrypted form by the
User Management Component (cf. Section 4.2), using the
AES standard [9], which offers high levels of security.

• User preferences: Users can update the main personal pref-
erences that were filled in during registration, i.e., the tar-
iff preference and the EV power type (see Figure 6A). In
general, all user information can be updated, except for the
email, which acts as the unique identifier of user accounts.

• Routing Options: Users can navigate to the most suitable
charging station. Three characteristics of the available charg-
ers determine this decision:

1. their tariffs,

2. their capacity, and

3. their location.

The first two characteristics are provided through the charg-
ing station overview presented in Section 5.1. For the third
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Figure 6: (A) Updating user information, and (B) visualizing user charging
statistics.

characteristic, the O-V2X-MP dashboard offers routing in-
structions between any two points indicated by the user: the
start location can be selected either automatically, through
the location lookup based on the IP address, or manually, by
clicking on the desired location. Similarly, the destination
location is selected by a subsequent click on the desired lo-
cation that does not necessarily correspond to an EV charger.
Alternatively, the user can type in an exact address in the
Start and Destination fields respectively. As shown in Fig-
ure 5C, the routing instructions are quite detailed, including
the overall distance and the estimated travelling time, thus
facilitating users to plan their trip. Live routing instructions
can also be provided through Google Maps: after selecting
the start and destination locations, the user simply presses
the “Open in Google Maps” button, which initiates the GPS-
based navigation.

• User history: Users can observe their charging statistics
through intuitive diagrams, such as those in Figure 6B.
Charging history is instrumental for EV drivers that rely on
public charging stations with varying prices. By monitor-
ing their charging costs, they can budget for their mobil-
ity expenses and compare the costs across different stations
or times of day in order to identify the most affordable op-
tions. Understanding when and where charging is most cost-
effective can help drivers to optimize their charging sched-
ules. A detailed charging history also facilitates EV drivers
to identify the root cause of charging issues that may arise,
e.g., due to a faulty charger, a problem with their EV or their
batteries, or even an error in the charging settings.

All user interactions are highlighted in Figure 7.

5.3. Administrator functionalities

The main operations offered to CPOs are the following:

1. Charging station management: CPOs can view, modify, add
and delete entire charging stations as well as individual sock-
ets (i.e., connectors). The information about the available
charging points is automatically updated whenever a new
EV charger connects to the OCPP server. For safety rea-
sons, this can be manually carried out, too. To this end,
the O-V2X-MP dashboard allows for updating all fields de-
scribing a particular EV charger. The fields are organized
into two groups: (i) those pertaining to the location of the
charger, shown in Figure 8A, and (ii) those pertaining to its
technical characteristics, shown in Figure 8B. The adminis-
trator can alter any of these fields.

2. Real-time monitoring: CPOs need to continuously monitor
the status of the charging stations and their charging sessions
in order to ensure their availability and uptime, preventing
downtimes that frustrate EV drivers and loose revenues for
the charging station owners. Monitoring also helps CPOs
to identify and address issues with charging speeds, power
delivery, and overall efficiency with the aim of improving
the experience of EV drivers. Indeed, customer satisfaction
and loyalty can be enhanced by quickly identifying and re-
solving issues faced by users (like charging errors, network
problems, and payment failures). Finally, monitoring con-
tributes to the detection and prevention of cyberattacks, pro-
tecting user data and financial information. An example of
the monitoring diagrams provided by the O-V2X-MP plat-
form is depicted in Figure 8C.

3. Tariff management: CPOs can adjust tariffs in real-time, a
crucial operation in the context of smart charging infrastruc-
ture that relies on variable tariffs. By specifying the tariffs
for particular charging stations and regions, as shown in Fig-
ure 9, CPOs can examine the impact of charging cost on the
behaviour of EV drivers. This is crucial for attracting more
users and maximizing revenue.

4. DSO integration: CPOs are responsible for maintaining a
real-time connection with DSO support systems to imple-
ment the smart charging scenarios on demand. For example,
in case there is increased solar or wind power generation in
a specific area that exceeds the corresponding demand, the
DSS can notify the O-V2X-MP platform to lower the tariffs
in nearby charging stations in order to maximize the green
energy consumption.

5. User management: CPOs can create, view, update and delete
user accounts.

6. Data Analytics: CPOs have access to machine and deep
learning pipelines that process the data gathered from the
charging sessions in order to make predictions, facilitat-
ing decision making. As an example, consider Figure 10,
which demonstrates the prediction for the power delivered
(in KWh) by a specific charger (Charger 4 in Table 2) per
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Figure 7: Summary of the main user functionalities: (A) log in, (B) search for the nearest EV chargers, (C) get directions for the selected charger, (D) start charging,
after having plugged the EV, and (E) complete the charging session.

Figure 8: (A) Updating the location information of a specific charger, (B) up-
dating the technical characteristics of a specific charger, and (C) monitoring the
power to be delivered by a specific charger.

day in January 2024, using as training data all its past charg-
ing sessions (i.e., up to December 31st, 2023). Note that the
blue line indicates the actual values measured for this pe-
riod, thus illustrating the high accuracy of our LSTM-based
prediction model (see Section 6.2 for more details).

These functionalities are designed to facilitate the efficient
management and maintenance of the O-V2X-MP backend
through a reliable and user-friendly interface. Note that there
is no interface for registering administrators, unlike the sign-up
form for end users, because CPOs are added only through the
O-V2X-MP backend, for security reasons.

Figure 9: Menu for tariff declaration by CPOs.

6. Experimental Analysis

We now demonstrate the capabilities of the data analytics
module of the O-V2X-MP platform. We actually examine two
tasks: (i) the clustering of EV user profiles in Section 6.1, and
(ii) the prediction of load per EV charger in Section 6.2.

Dataset. In both tasks, we employ the following four
datasets: (i) DPPC comprises all charging sessions from June
2022 to January 2024 in a network of 1,116 EV chargers
throughout Greece, owned by Public Power Corporation. (ii)
DPS DN collects data from a research institution located in
Pasadena, California, which has installed 55 EV chargers in a
campus garage open to the public, with faculty, staff, and stu-
dents accounting for most of the usage [10]. (iii) DLCND gathers
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Table 1: Dataset with real charging sessions.
Original DPPC Clean DPPC DPSDN DLCND DSV

Time period May 31, 2022 - January 31, 2024 April 25, 2018 - September 14, 2021 September 5, 2018 - September 14, 2021 March 3, 2019 - September 14, 2021
#chargers 1,116 1,063 55 52 8
#municipalities 234 198 N/A N/A N/A
#charging sessions 131,535 131,186 31,424 33,640 1,683
Overall load consumed 2.021 GWh 2.015 GWh 0.291 GWh 0.473 GWh 0.029 GWh
Overall duration 268,060 hrs 250,388 hrs 484,680 hrs 568,008 hrs 34,992 hrs

Figure 10: Delivered power (in KWh) per day in January 2024, both in reality
(blue line) and as a forecast (orange line).

data from a national research lab located in La Canada, Cali-
fornia, with 52 EV chargers available exclusively to employ-
ees [10]. (iv) DS V consists of data from an office building in
the Silicon Valley area, where 8 EV chargers are used solely
by employees [10]. The technical aspects of these datasets are
summarized in Table 1.

To ensure the robustness and reliability of our analysis, we
cleaned the data by removing the chargers that were opera-
tional for a single day. We also remove the transaction records
with missing, noisy or outlier values. As such, we consider the
records where the delivered power is higher than that of the cor-
responding EV charger or higher than the maximum battery ca-
pacity in EVs sold in Europeand the USA. These steps prevent
skewed results caused by outliers or incomplete data. For DPPC ,
the cleaning reduced the dataset to 1,063 chargers with reliable
and representative data for our experimental study. This clean-
ing had a minor impact on the number of charging sessions,
on the overall duration and on the consumed load, as shown in
the third column of Table 1. There was no change in the other
datasets, given that they were curated before their release [10].

6.1. EV profiles clustering

6.1.1. Problem Definition
A useful value-added service offered by the O-V2X-MP plat-

form is the support for running data analytics on its transaction
data to gain insights into the behavior of EV users. This is il-
lustrated through the unsupervised task of clustering charging
transactions into user profiles.

More formally, this task can be defined as follows:

Problem 1 (User Profile Clustering). Given the set of charg-
ing sessions gathered by O-V2X-MP, group them into a limited
set of balanced, disjoint clusters with interpretable behavior.

The above definition aims to avoid two kinds of results:

1. A large set of cohesive clusters, which are hard to compre-
hend, due to the minor differences in their feature/behavior.

2. A limited set of cohesive clusters, where one of them con-
tains the vast majority (i.e.,≫90%) of the charging sessions,
dominating all others.

Both results are common when using common effectiveness
measures (see below), but provide no insights into the behav-
ioral patterns of EV users. Instead, the resulting profiles should
be relatively balanced, with a substantial portion of charging
sessions per cluster, while involving a significant deviation
in the considered features, and while being interpretable, so
that they allow for an a-priori prediction of the power demand
throughout the network of EV chargers maintained by the CPO.

Evaluation Measures. To assess the effectiveness of the result-
ing clusters, we use the following two measures [11]:

• For the Davies-Bouldin index, smaller values, closer to zero,
mean better performance, as clusters are well separated and
each one is well represented by its centroid.

• The Silhouette Coefficient takes values from −1 to +1, with
higher values indicating more precise clustering, i.e., most
records are well matched to their own clusters and poorly
matched to neighboring ones.

6.1.2. Solution
To address Problem 1, O-V2X-MP implements a Ma-

chine Learning pipeline that leverages the Python data science
ecosystem, comprising the following steps:

• Data cleaning excludes transactions with missing, noisy or
outlier values, as described above.

• Feature engineering defines the following attributes to be
used by the clustering algorithms [12]:

F1) the timestamp of the plug-in time, also termed “connect
time”

F2) the timestamp of the plug-out time, also termed “discon-
nect time”

F3) the total plug-in duration, i.e., F2 − F1, the time the
EV was parked and plugged into the EVSE (also called
sojourn time),

F4) the total volume of delivered power (in KWh),

13



Figure 11: Davies-Bouldin index scores per clustering algorithm over DPPC for
different number of clusters (k).

F5) the idle time, when the EV was parked and plugged into
the charging station, without consuming energy, i.e.,
F3 − F6.

F6) the charging time, which is indirectly computed in the
case of DPPC as Energy Delivered

max Power per EVSE×0.8 , while being di-
rectly estimated in the case of the other datasets, based
on the timestamp at the end of charging,

F7) max P per EVSE (kW), the maximum power capacity of
the EVSEs (this is available only in DPPC).

Note that we disregard features that do not contribute to the
detection of patterns in EV user behavior like user names or
ids. Note also that we applied min-max normalization to all
the features, restricting them to the [0-1] range.

• Clustering is applied to the resulting dataset to split it into
disjoint clusters. We opted for the following four clustering
algorithms, implemented by scikit-learn30, version 1.3.2:

A1) K-Means [13] randomly selects an initial set of cluster
centers, assigns each instance to its closest center and
iteratively updates the cluster centers and the cluster as-
signments until convergence. It is the top performer al-
gorithm for this task in [12].

A2) K-Means++ [14] selects better initial cluster centers,
improving the initialization step before proceeding with
the standard K-Means optimization iterations.

A3) K-Medoids [15] enhances K-Means by using actual
points as cluster centers, instead of the mean of the
cluster instances. It is more robust to noise and out-
liers, minimizing the sum of dissimilarities rather than
squared distances.

A4) Balanced Iterative Reducing and Clustering using Hi-
erarchies (BIRCH) [16] is a Hierarchical clustering al-
gorithm designed to efficiently handle large datasets. It
builds a tree structure that summarizes the data points,
allowing for quick, hierarchical clustering.

30https://scikit-learn.org

Figure 12: Silhouette scores per clustering algorithm over DPPC for different
number of clusters (k).

Note that the functionality of the above algorithms is quite di-
verse, but is solely configured by k, i.e., the number of the final
clusters, which is given as input. Therefore, we optimize their
performance through a grid search for the best k. Note also that
for all other configuration parameters, we employ the default
values provided by the scikit-learn implementation. The only
exception is that we set the threshold of the Birch algorithm to
0.2 – this parameter dictates that the radius of the subcluster
obtained by merging a new sample and the closest subcluster
should be less than the threshold, otherwise a new subcluster
is started. Finally, it is worth stressing that in datasets with a
high number of charging sessions, the KMedoids algorithm is
applied to a random sample of 25,000 instances, due to memory
limitations.

6.1.3. Experimental Results
In the following, we applied our pipeline through the O-

V2X-MP platform on the datasets of Table 1, using grid search
to consider all values for k in the range of [2, 15] – we omit
DPS DN , due to the quite unstable behavior with respect to k that
is exhibited by all clustering algorithms.

DPPC. Figure 11 reports the Davies-Bouldin index.
KMedoids and KMeans++ generally yield larger scores than

the other methods, particularly for smaller k values, suggesting
relatively poor clustering performance. In contrast, KMeans
and BIRCH retain lower Davies-Bouldin scores for most cluster
sizes, while showing a more steady decreasing trend as k rises.

The Silhouette Coefficient in Figure 12 verifies these results,
with BIRCH achieving the greatest silhouette scores for smaller
cluster counts (2-4), while having the most stable trend and
the best average score. BIRCH is followed by KMeans and
KMeans++, which show very similar performance with each
other and perform relatively well for most k values. KMedoids
exhibits again the lowest silhouette scores overall, especially at
k = 8, when its performance significantly declines.

Overall, we can conclude that BIRCH typically outperforms
the other clustering algorithms, with KMeans following in close
distance. It is worth gaining insights into its best clusters, i.e.,
those defined for k = 4. Apart from their high Silhouette Coef-
ficient and their low Davies-Bouldin index, another advantage

14

https://scikit-learn.org


Figure 13: The distribution of charging sessions belonging to the four clusters created by BIRCH for k = 4 in DPPC with respect to: (a) the idle time – feature F5,
(b) the starting time – feature F1, (c) the ending time – feature F2 and (d) the duration of charging sessions – feature F6.

is that their number is low, while the distribution of sessions
among them is not extremely skewed: the cluster sizes range
from 2.0% and 6.4% for Clusters 3 and 1, respectively, to 22.4%
and 69.2% for Clusters 2 and 0, respectively. Most importantly,
these clusters are interpretable, as shown in Figure 13.

Starting with Figure 13(a), we observe that Cluster 2 exhibits
very low idle time (feature F5), Clusters 0 and 1 much larger
idle times, and Cluster 3 the longest by far idle times. Figure
13(b) shows the distribution for feature F1. We observe that all
clusters typically charge their EVs during daytime, except for
Cluster 3 whose charging sessions typically start late in the day.
Similar patterns appear in Figure 13(c), which corresponds to
feature F2, i.e., the end time of charging sessions. The only
exception is that most sessions of Cluster 3 terminate early in
the morning, which indicates overnight charging, while a small
part of the sessions belonging to the other clusters terminate
at midnight. Regarding the duration of the charging sessions
(i.e., Feature F6), Figure 13(d) shows that the shortest corre-
spond to Cluster 2, followed by Cluster 0 and 1, with Clus-
ter 3 corresponding to the largest by longest charging sessions,
as expected. The same patterns correspond to the total plug-
in duration and, thus, the distribution for feature F3 is omitted
for brevity. No clear patterns appear in the other two features,
which are also omitted for brevity.

On the whole, we can conclude that Cluster 3 corresponds
to long, typically overnight charging sessions, with high idle,

in contrast to Cluster 2, which includes very short charging
sessions during daytime, with almost no idle time (e.g., dur-
ing shopping). Cluster 0 involves longer charging sessions
with higher idle time during daytime, probably during work-
ing hours. Cluster 1 pertains to longer charging sessions with
more idle time later in the day, e.g., during post-work activities.

DLCND. Figure 15 reports the Davies-Bouldin index. We ob-
serve that BIRCH consistently obtains the lowest scores and,
thus, the highest effectiveness for k > 4. KMeans performs
better only for the lower number of clusters, i.e., k ∈ [2, 4].
KMeans++ is quite unstable for k ≤ 6, exhibiting the high-
est scores in most of these cases. It stabilizes, though, as the
number of clusters increases, exhibiting scores that are close to
KMeans, but lower than KMedoids. Finally, KMedoids stabi-
lizes to relatively high scores from k = 4 on, which eventually
become the lowest ones after k = 7. This indicates that it creates
least cohesive clusters among all algorithms.

Similar patterns arise from the Silhouette Coefficient in Fig-
ure 16. BIRCH exhibits again the highest effectiveness for
k ≥ 4, with the best score achieved for k = 4. KMeans also per-
forms well, especially for k ∈ [4, 10], where it occasionally pro-
duces scores comparable to BIRCH (e.g. for k = 8), exceeding
KMeans++ and KMedoids. The scores of KMeans++ scores
fluctuate significantly, particularly for lower k values, indicat-
ing less consistent performance; for k > 6, its scores slightly
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Figure 14: The distribution of charging sessions belonging to the four clusters created by BIRCH for k = 4 in DLCND dataset, with respect to: (a) the charging time
– feature F6, (b) the “connect time” – feature F1, (c) the “disconnect time” – feature F2, (d) the idle time – feature F5.

Figure 15: Davies-Bouldin index scores per clustering algorithm over DLCND
for different number of clusters (k).

improve, obtaining competitive results at higher values. KMe-
doids exhibits the highest score overall (for k = 2), albeit for an
utterly unbalanced clustering that provides no real insights. For
k > 3, its scores drop significantly, consistently ranking last for
k ∈ [7, 15]. In other words, it generates the least well-defined
clusters in this dataset.

Overall, BIRCH produces the most effective clusters
throughout a wide range of cluster numbers (k), exhibiting a
relatively steady performance for k ≥ 4. It is typically followed

Figure 16: Silhouette scores per clustering algorithm over DLCND for different
number of clusters (k).

in close distance by KMeans, especially for intermediate cluster
numbers. KMeans++ and KMedoids are less successful, espe-
cially for lower values of k. These patterns are consistent across
both evaluation measures.

To gain more insights into the best clusters, we define as opti-
mal configuration the BIRCH algorithm for k = 4. This config-
uration exhibits a relatively low score for the Davies-Bouldin
index in combination with a very high Silhouette Coefficient,
while the configurations with an even higher score produce ex-
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Figure 17: Silhouette scores per clustering algorithm over DS V for different
number of clusters (k).

tremely skewed clusters. This is not the case with the selected
configuration, since the cluster sizes range from 0.1% and 0.9%
for Clusters 2 and 0, respectively, to 19.3% and 79.7% for Clus-
ters 1 and 3, respectively. Most importantly, these clusters are
interpretable, as shown in Figure 14.

We observe that for the charging time (F6), the two smaller
clusters (0 and 2) correspond to rather short sessions. In con-
trast, the largest cluster (3) exhibits a right-skewed distribu-
tion concentrated between 0.1-0.4, indicating that most charg-
ing sessions are relatively short to medium length. The medium
cluster (1) exhibits a long right tail, extended beyond 0.6, which
represents less frequent but longer charging sessions. Given
that the same cluster conveys a concentration around 0.1, its
users reflect a mixture of “top-up” charging behavior of short
duration, and occasional full charging sessions of longer dura-
tions. The right skew might also indicate that while most users
need relatively quick charges, there’s still a significant num-
ber who require longer charging times, possibly due to different
battery capacities or starting charge levels.

Major differences between the four clusters are also observed
in terms of the “connect time” (F1). The charging sessions of
the largest cluster peak at 0.5, with an almost normal distribu-
tion around it. This suggests a very consistent behavior, where
a large number of users tend to connect their vehicles at similar
times, indicating a mid-day charging behavior (around noon).
For the rest of the clusters, there’s also a notable concentration
around 0.8-0.9, which represents evening charging sessions.

The typically short charging sessions of the largest clusters
are reflected in the “disconnect time” (F2) and the idle time
(F5). The former is concentrated shortly after noon, signaling
that most sessions are terminated at most a couple of hours af-
ter their initialization. That’s why the idle time is zero for the
almost 2/3 of these charging sessions. Nevertheless, 1/3 of the
sessions terminate early in the morning, accounting for larger
idle times. The other clusters exhibit lower idle times, even
though most of their sessions terminate early in the morning.

In short, our approach yields two rather small clusters that
correspond to outliers and two larger clusters with distinctive
behavior. Most EV drivers of the larger cluster charge their
EVs in short time, around noon, while the rest are more likely
to charge for a long time, later in the evening.

Figure 18: Davies-Bouldin index scores per clustering algorithm over DS V for
different number of clusters (k).

DSV. The Davies-Bouldin index is reported in Figure 18.
BIRCH consistently achieves the lowest (by far) scores for al-
most all k values, except for k = 2. Its scores are particularly
low at k = 4 and remain steadily low, indicating a rather effec-
tive separation of charging sessions into meaningful clusters.
KMeans performs also well, with generally stable scores close
to 1. Its lowest value also corresponds to k = 4, but remains
much higher (and thus worse) than that of BIRCH.

KMeans++ follows a similar pattern as KMeans, but is less
stable, exhibiting slightly greater fluctuation, particularly at
lower values for k. KMedoids underperforms all other algo-
rithms for most cluster numbers, exhibiting the lowest effec-
tiveness. These patterns are verified by the Silhouette Coeffi-
cient in Figure 17. Kmeans, Kmeans++ and KMedoids achieve
the same highest score for k = 2, which for the last two stems
from a trivial, highly unbalanced clustering. For k ≥ 3, though,
BIRCH consistently outperforms them, with KMedoids ranking
last in all cases, while KMeans and KMeans++ are consistently
located in the middle of these two extremes.

Overall, DS V shows a pattern similar to DPPC and DLCND:
BIRCH typically outperforms the other clustering algorithms,
with KMeans following in close distance, while KMeans++
and KMedoids exhibit consistently lower cluster cohesiveness.

As the optimal configuration, we designate KMeans with
k = 2, because it yields the highest Silhouette score overall and
a relatively low Davies-Bouldin index score, while producing
relatively balanced clusters – the larger one involves 69% of all
charging sessions. Most importantly, the resulting clusters are
interpretable, as shown by the feature distribution in Figure 19.

We see that the “connect time” (F1) differs substantially, with
the EV drivers of the large cluster typically starting their charg-
ing sessions around noon - shortly after 12.00. Instead, most
users of the small cluster usually start charging in the afternoon
or even in the evening. In terms of the delivered power (F4), the
large cluster shows a strong peak near the lower end, indicating
sessions with minimal energy delivery. In contrast, the smaller
cluster has a broader spread, suggesting more varied energy de-
mands. Idle time (F5) peaks at zero in the vast majority of
charging sessions, especially for those of the large cluster, indi-
cating that users disconnect quickly after charging. The smaller
cluster, though, includes customers who keep their vehicles in-

17



Figure 19: The distribution of charging sessions belonging to the two clusters created by KMeans for k = 2 in DS V with respect to: (a) the “connect time” – feature
F1, (b) the delivered power – feature F4, (c) the idle time – feature F5, and (d) the charging time – feature F6.

active for longer periods of time. Finally, the charging time
(F6) reveals that the users of the large cluster consistently have
rather short sessions, whereas those of the small cluster have
a wider spread, probably due to a mix of regular short charges
and occasionally longer charges.

Overall, there are two different user behaviors: the large clus-
ter represents EV drivers who charge early, briefly, efficiently
and for less power, whereas the small cluster contains users
with much longer periods of time that consume more energy.

6.1.4. Conclusions
Our clustering methodology allows for extracting useful in-

sights from the charging sessions stored in the O-V2X-MP
database. It yields user profiles that reveal when EVs are typ-
ically charged, for how long, how much energy every charg-
ing session typically consumes, how long an EV occupies the
charger even without charging etc. This information facilitates
CPOs to schedule various aspects of charger maintenance, from
repairing them to predicting the energy demand per hour.

6.2. Charging Load Prediction

6.2.1. Problem Definition
The goal of this task is to forecast the demand per individual

EV charger based on its past charging sessions. This forecast is
critical, because it allows CPOs to schedule the maintenance of

the charging stations and, most importantly, to predict the idle
capacity per day in a network of charging stations, thus laying
the basis for dynamic capacity contracts with the DSO [17]. For
example, in days with an extremely high overall load, the DSO
can ensure the stability of the electrical grid by procuring and
activating the capacity contracts to lower the power delivered
by each charging station (e.g., from 22kW to 11kW).

More formally, we define this prediction task as follows:

Problem 2 (Day-ahead Charging Load Prediction). Given
the energy delivered by a particular charging station on a daily
basis for a specific time period, predict the load demand for
the day ahead so as to minimize the difference between the
prediction and the actual value.

Note that this is a univariate time series prediction task, given
that it exclusively considers the historical energy consumption
data (in kWh per day). We address it as a regression task that
uses as features the load of the last n days (i.e., n time steps).
In theory, we can apply a regression algorithm to the consump-
tion data of any charging station, but in practice, a forecast is
possible only for chargers with a sufficiently large transaction
history.

Evaluation Measures. All the above regression models are
evaluated with respect to the following measures [18, 19]:
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• The Mean Absolute Error (MAE) estimates the absolute dif-
ference between the actual and predicted load across all days
of the test set. In other words, it measures the average of the
prediction residuals.

• The Mean Squared Error (MSE) is the average of the squared
difference between the actual and predicted values across all
testing days. It measures the variance of the prediction resid-
uals.

• The Normalized Root Mean Squared Error (NRMSE) di-
vides the square root of MSE with the range of the predicted
values (i.e., maximum daily load - minimum daily load).
This is a normalized measure of the standard deviation of
prediction residuals.

• R2 is defined as 1 - MSE(prediction model)/MSE(trivial
model), where the trivial model always predicts the mean of
the target variable. Therefore, R2 represents the proportion
of the variance in the dependent variable, which is explained
by the prediction model.

The first three evaluation measures take positive values, with
lower scores indicating higher prediction accuracy. In contrast,
R2 always takes values lower than 1, with higher values indicat-
ing higher accuracy.

6.2.2. Solution
We address Problem 2 through the following regression al-

gorithms:

• Linear Regression (LR) [20], a basic, parameter-free statistic
model that estimates a linear relationship between the value
to be predicted and the features used.

• Long Short-Term Memory (LSTM) [21], a type of recurrent
deep neural network that is crafted for capturing long-term
dependencies and complex patterns from long sequences.

• Extreme Gradient Boosting (XGBoost) [22], an established
algorithm for learning a weighted ensemble of decision trees
through gradient boosting.

• Autoregressive integrated moving average (ARIMA) [23], a
common model of high effectiveness in short-term forecast-
ing over non-stationary time series, due to its ability to cap-
ture temporal trends.

These four models are quite diverse in nature, because our
goal is twofold: (i) to identify the most accurate prediction per
EV charger, and (ii) to gain insights into how the characteristics
of each time series affect the performance of each regression
algorithm. For all algorithms, we used the implementation pro-
vided by scikit-learn31, version 1.3.2.

31https://scikit-learn.org

Table 2: The charging stations from DPPC selected for load prediction.
Cha- Total Volu Total Dur- Total Total #Inactive
rger me (kWh) ation (hrs) Sessions Days Days
C1 42,849 2,775 1,748 610 45 (7.4%)
C2 39,730 719 1,376 604 126 (20.9%)
C3 67,231 5,363 4,156 610 7 (1.2%)
C4 123,044 3,494 4,623 610 10 (1.6%)
C5 32,212 5,823 2,757 610 17 (2.8%)
C6 43,892 1,079 1,743 608 61 (10.0%)
C7 48,009 3,124 2,694 610 34 (5.6%)
C8 28,684 6,104 2,568 610 11 (1.8%)

Total 425,652 28,481 21,665

Hyperparameter fine-tuning. The most critical decision is the
number of time steps that should be used as features for tackling
Problem 2. We performed preliminary experiments with

four time representative time steps: 1, 3, 7 and 15. The ex-
perimental results suggested that the best performance for each
regression algorithm and EV charger is achieved by the small-
est time step. Therefore, the input to Problem 2 for each EV
charger is its overall charging load during the previous day.

For the hyperparameter tuning of the considered regression
algorithms, we employed Optuna [24], an open-source library
with generic techniques to efficiently explore the configuration
space and optimize the parameters of any forecast model. The
only exception is Linear Regression, which is parameter-free.
The parameters that were considered in the fine-tuning process
along with the parameters that were selected for each charging
station are reported in Tables 3 and 7 (please refer to the scikit-
learn documentation32 for more details on each parameter).

Note that our LSTM consists of at least one and up to three
hidden layers as well as a final dense layer with a single unit,
which aggregates the outputs of the hidden layers. Therefore,
only the units of the hidden layers are fine-tuned as hyperpa-
rameters. Note also that there is a different domain for the units
of the first two hidden layers than those of the last one.

6.2.3. Experimental Results
DPPC. We selected the top-10 charging stations with the most
transactions and then merged the charging stations with the
same address, because they correspond to different sockets of
the same charger or to multiple chargers in the same location
(e.g., a parking lot, an airport etc). In both cases, the charging
load is randomly distributed among them and, thus, a prediction
model should treat them as a whole.

The end result of this cleaning process yielded the eight most
popular charging stations, whose technical characteristics are
summarized in Table 2. Note that they all involve at least 604
days of activity and that overall, they account for 21%, 11%
and 17% of the total load consumed, duration and number of
charging sessions, respectively, of the entire dataset in Table 4.

Finally, we define as testing set the 31 days in January, 2024,
with all prior information constituting the training set of each

32https://scikit-learn.org/0.21/documentation.html
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Table 3: The configuration parameters examined with grid search per regressor (on the left), and the selected values per charging station in Table 2 (on the right).
Parameter Domain C1 C2 C3 C4 C5 C6 C7 C8

#layers {2, 4} 4 3 3 4 3 4 3 3
#units per layer {30, 50}, step = 10 [50, 30, 50] [40, 50] [50, 50] [50, 40, 30] [50, 40] [40, 50, 40] [50, 50] [50, 40]
#units in last layer [15, 50], step = 5 45 50 50 25 20 45 50 20
Dropout rate

from 0.2 to 0.3
[0.27, 0.30, [0.23, 0.23, [0.28, 0.23, [0.22, 0.29, [0.30, 0.24, [0.25, 0.29, [0.28, 0.23, [0.28, 0.30,

per layer 0.29, 0.26] 0.22] 0.22] 0.26, 0.29] 0.23] 0.21, 0.27] 0.22] 0.20]
Learning rate from 10−6 to 10−3 0.0006 0.0003 0.001 0.0004 0.0009 0.0008 0.001 0.00003
Epochs from 10 to 250 77 86 76 183 237 178 199 150

Optimizer
(1):adam, (2):rmsprop, (3):sgd,

(1) (2) (1) (2) (2) (1) (1) (5)
(4):adagrad, (5):adamax

Batch size [1, 5] with step = 1 5 4 5 2 4 1 5 4
(a) LSTM

Objective
(1): squarederror, (2) (2) (2) (2) (2) (2) (2) (2)

(2): pseudohubererror
Evaluation metric (1):rmse, (2):mae, (3):mphe (3) (3) (3) (3) (3) (3) (3) (3)
Tree method (1):gpu hist, (2):gpu exact (1) (1) (1) (1) (1) (1) (1) (1)
Booster (1):booster, (2):gblinear (2) (2) (2) (2) (2) (2) (2) (2)
Max depth {9, 10} 10 10 9 10 9 10 10 9
Learning rate from 0.25 to 0.40 0.36 0.37 0.28 0.37 0.40 0.39 0.37 0.40
#estimators from 480 to 500 482 482 490 482 482 487 482 484
Subsample from 0.9 to 1.00 0.95 0.95 0.92 0.95 0.93 0.94 0.95 0.96
Colsample by tree from 0.9 to 1.00 0.99 0.99 0.94 0.99 0.95 0.91 0.99 0.91
Min. child weight {3, 4} 3 3 4 3 3 4 3 3

(b) XGBOOST
p from 0 to 10 10 3 7 10 9 7 0 10
d from 0 to 4 0 0 4 0 0 2 0 0
q from 0 to 10 3 1 2 1 6 10 4 9

(c) ARIMA

charging station. As a result, the training set of the selected
chargers comprises 573 to 579 total values.

The regression algorithms were fine-tuned on each charger of
Table 2 based on the maximization of the R2 metric. The corre-
sponding performance per algorithm and charger is reported in
Table 4. We observe that no single model consistently outper-
forms all others across all datasets. Yet, for each charger, the
top performing model excels with respect to all four evaluation
measures.

Interestingly, despite hyperparameter tuning, Linear Regres-
sion outperforms the more complex models in several cases. In
fact, it is the top performer for C1 and C2, with its difference
from the rest of the models being statistically significant. The
least complex of the remaining models, ARIMA, also exhibited
high performance in many cases, dominating all other regres-
sion algorithms on two chargers, C5 and C6. Note though that
in the latter charger, its difference from LSTM is rather minor
(≪ 1% in most measures). In the rest of the charging stations,
the top performer is LSTM, with its superiority being statisti-
cally significant, albeit limited for C3 and C7. XGBOOST does
not surpass the other models in any of the charging stations, but
it consistently achieves competitive results, being close to the
top performance in most cases.

To illustrate the relative performance of the four regression
algorithms, Figure 20 depicts their predictions across all days of
the testing set (i.e., January 2024) for the two extremes of Table
4: C4, where most chargers make the most accurate predictions,
and C6, where most chargers are the least accurate.

The plot for C4 (on the left) reveals a strong competition be-
tween Linear Regression and LSTM, with the former outper-
forming LSTM on several days. However, LSTM dominates
Linear Regression on most days with high energy consumption.
XGBoost follows them in close distance, but the ARIMA model
struggled to follow these trends, predicting a value close to the
average one, thus resulting in the weakest by far performance.

Conversely, in the more challenging case of C6, Linear Re-
gression, LSTM and XGBoost demonstrate very similar per-
formance, which is however significantly lower than the ac-
tual consumption in almost all days. Instead, the forecasts
of ARIMA are consistently closer to the actual values, even
though they basically predict the mean value of the time series,
as indicated by the value of R2 in Table 4.

Overall, the forecasting behavior of XGBoost, Linear Re-
gression, and LSTM is closely related, with the first two pro-
ducing nearly identical predictions. LSTM typically outper-
forms them, while the ARIMA model exhibits a significantly
different behavior with nearly constant predictions.

ACF/PACF Analysis. To explain these patterns, we perform
an analysis of the complexity of the time series formed by the
overall load per EV charger in Table 2. Our goal is to iden-
tify the conditions that determine the performance of regression
models so that we can a-priori determine the best performing
one in each case. We actually compute the AutoCorrelation
Function (ACF) [25] and the Partial AutoCorrelation Function
[26] (PACF), which describe the overall and direct correlations
of lagged values, respectively.
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Figure 20: Daily predictions by all regression algorithms for the least and most challenging charging stations in Table 2, C4 (on the left) and C6 (on the right), resp.

Figure 21: Auto-correlation (ACF) and partial autocorrelation (PCF) for the least and most challenging charging stations in Table 2, C4 (left) and C6 (right), resp.

Figure 21 depicts the ACF of C4 and C6, showing positive
correlations across multiple lags in both charging stations. C4
stands out with high initial autocorrelation values that gradu-
ally decrease across all lags, indicating strong temporal depen-
dencies, suggesting the presence of trends or seasonal patterns.
These patterns justify along with the high effectiveness of most
regression models in Table 4. In contrast, C6 exhibits a rapid
decline in autocorrelation values, suggesting that its past values
have less influence over time. This indicates the presence of
shorter-term correlations rather than long-term dependencies.
This probably accounts for the low prediction accuracy of all
regression algorithms regarding C6, as shown in Table 4.

Regarding the PACF of both chargers, C4 shows a more
structured pattern, with several spikes suggesting the influence
of certain lags. This pattern indicates potential cyclic behavior
within the data, as the partial autocorrelation values gradually
decline over the time lags. This behavior contributes signifi-
cantly to the high accuracy of the prediction models in Table
4. In contrast, the PACF of C6 shows a less consistent pattern,
suggesting a more complex and potentially random data rela-
tionship, where the dependencies between time lags are not as
clearly defined. This justifies the low prediction accuracy of all
prediction models for C6 in Table 4.

ADF Analysis. These results suggested the need for further
investigation into the data nature of the time series dataset and
its impact on model performance. For this reason, we applied
the Augmented Dickey-Fuller (ADF) test [27]. Its goal is to
assess the stationarity (or not) of a time series by investigating
its statistical properties and hypothesizing the presence of a unit
root within the series, which serves as the null hypothesis. Note
that a time series is stationary if its statistical properties (e.g.,
mean, variance, covariance, and standard deviation) do not vary
with time or are not a function of time; in other words, time
series with trends or seasonality are not stationary, because their
values depend on the time of observation.

The ADF test provides a p-value that is compared to a sig-
nificance level typically set at 0.05 [28] [29]. It also provides
the ADF statistic and the critical values, which are also crucial

for validating the null hypothesis: if the p-value is less than 0.05
and the ADF statistic is more negative than the critical values of
1%, 5% and 10%, the null hypothesis can be rejected, indicat-
ing that the series is stationary. The results in Table 5 indicate
only C1 exhibits a stationary behavior. All other charging sta-
tions are non-stationary, which hampers their modeling, leading
to unreliable forecasts, given that the relationships between data
points changes over time.

Entropy Analysis. To shed more light on the complexity of
the time series of overall load per EV charger, we follow [30]
and compute the three entropy measures below:

• Spectral Entropy [31] transforms the given time series from
the time domain to the frequency one through the discrete
Fourier transform, providing information about the power of
each frequency component. It reaches its maximum when
the power is uniformly distributed across all frequencies, in-
dicating a white noise signal.

• Approximate Entropy [32] quantifies the regularity or unpre-
dictability in the time series, measuring the likelihood that
subsequences of the same length remain similar as the series
progresses.

• Sample Entropy [31] improves on approximate entropy by
disregarding self-matches, i.e., measuring the likelihood that
subsequences of the same length do not remain similar as the
series progresses.

For all entropy measures, values close to zero indicate no
variation (i.e., a stable time series), with positive values being
proportional to the randomness in the observed data. That is,
the higher all these entropies are, the higher is the complexity
of the corresponding time series. For the implementation of all
entropies we used the open-source Python library AntroPy33.

Note that we considered more entropies indicative of the
complexity of a time series like permutation [33] and shannon

33https://github.com/raphaelvallat/antropy
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Table 4: Forecasting performance of the fine-tuned regression algorithms over
the charging stations in Table 2. The best performance per evaluation measure
and charger is highlighted in bold.

Charger Regressor R2 MAE RMSE NRMSE

C1

LR 0.348 36.3 49.9 0.537
LSTM 0.311 37.2 51.3 0.552
XGBoost 0.342 36.5 50.1 0.539
ARIMA -0.003 46.2 61.9 0.666

C2

LR 0.215 45.2 61.4 0.498
LSTM -0.075 47.5 71.9 0.582
XGBoost 0.206 45.4 61.7 0.500
ARIMA -0.005 56.0 69.5 0.563

C3

LR 0.603 29.7 39.1 0.324
LSTM 0.680 26.3 35.2 0.291
XGBoost 0.647 27.8 36.9 0.306
ARIMA 0.028 49.8 61.3 0.508

C4

LR 0.843 45.2 47.4 0.125
LSTM 0.915 27.7 35.0 0.093
XGBoost 0.765 49.7 58.1 0.154
ARIMA -0.124 100.1 127.1 0.336

C5

LR -0.098 44.5 56.9 0.433
LSTM -0.133 43.5 57.8 0.439
XGBoost 0.001 41.8 54.2 0.413
ARIMA 0.115 41.0 51.0 0.388

C6

LR -0.075 52.2 64.3 0.500
LSTM 0.001 49.7 62.0 0.482
XGBoost -0.075 52.2 64.3 0.500
ARIMA 0.009 46.6 61.7 0.480

C7

LR 0.376 22.6 30.0 0.377
LSTM 0.390 22.2 29.7 0.373
XGBoost 0.372 22.7 30.1 0.379
ARIMA 0.003 28.5 38.0 0.477

C8

LR 0.012 21.2 24.7 0.739
LSTM 0.097 20.3 23.6 0.706
XGBoost 0.007 21.3 24.8 0.740
ARIMA 0.082 19.4 24.8 0.712

entropy [34], 2-Regimes Complexity [35] as well as the fre-
quentist binning approach [36]. Yet, they all yield almost iden-
tical values across all chargers of Table 2, providing no insights
to our analysis. Therefore, we exclude them for brevity.

The values of the selected entropy measures are presented
in Table 6. We observe that they indicate significant irregular-
ity across all datasets, with complex patterns characterized by
nearly random values. To extract more conclusions from these
findings, we define a two dimensional space formed by spectral
and approximate entropy on the horizontal and vertical axis, re-
spectively. We selected these two entropies, as they yield more
distinctive values than sample entropy. The resulting scatter
plot, which appears in Figure 22, can be used for a-priori iden-
tifying the best performing regression model per EV charger.
Note that each point (i.e., time series of a charging station) is
associated with the two top performing regression models. This
plot leads us to the following conclusions:

• Linear Regression works best in chargers with low approxi-
mate entropy and high spectral entropy. That is, it excels in
data with regular patterns but rich dynamics, which makes it

Table 5: The outcomes of the ADF test over the charging stations in Table 2.
CV stands for Critical Value.

Char- ADF p-value CV1% CV5% CV10%ger statistic
C1 -6.06 ≪0.00 -3.44 -2.57 -2.87
C2 -2.17 0.22 -3.44 -2.57 -2.87
C3 -2.58 0.10 -3.44 -2.57 -2.87
C4 -1.38 0.59 -3.44 -2.57 -2.87
C5 -1.47 0.55 -3.44 -2.57 -2.87
C6 -2.11 0.24 -3.44 -2.57 -2.87
C7 -2.67 0.08 -3.44 -2.57 -2.87
C8 -3.00 0.04 -3.44 -2.57 -2.87

Table 6: Complexity measures of the overall load per EV charger in Table 2.
Entropy C1 C2 C3 C4 C5 C6 C7 C8
Spectral 7.339 6.923 6.448 4.151 6.619 7.115 7.317 7.147
Approx. 5.467 4.895 5.830 6.000 5.515 5.383 5.500 5.269
Sample 1.813 1.382 1.901 1.116 1.854 1.850 2.069 2.017

predictable in the short term despite having complex values
across different time scales.

• LSTM works best in chargers with high approximate entropy
and relatively low spectral entropy. This indicates that while
the data may seem unpredictable or chaotic in the short term,
LSTM can capture underlying periodic or longer-term trends.

• XGBOOST performs moderately well under many settings,
especially with high approximate and spectral entropy.

• ARIMA performs well in time series with moderate com-
plexity and high irregularity, i.e., with relatively medium ap-
proximate entropy and high spectral entropy values.

DPSDN, DLCND and DSV. We applied the above methodology
to a subset of the charging stations included in the rest of the
datasets. More specifically, we selected the top-3 chargers with
the most transactions from DPS DN , which are labeled as SID1,
SID2 and SID3 in the following. We did the same in DLCND,
selecting three more chargers: SID4, SID5 and SID6. For DS V ,

Figure 22: The relationship between the chargers in Table 2 and two entropy
measures (Spectral and Approximate Entropy). Each point represents a charger,
with its position determined by its entropy values. Additionally, for each point,
the two dominant forecasting models are highlighted.
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Table 7: The configuration parameters examined with grid search per regressor (on the left), and the selected values per charging station in Table 8 (on the right).
Parameter Domain SID1 SID2 SID3 SID4 SID5 SID6 SID7

#layers {2, 4} 4 3 4 3 3 4 3
#units per layer {30, 50}, step = 10 [30, 50, 30] [40, 50] [30, 40, 40] [50, 40] [40, 30] [50, 40] [50, 40]
#units in last layer [15, 50], step = 5 50 30 50 20 15 20 20

Dropout rate from 0.2 to 0.3
[0.23, 0.29, [0.24, 0.20, [0.25, 0.29, [0.28, 0.30, [0.23, 0.23, [0.28, 0.30, [0.28, 0.30,

per layer 0.25, 0.21] 0.21] 0.23, 0.25] 0.20] 0.27] 0.20] 0.20]
Learning rate from 10−6 to 10−3 0.0002 0.0009 0.0010 0.0035 0.0002 0.0038 0.0039
Epochs from 10 to 250 112 200 14 105 196 68 97

Optimizer
(1): adam, (2): rmsprop,

(1) (3) (2) (1) (2) (1) (1)(3): sgd, (4): adagrad,
(5): adamax

Batch size [1, 5], step = 1 1 5 1 5 1 5 5
(a) LSTM

Objective
(1): squarederror, (1) (2) (1) (1) (2) (1) (2)

(2): pseudohubererror

Evaluation metric
(1): rmse, (2): mae,

(2) (3) (2) (2) (2) (3) (1)
(3): mphe

Tree method (1): gpu hist, (2): gpu exact (2) (2) (2) (2) (1) (2) (2)

Booster
(1): gbtree, (2): gblinear,

(2) (2) (2) (2) (2) (3) (3)
(3): dart

Max depth {9, 10} 10 9 9 9 9 10 10
Learning rate from 0.25 to 0.40 0.36 0.35 0.33 0.38 0.27 0.37 0.36
#estimators from 480 to 500 493 500 497 499 491 499 485
Subsample from 0.9 to 1.00 0.94 0.94 0.90 0.90 0.93 0.95 0.95
Colsample by tree from 0.9 to 1.00 0.93 0.93 0.90 0.99 0.93 0.96 0.92
Min. child weight {3, 4} 3 3 4 4 3 3 3

(b) XGBOOST
p from 0 to 10 4 2 7 7 5 5 8
d from 0 to 4 1 2 2 2 2 1 0
q from 0 to 10 0 6 8 8 6 8 7

(c) ARIMA

Table 8: The charging stations from DPS DN , DLCND and DS V selected for load
prediction.

Cha- Total Volu Total Dur- Total Total #Inactive
rger me (kWh) ation (hrs) Sessions Days Days
SID1 12,812 7,802 1,412 1,237 490 (39.6%)
SID2 15,714 8,922 1,808 1,238 422 (34.1%)
SID3 25,053 934 1,130 300 29 (9.7%)
SID4 13,704 8,335 1,449 1,097 353 (32.2%)
SID5 14,619 7,342 1,268 1,096 353 (32.2%)
SID6 12,266 6,834 1,134 1,098 387 (35.3%)
SID7 29,072 10,799 1,683 904 310 (34.3%)
Total 123,241 50,966 9,884

due to the limited transaction history across its 8 chargers and
the co-location of all chargers in the same building, the entire
dataset was treated as a single charger, labeled as SID7. The
technical specifications of these chargers appear in Table 8.

Following the setup used for DPPC , the testing set for each
charger was set to the last month (in particular the last 31 days)
of its transaction history. Note that this resulted in nearly iden-
tical testing periods across all seven chargers, from the middle

of August, 2021 to the middle of September, 2021. The four re-
gression algorithms were fine-tuned with Optuna so as to maxi-
mize the R2 metric. The selected configurations are reported in
Table 7 and their performance in Table 9.

We observe that Linear Regression is the top performer in
five charging stations with respect to R2 and usually the other
evaluation measures, too. The only exceptions are SID3 and
SID4, where the highest performance corresponds to XGBoost
and LSTM, respectively. Even in these cases, though, Linear
Regression follows in close distance, with its R2 being lower
by (far) less than 0.01. In SID4, Linear Regression actually
exhibits the best scores for RMSE and NRMSE.

Among the remaining regression algorithms, XGBoost is
proven to be highly competitive, typically achieving the second
best scores across most evaluation measures. It actually out-
performs Linear Regression in SID1 and SID2 with respect to
RMSE and NRMSE, albeit to a minor extent. LSTM typically
ranks third, mostly due to the lack of a large training dataset that
allows for extracting complex patterns. Finally, ARIMA typi-
cally exhibits the worst performance with respect to all evalua-
tion measures. The reason is that its predictions are very close
to the average load, as indicated by its R2 score. The only ex-
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Table 9: Forecasting performance of the fine-tuned regression algorithms over
the charging stations in Table 8. The best performance per evaluation measure
and charger is highlighted in bold.

Charger Regressor R2 MAE RMSE NRMSE

SID1

LR 0.419 5.730 9.633 0.685
LSTM 0.200 7.204 10.515 0.747
XGBoost 0.403 6.173 9.107 0.647
ARIMA 0.013 7.932 11.530 0.820

SID2

LR 0.571 3.513 5.334 0.488
LSTM 0.363 5.420 5.986 0.547
XGBoost 0.505 4.090 5.281 0.483
ARIMA 0.021 5.562 7.762 0.709

SID3

LR 0.409 35.238 42.236 0.319
LSTM 0.170 39.082 50.072 0.379
XGBoost 0.414 34.984 42.059 0.318
ARIMA -0.018 44.522 55.453 0.419

SID4

LR 0.541 5.393 5.529 0.460
LSTM 0.548 5.138 6.127 0.510
XGBoost 0.370 5.974 7.342 0.611
ARIMA 0.178 6.047 9.059 0.753

SID5

LR 0.376 7.425 10.019 0.625
LSTM 0.319 8.512 10.383 0.648
XGBoost 0.346 7.803 9.909 0.618
ARIMA 0.023 8.605 13.496 0.842

SID6

LR 0.439 6.340 7.398 0.531
LSTM 0.365 7.259 7.538 0.541
XGBoost 0.413 5.802 7.718 0.554
ARIMA 0.168 6.972 9.974 0.716

SID7

LR 0.657 10.967 11.564 0.324
LSTM 0.429 14.598 15.535 0.436
XGBoost 0.202 16.802 18.973 0.532
ARIMA 0.429 11.133 18.275 0.513

ception pertains to SID7, which should be attributed to the non-
stationary data it conveys, for which ARIMA is crafted.

To shed more light into the relative performance of the four
regression algorithms, Figure 23 presents the exact predictions
of each model per testing day for SID7, which corresponds to
the highest average R2 score (0.429), and SID3, which corre-
sponds to the lowest one (0.266).

For SID7, LSTM is more accurate in predicting mean load
values, but fails to capture the peaks and valleys of the ac-
tual loads. ARIMA, while not fully aligned with the overall
load pattern, performs better than the other models in predict-
ing the lower load values. Linear Regression demonstrates a
more balanced prediction capability, effectively capturing peak
loads and maintaining momentum across mean and low loads.
Despite its competitive performance in all other chargers, XG-
Boost is the least effective model in this case, failing to provide
accurate predictions in any of the considered days.

For SID3, Linear Regression and XGBoost produce domi-
nant, highly similar load predictions that closely follow the ac-
tual data patterns, but do not capture the exact consumption lev-
els across all days. LSTM, while relatively close to the leading
models, tends to predict values near the overall mean of the
time series, rather than aligning with the actual load. ARIMA,
demonstrates the lowest accuracy, showing minimal adaptation
to the actual load, with its predictions centered around the mean

Table 10: The outcomes of the ADF test over the charging stations in Table 8.
CV stands for Critical Value.

Char- ADF p-value CV1% CV5% CV10%ger statistic
SID1 -2.63 0.09 -3.44 -2.86 -2.57
SID2 -2.60 0.09 -3.44 -2.86 -2.57
SID3 -2.86 0.05 -3.45 -2.87 -2.57
SID4 -2.92 0.04 -3.44 -2.86 -2.57
SID5 -1.93 0.04 -3.44 -2.86 -2.57
SID6 -2.69 0.08 -3.44 -2.86 -2.57
SID7 -2.21 0.20 -3.44 -2.86 -2.57

values for the entire forecasting period.
Overall, the forecasting performance of Linear Regression

and XGBoost is closely related, with the former emerging as the
most accurate forecasting model overall, consistently delivering
strong and competitive results across all chargers in Table 8.
On the other extreme lies the ARIMA model, which typically
underperforms all other models, while LSTM lies in the middle.
Below, we examine the conditions determining these patterns.

ACF/PACF Analysis. Figure 24 shows the ACF and PACF
plots for SID7 and SID3. Both charging stations exhibit peri-
odic patterns with respect to ACF, while the PACF plots reveal
more complex behavior across time lags.

Regarding ACF, SID7 stands out due to its strong periodic
correlation patterns in positive and negative time lags, which in-
dicate the presence of seasonal patterns. Similar, albeit weaker,
periodic correlation patterns appear in the case of SID3.

Regarding PACF, SID7 exhibits a more structured pattern
with several positive and negative peaks, highlighting the influ-
ence of certain lags. This pattern suggests a periodic behavior
within the data, with the partial autocorrelation values gradually
declining over time lags. In contrast, SID3 shows less consis-
tent periodicity, with weak relationships across time lags, indi-
cating the presence of more random behavior in the data, apart
from the limited transaction days available in the dataset.

The strong periodicity patterns account for the high average
scores of SID7 with respect to most evaluation measures, espe-
cially R2. The weaker periodicity patterns of SID3 along with
the considerably fewer training and inactive days than all other
chargers (cf. Table 8) yield a much lower performance.

ADF Analysis. The ADF test was applied to all chargers,
with the results presented in Table 10. The p-value and the crit-
ical values indicate that three chargers are stationary, exhibiting
periodic patterns: SID3, SID4 and SID5. Despite these pat-
terns, SID3 is quite challenging, due to the lack of sufficient
training data and the high number of active days. The rest of the
chargers, including SID7, display non-stationary data, suggest-
ing more challenging relationships within the data that change
over time. Still, the periodicity revealed by the ACF/PACF anal-
ysis allows for a much higher predictive accuracy.

Entropy Analysis. To further justify the performance of
each regression model per charging station in Table 8, we com-
puted Spectral Entropy (defined above) along with:

• The Shannon Entropy measures the uncertainty or unpre-
dictability within a dataset. In time series analysis, it quan-
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Figure 23: Daily predictions by all regression algorithms for the charging stations in Table 8 with the highest and the lowest average R2 score, i.e., SID7 (on the
left) and SID3 (on the right), respectively.

Figure 24: Auto-correlation (ACF) and partial autocorrelation (PCF) for the charging stations in Table 8 with the highest and the lowest average R2 score, i.e., SID7
(on the left) and SID3 (on the right), respectively.

Table 11: Complexity measures of the overall load per EV charger in Table 8.
Entropy SID1 SID2 SID3 SID4 SID5 SID6 SID7

Spectral 7.457 7.141 5.708 7.315 7.672 7.377 6.299
Shannon 1.900 2.083 2.905 2.303 2.183 2.291 2.310
2-Regimes 1.854 2.189 2.994 2.078 2.089 2.017 2.201

tifies the amount of information generated by a stochastic or
random process. Higher Shannon Entropy suggests a more
complex or ”disordered” system, while lower entropy indi-
cates greater regularity or predictability in the data.

• The 2-Regimes Entropy measures the complexity of a time
series by dividing it into two distinct regimes, each represent-
ing different states or patterns in the data. It then calculates
the entropy in each regime to capture how the time series’ be-
havior changes across these phases, such as shifts in volatility
or variability. A high 2-Regimes Entropy indicates that each
regime has unique and complex characteristics, suggesting a
non-stationary or multi-state time series.

Note that we considered more entropy measures related to
time series complexity, namely Permutation, Approximate, Fre-
quentist, and Sample Entropy. However, they exhibit much
lower distinctiveness than the three selected ones, providing no
further insights for our analysis. We omit them for brevity.

The values of the selected entropy measures are presented
in Table 11. We observe that despite its nonstationary behavior,
SID7 exhibits relatively low complexity across all entropies, es-
pecially the Spectral one, where it has the second lowest value.
This confirms the results of the ACF/PACF analysis. In com-
bination with its larger training set, these settings enhance the
accuracy of regression algorithms in capturing the consumption
patterns of SID7. In contrast, SID3 exhibits high unpredictabil-
ity and complexity, scoring the highest values across all seven
chargers for the Shannon and the 2-Regimes Entropies, despite

Figure 25: The relationship between the chargers in Table 8 and two entropy
measures (Spectral and Shannon Entropy). Each point represents a charger,
with its position determined by its entropy values. Additionally, for each point,
the two dominant forecasting models are highlighted.

its stationary behavior. This behavior along with its limited
training and inactivity days result in the (surprisingly) lowest
score for Spectral Entropy.

To better understand the relationship between the entropy
values and the dominant regression models per charger, we cre-
ated a diagram with Spectral Entropy on the horizontal axis and
Shannon Entropy on the vertical one. We then added a point
per charging station, annotating it with the two top-performing
regression models. The resulting scatter plot appears in plot
Figure 25, leading to the following conclusions:

• Linear Regression performs best with chargers that have low
Shannon Entropy and high Spectral Entropy. This means that
it excels in handling data with versatile complexities and rel-
atively low random patterns across different time scales.

• LSTM works best with data exhibiting medium Shannon En-
tropy and medium to high Spectral Entropy. This means that
it is well-suited for capturing more complex patterns with
high variability and randomness.
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• XGBoost performs best with highly complex data that yields
high Shannon and low Spectral Entropy. It typically ranks
second, because it can capture noise in the data patterns,
while adapting better than LSTM to smaller training sets.

• ARIMA performs well in time series with relatively low
Spectral Entropy and low Shannon Entropy values. This
means that it struggles with high data variability, but is ef-
fective in capturing periodic patterns.

6.2.4. Conclusions
Overall, three key factors contributed to the relatively low

performance of the selected regression models in most cases:

1. The data recorded per charger are limited. The training set of
the chargers in Table 2 has up to ∼570 instances, while most
chargers in Table 8 have double as many. Note, though, that
in the latter case, 1/3 of the training instances corresponds
to days of inactivity, with zero consumed energy (the corre-
sponding portion in Table 2 is 10% or lower). These training
datasets do not suffice for sophisticated models like LSTM
to learn complex patterns effectively. More data is essential
to unlock the full potential of deep learning models.

2. The ADF, ACF and PACF analyses highlight the non-
stationarity and near-random nature of the time series, ex-
plaining why the regression models achieve the best results
with a time step (i.e., lag) of 1. In other words, the high irreg-
ularity and complexity of the patterns make it difficult for the
regression models to capture long-term dependencies, with
small time steps yielding higher effectiveness.

3. The entropy measures are useful for a-priori assessing the
complexity of each charger’s time series data. Chargers
like C4 and SID3 exhibit high entropy values, suggesting a
highly unpredictable and complex time series. These prop-
erties make it more challenging for the regression models to
capture the underlying data patterns, particularly over longer
time horizons. In contrast, chargers like C4 and SID7 show
more predictable patterns, with lower entropy values, which
indicate more stable and less complex time series, enabling
simpler models like Linear Regression to achieve high accu-
racy. These patterns emphasize the role of entropy in a-priori
estimating the performance of regression model.

These settings lead to the “No Free Lunch” theorem [37],
which dictates that no single forecasting model consistently
outperforms others across all EV chargers. An increase in the
quantity of training data might increase the performance of the
more sophisticated regressions algorithms like LSTM.

Another conclusion of our analysis is that the characteris-
tics of time series are indicative to a large extent of the perfor-
mance of prediction algorithms. Typically, the stationary time
series, as indicated by the ADF test, pose relatively easy pre-
diction tasks for sophisticated regression models like LSTM
(e.g., C1). The complexity of non-stationary time series de-
pends on their (partial) autocorrelation as well as on their en-
tropy. Higher ACF values for longer periods indicate longer-
term correlations, which thus facilitate high prediction accu-
racy, especially when accompanied by low values for spectral,

approximate and sample entropy, which are indicative of a less
complex (i.e., unpredictable) behavior. These settings charac-
terize C4, where most regression models achieve their highest
effectiveness. The opposite settings pertain to C6 and SID3,
where most exhibit very poor forecast accuracy.

7. Conclusions & Future Work

We have presented the backend and the frontend of O-V2X-
MP, an open-source platform that covers all aspects of charging
stations, the backbone of e-mobility. Charging point operators
can use the platform to maintain a network of EV chargers, to
run diagnostics, to extract insights from the recorded charging
sessions and to apply V2G services like flexible capacity con-
tracts. EV drivers can use the platform to detect and navigate to
the closest charging session, to manage their charging history
and make the most of V2X services (e.g., demand response ser-
vices that reduce prices whenever the renewables reach their
peak). Special care was taken to demonstrate the data analytics
capabilities of the platform through two use cases: (i) the clus-
tering of charging sessions into charging profiles, which allows
for predicting EV drivers behavior, and (ii) the prediction of the
overall load for any EV charger.

In the future, we plan to extend the data analytics capabil-
ities of the O-V2X-MP with more advanced techniques (e.g.,
multivariate forecasts for EV load leveraging seasonality). We
also plan to enhance the billing engine with support for more
advanced payment protocols, such as the Lightning Network34,
which solves the bitcoin scalability problem.
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