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Executive Summary 

The deliverable D2.5 – "Integration of V2X in Energy Communities Management" aims to propose 
various methodologies for the optimal management of energy communities, considering user's needs. 
The proposed methodologies include deterministic, stochastic, and metaheuristic optimization. These 
approaches are tailored for an energy community comprising battery energy storage systems (BESS), 
photovoltaic systems (PV), electric vehicles (EVs), electric vehicles supply equipment (EVSEs), 
generators, main grid import/export power, loads, and offers of up and down power reserves. 
Additionally, the vehicle-to-everything (V2X) capabilities of EVs and EVSEs are incorporated into the 
optimization strategies. 

The methodology for the integration of V2X in energy communities’ management includes i) technical 
specifications related to loads, PV systems, generators, BESSs, EVs, and EVSEs. Key data points include 
power consumption, contracted power, peak PV power production, and charging/discharging 
capacities for BESSs and EVs. Additionally, it involves processing user behaviour data, such as arrival 
and departure times, energy requirements, initial state of charge (SoC), willingness to utilize V2X 
technology, as well as data related to energy prices; ii) energy community management considering a 
deterministic optimisation considering day-ahead scheduling and real-time control; iii) energy 
community management considering metaheuristic model in which the Dandelion Optimizer 
algorithm is analysed; iv) Energy community management is addressed through a stochastic 
optimization framework that incorporates up and down power reserve services from both grid imports 
and BESSs.  

By analyzing the obtained results, the performance of the proposed models can be validated. A use 
case (UC) representing an energy community with 20 consumers/providers was included. Notably, only 
the stochastic model incorporates up and down reserve power offers across 25 scenarios (combined 5 
for load consumption and 5 for power generation). When compared to the metaheuristic and 
stochastic models, the deterministic model yields the best results due to the minimal uncertainty it 
addresses. It demonstrates optimal management of BESSs and EVs for charging and discharging. On 
the other hand, the metaheuristic model shows the poorest performance, consistently resulting in load 
reduction and curtailment. It also displays inefficiencies in the management of BESS and EV 
charging/discharging operations. The stochastic model, like the deterministic model, delivers optimal 
results in managing BESS and EV power. It prioritizes charging during periods of higher generator 
availability. However, due to the uncertainties it addresses, the stochastic model reduces BESS 
consumption. Nevertheless, it maintains the energy demand for EVs at the same level, ensuring that 
the comfort of e-mobility users is preserved.  
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Nomenclature 

𝐵 Set of batteries 
𝐸𝑉 Set of electric vehicles 
𝐺 Set of generators 
𝐿 Set of loads 
W Set of scenarios  
𝐶𝑡,𝑏

𝐵+ Energy price associated with the power charged by the batteries 
𝐶𝑡,𝑏

𝐵− Energy price associated with the power discharged by the batteries 
𝐶𝑡,𝑒𝑣

𝐸𝑉+ Energy price associated with the power charged by the electric vehicles 
𝐶𝑡,𝑒𝑣

𝐸𝑉− Energy price associated with the power discharged by the electric vehicles 
𝐶𝑡,𝑔

𝐺+ Energy price associate with the imported power by generators 
𝐶𝑡,𝑔

𝐺− Energy price associate with the exported power by generators 
𝐶𝑡,𝑙

𝑐  Energy price associated with the loads that can be curtailed 
𝐶𝑡,𝑙

𝐸𝑁𝑆 Energy price associated with the energy not supplied for the system’s loads 
𝐶𝑡,𝑙

𝑟  Energy price associated with the loads that can be reduced 
𝐶𝐺𝑒𝑛(𝑔,𝑡)

𝑈𝑃  Cost associated with up energy reserve 
𝐶𝐺𝑒𝑛(𝑔,𝑡)

𝐷𝑜𝑤𝑛  Cost associated with down energy reserve 
𝐶𝐼𝑚𝑝(𝑡)

𝑈𝑃  Cost associated with adjustments in up power import reserves  
𝐶𝐼𝑚𝑝(𝑡)

𝐷𝑜𝑤𝑛  Cost associated with adjustments in down power import reserves  

𝐶𝐺𝑒𝑛(𝑔,𝑡)
𝑂𝑝

 Cost associated with actual generation output 

𝐶𝑡,𝑏,𝑤
𝐵+  Cost associated with charging power for storage units 

𝐶𝑡,𝑏,𝑤
𝐵−  Cost associated with discharging power for storage units 

𝐶𝑆𝑡(𝑡,𝑏,𝑤)
𝑚𝑖𝑛𝑅𝑙𝑥  Cost associated with relaxation variable of power for storage units 

𝐶𝑡,𝑒𝑣,𝑤
𝐸𝑉+  Energy price associated with the power charged by the electric vehicles 

𝐶𝑡,𝑒𝑣,𝑤
𝐸𝑉−  Energy price associated with the power discharged by the electric vehicles 

𝐶𝐸𝑉(𝑡,𝑒𝑣,𝑤)
𝑚𝑖𝑛𝑅𝑙𝑥  Cost associated with relaxation variable of power of electric vehicles 

𝐶𝐸𝑉(𝑡,𝑒𝑣,𝑤)
𝑟𝑒𝑞𝑅𝑙𝑥

 Cost associated with relaxation variable of power of electric vehicles 

𝐶𝑡,𝑙,𝑤
𝑐  Energy price associated with the loads that can be curtailed 

𝐶𝑡,𝑙,𝑤
𝐸𝑁𝑆 Energy price associated with the energy not supplied for the system’s loads 

𝐶𝑡,𝑙,𝑤
𝑟  Energy price associated with the loads that can be reduced 

𝐹𝐷𝐴 Cost associated with day-ahead operation 
𝐹𝑅𝑇  Cost associated with real-time operation 
𝐿𝑡,𝑙
𝑐  Power load that can be curtailed 

𝐿𝑡,𝑙
𝐸𝑁𝑆  Power not supplied for the system’s loads 

𝐿𝑡,𝑙
𝑟  Power load that can be reduced 

𝐿𝑡,𝑙,𝑤
𝑐  Power load that can be curtailed 

𝐿𝑡,𝑙,𝑤
𝐸𝑁𝑆  Power not supplied for the system’s loads 

𝐿𝑡,𝑙,𝑤
𝑟  Power load that can be reduced 

𝑃𝑡,𝑏
𝐵+ Power charged by the batteries 

𝑃𝑡,𝑏
𝐵− Power discharged by the batteries 

𝑃𝑡,𝑏,𝑤
𝐵+  Power charged by the batteries by scenario  

𝑃𝑡,𝑏,𝑤
𝐵−  Power discharged by the batteries by scenario  

𝑃𝑡
𝐼𝑚𝑝

 Power import from the grid 

𝑃𝑡
𝐸𝑥𝑝

 Power export to the gird 
𝑃𝑡,𝑒𝑣

𝐸𝑉+ Power charged by the electric vehicles 
𝑃𝑡,𝑒𝑣

𝐸𝑉− Power discharged by the electric vehicles 
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𝑃𝑡,𝑒𝑣,𝑤
𝐸𝑉+  Power charged by the electric vehicles 

𝑃𝑡,𝑒𝑣,𝑤
𝐸𝑉−  Power discharged by the electric vehicles 

𝑃𝑡,𝑔
𝐺+ Power imported by generators 

𝑃𝑡,𝑔
𝐺− Power exported by generators 

𝑃𝑆𝑡(𝑡,𝑏,𝑤)
𝑚𝑖𝑛𝑅𝑙𝑥  Relaxation variable of power for storage units 

𝑃𝐸𝑉(𝑡,𝑒𝑣,𝑤)
𝑚𝑖𝑛𝑅𝑙𝑥  Relaxation variable of power of electric vehicles 

𝑃𝐸𝑉(𝑡,𝑒𝑣,𝑤)
𝑟𝑒𝑞𝑅𝑙𝑥

 Relaxation variable of power of electric vehicles 

𝑃𝐺𝑒𝑛(𝑔,𝑡)
𝑂𝑝

 Actual generation output 

𝑅𝐺𝑒𝑛(𝑔,𝑡)
𝑈𝑃  Up power reserve requirement for generation units 

𝑅𝐺𝑒𝑛(𝑔,𝑡)
𝐷𝑜𝑤𝑛  Down energy reserve requirement for generation units 

𝑅𝐼𝑚𝑝(𝑡,𝑤)
𝑈𝑃  Adjustments in up power import reserves across each scenario 

𝑅𝐼𝑚𝑝(𝑡,𝑤 )
𝐷𝑜𝑤𝑛  Adjustments in down power import reserves across each scenario 

𝑡 Time step index 
𝜋(𝑤) Scenario’s probabilities 
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1 Introduction 

Energy communities are groups of individuals, households, or organizations that collectively manage 

and optimize their energy use, generation, and storage. They can include renewable energy sources 

(RES) such as PV system, BESS, and the integration of various types of consumers and prosumers such 

as EVs [1]. Hence, energy community management involves the coordinated organization and control 

of energy resources and consumption within a localized group or community. This concept is part of 

the broader transition towards a decentralized and sustainable energy system [2]. The main goal of 

energy community management includes enhancing energy efficiency, increasing the use of renewable 

energy, reducing energy bills, and improving energy security and resilience. These communities also 

aim to empower local stakeholders and promote energy democracy by giving users more control over 

their energy sources and consumption [2].  

1.1 Scope and objectives 

The primary objective of this document is to evaluate the effectiveness of various optimization models, 

including deterministic, stochastic, metaheuristic, in the management of energy communities. To 

achieve this, the models utilize data inputs from an energy community comprising the main grid, PV 

systems, BESSs, EVs, EVSEs, and typical load profiles. Moreover, notable simulation results 

demonstrated the suitability of both deterministic and stochastic models for energy community 

management. These models enhance the utilization of energy resources within the system and 

effectively manage the power of BESS and EV, ultimately contributing to the comfort and efficiency of 

the community.  

1.2 Structure 

The present document is divided into 4 sections. After the introduction section (Section 1), Section 2 
provides insight into EV management in energy communities. Section 3 details the main simulation 
results. Finally, Section 4 wraps ups with some overall conclusions and recommendations.  

1.3 Relationship with other deliverables 

The EVs and charging station (CSs) power limitation used, as input data, in the proposed energy 
community management was adapted from the D2.1 of the EV4EU project: Control Strategies for V2X 
Integration in Houses [3]. The company demand data was adapted from the one used in the D2.2 of 
the EV4EU project: Control Strategies for V2X Integration in Buildings [4].  
 
 



 
 

  EV4EU – D2.5 Integration of V2X in Energy Communities Management 

 

Page 12 of 37 

 

2 Electric Vehicle Management in Energy Communities 

EV management in energy communities has garnered rapidly popularity [5], since EVs can work, for 
instance, as energy storage units within energy communities: their batteries can store excess 
renewable energy generated during peak times and discharge it back into the grid during periods of 
high demand [6]. Another application of EV management within energy communities is the potential 
to implement demand response strategies by leveraging EVs. By adjusting their charging patterns in 
response to real-time grid conditions, EVs can help stabilize the balance between energy demand and 
supply [7]. Moreover, in an energy community, vehicle-to-Grid (V2G) technology can be used to 
balance local energy flows, enhance grid stability, and support the integration of RES, additionally, V2G 
can create revenue streams by selling energy back to the grid [8]. EV smart charging can also provide 
significant benefits to energy community management by controlling the timing and rate of EV 
charging based on factors like energy prices, grid conditions, and user preferences [9]. Furthermore, 
by using locally generated renewable energy for EV charging, energy communities can reduce energy 
costs for participants. The integration of EVs with RES can significantly reduce carbon emissions. Energy 
communities promote sustainable energy practices, which contribute to lower overall environmental 
footprints [6]. 

2.1 Main challenges of Energy Communities 

Energy communities offer a promising model for decentralizing energy systems and promoting RES 
adoption. However, they face several significant challenges that need to be addressed to ensure their 
successful implementation and sustainability. These challenges span technical, economic, regulatory, 
and social dimensions [10]. From a technical standpoint, integrating distributed energy resources 
(DERs) such as PVs, wind turbines, and BESS can lead to grid instability, particularly if not properly 
managed. Challenges like voltage fluctuations, frequency regulation, and reverse power flows may 
arise, necessitating the use of advanced grid management technologies [11]. Moreover, energy 
communities often involve a variety of technologies, including different types of RESs, smart meters, 
and energy management software, hence, ensuring that these systems can communicate, and work 
together effectively is a significant challenge [11].  
Regulatory and policy barriers can also pose significant challenges for energy communities, as the 
regulatory frameworks in many regions remain underdeveloped or non-existent. This creates 
uncertainty for community members and potential investors. For example, legal definitions of energy 
communities, along with their rights and responsibilities, are often ambiguous, which can impede their 
formation and operation [11], [12]. Furthermore, energy communities frequently encounter 
challenges related to grid access, including high connection fees and complex procedures. 
Furthermore, existing tariff structures often undermine the economic viability of these communities, 
as they typically fail to recognize the benefits of local energy generation and consumption [11].  Social 
and behavioural factors can also pose significant challenges for energy communities. The success of 
these communities largely depends on the active involvement and engagement of their members. 
However, encouraging such participation can be difficult, especially in areas with low social cohesion 
or where residents lack interest or knowledge about energy issues [13]. Energy communities often 
involve collective decision-making, which can be complicated by differing interests and priorities 
among members. Ensuring transparent, inclusive, and effective decision-making processes is essential 
but challenging [13]. 
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2.1.1 Energy Community Based Virtual Power Plants 

Energy Community-Based Virtual Power Plants (EC-VPPs) represent an innovative paradigm that 

seamlessly integrates RESs, storage system like EVs and BESSs, and flexible energy consumption within 

a community. These EC-VPPs function as unified power plants, optimizing energy generation, storage, 

and consumption on a community-wide scale [14]. Moreover, essential components such as DER, an 

energy management system (EMS) for coordinating these resources and predicting energy demand, 

and smart grid infrastructure have positioned EC-VPPs as a prominent and sophisticated trend in the 

pursuit of decarbonization [14]. Hence, EC-VPPs can aggregate the energy generation, storage, and 

consumption capacities of multiple distributed energy resources within the community [14]. The EMS 

optimizes generation and consumption by leveraging real-time data, weather forecasts, and market 

signals [15]. This optimization may include load shifting, peak shaving, and demand response 

strategies, enabling the EC-VPP to participate in energy markets by selling excess energy or providing 

ancillary services, such as frequency regulation, to the main grid [7]. The benefits of Energy EC-VPPs 

encompass enhanced energy efficiency through the optimized use of local RESs and the reduction of 

energy losses typically associated with long-distance electricity transmission. These systems also 

contribute to increased energy independence for the community by diminishing reliance on 

centralized, fossil fuel-based power plants. Additionally, EC-VPPs present opportunities for revenue 

generation through participation in energy markets, reduce energy costs for community members, 

create local employment opportunities, and lower greenhouse gas emissions through the utilization 

of RES and the broader adoption of clean energy technologies [1]. 

2.1.2 Market Based Energy Communities 

Market-Based Energy Communities (MBECs) are energy communities that operate within a market 
framework, where members can trade energy among themselves or with external markets. These 
communities utilize decentralized DERs and market-based mechanisms to manage energy generation, 
consumption, and trading [16]. MBECs are designed to empower local stakeholders, including 
households, businesses, and institutions, to generate, trade, and consume energy within a localized 
market framework. This approach seeks to enhance energy efficiency, promote the adoption of 
renewable energy, and foster economic benefits at the community level [16]. Therefore, members of 
a MBEC can buy and sell energy within the community or to the external grid, with transactions based 
on real-time pricing, contracts, or other market mechanisms. Energy prices within the community are 
typically determined by supply and demand dynamics, influenced by factors such as generation 
capacity, storage availability, and consumption patterns. Additionally, MBECs may interact with the 
broader grid, either by selling excess energy or purchasing additional energy when local generation is 
insufficient. These interactions are often governed by market participation agreements [17]. 

2.2 Integration of EVs in Energy Communities 

The integration of EVs into energy communities is an increasingly significant area of research, as it 
aligns with broader goals of sustainability, energy efficiency, and the decentralization of energy 
systems. Incorporating EVs into these communities presents both opportunities and challenges, given 
that they function as both energy consumers and mobile energy storage units [18]. EVs can play 
different roles into the energy community, such as mobile energy storage units, providing flexibility to 
the grid by storing excess renewable energy and discharging it when needed by implementing, for 
instance demand response techniques [7]. EVs can engage in demand response programs, where their 
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charging schedules are adjusted according to the needs of the electrical grid. This participation 
contributes to balancing supply and demand within the community [7]. In advanced energy 
communities, EVs can be integrated into local energy trading systems. In these systems, energy 
generated by residents, such as from solar panels, can be sold or shared with neighbours or the wider 
community [18]. Facilitating and encouraging the integration of EVs into energy communities requires 
the establishment of an adequate charging infrastructure. Developing a network of charging stations 
within these communities will enable EVs to recharge using locally generated renewable energy [18]. 
An EMS can enhance the integration of EVs within the community's broader energy management 
framework. The EMS optimizes the timing and location of EV charging based on factors such as energy 
availability, demand, and pricing [19].  

2.3 Python Energy Communities (PyECOM) simulation platform 

Python Energy Communities (PyECOM) is a Python-based tool crafted to support the analysis, 
simulation, and optimization of energy communities, that bring together diverse participants such as 
households, businesses, and public entities to collaboratively manage and share energy resources. 
PyECOM aims to enhance energy independence, reduce costs, and promote the adoption of RESs 
sources through efficient resource management [20]. PyECOM enables users to simulate energy flows 
within a community, considering factors such as energy production, consumption, storage, and 
distribution. The tool supports various RES and storage systems, BESSs and EVs. Users can model a 
range of scenarios, such as different levels of RES penetration or alternative storage system 
configurations [20]. PyECOM incorporates optimization algorithms that assist users in identifying the 
most efficient configurations for their energy community. These algorithms can be tailored to various 
objectives, such as minimizing energy costs, reducing greenhouse gas emissions, or maximizing the use 
of local renewable energy. The tool supports a range of approaches, including deterministic, 
metaheuristic, and stochastic models [6], [20].  Furthermore, PyECOM can perform economic analysis 
to evaluate the financial viability of different community energy setups, it also includes modules for 
assessing the environmental impact of various energy configurations, focusing on carbon footprint and 
other key metrics [20]. PyECOM is user-friendly, with interfaces that allow users to input data, run 
simulations, and analyse results without needing deep technical expertise. It offers scalability and 
versatility, since is suitable for energy communities of all sizes, from microgrids to large urban areas. 
It also integrates with other energy modelling tools and supports various data formats for easy 
collaboration and sharing [20]. 

2.3.1 Solution architecture 

The energy community management strategy, based on the PyECOM tool, is presented in Figure 1 and 
Figure 2. The architecture is depicted in two figures primarily because three methods are implemented.  
The difference between these methods lies in the type of input data used for load and production in 
each method. Method 1 (Figure 1) utilizes data from a forecasting module, Method 2 (Figure 1) relies 
on real-time data, and Method 3 (Figure 2) combines both forecasting and real-time information. 
More details about the three methods implemented are described below: 

• Methods 1 and 2: The core of this architecture is the PyECOM tool, which incorporates 
constraints related to the operation of EVs, PV systems, BESS, and CSs. PyECOM receives input 
data about technical limits of EVs, CSs, and BESS. It is important to note that the input data 
related to load and production can be derived from a forecasting module (when Method 1 is 
applied) or from a module with real-time information (when Method 2 is applied). Finally, the 
output will consist of control commands to be executed on the EVs, batteries, and controllable 
loads, aiming to optimize energy resources, reduce energy bills, and maximize the utilization 
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of RESs within the energy community. The comparison between Method 1 and Method 2 
allows an evaluation of the errors introduced by the forecasting. Method 2 can be seen as the 
ideal one considering that the forecasting is perfect, i.e., equal to real measurements. 

• Method 3: The core architecture, input data about EVs, battery and CSs limits, and control 
outputs remain consistent. What changes are the input data and how they are processed, as 
this method involves a step-by-step combination of information from the forecasting module 
and the real-time data module. Method 3 also considers the scheduling obtained in Method 1. 
Each step corresponds to an optimization process, which in this case is one hour resolution 
with one day horizon. Initially, in Step 1, at the start of the optimization (Hour 1), only 
forecasting data is used. At Hour 2, real-time data is applied for the first hour, while the data 
from Hour 2 to the end of the horizon (Hour 24) comes from the forecasting module. At Hour 
3, real-time data is used for the first two hours, with the remaining hours still relying on the 
forecast, and this pattern continues incrementally for each subsequent hour, as can be seen 
in Figure 2. It is important to mention that the forecast values are adjusted considering the 
errors between the measured values and the forecast ones. 

 

 
Figure 1 – Energy community management system architecture based on the PyECOM tool, 

Method 1 and Method 2.  

 

 
Figure 2 – Energy community management system architecture based on the PyECOM tool, 

Method 3.  
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Another important aspect of PyECOM is that it contains components that make it adaptable for use as 
a foundation to implement optimizations based on deterministic, metaheuristic, and stochastic 
models. These models are described below in more detail. 

2.3.2 Deterministic models 

The integration of EVs into energy community systems has become a significant focus area in the 
context of the broader transition to renewable energy. Deterministic optimization models are crucial 
in designing and managing these systems, due to their ability to provide precise solutions based on a 
set of known inputs [21]. The advantage of deterministic models relies on the fact that all input 
parameters are known with certainty. These models are extensively employed in energy systems to 
optimize various components, including energy production, distribution, and consumption, with a 
particular focus on EVs. The objective functions within these models are generally designed to 
minimize costs, enhance efficiency, or balance supply and demand. In the context of EVs, the objectives 
may include minimizing charging costs, maximizing the utilization of renewable energy, or reducing 
dependency on the grid. In the management of energy communities decentralized systems where 
energy is produced, stored, and consumed locally, EVs serve a dual role as both energy consumers and 
potential storage units. Through the implementation of V2G technology, EVs can discharge energy 
back into the system. Additionally, deterministic models leverage known load profiles for forecasting 
energy demand, including the specific requirements associated with EV charging [21]. Moreover, 
typical constrains considered for energy community management based on deterministic model are 
related to operational limits of the network system, PV production, wind turbine production, BESS, EVs, 
CSs, controllable loads, generators, among others.  
The deterministic model implemented in PyECOM is guided by a minimization objective function (OF), 
as detailed in equations (1)–(6). The overall OF, presented in Equation (Eq.) (1) incorporates five key 
components: generators, represented by Eq. (2), loads, represented by Eq. (3), BESS by Eq. (4), EVs by 
Eq. (5), and system by Eq. (6).  
 

min 𝑓 = 𝐺 + 𝐿 + 𝐵 + 𝐸𝑉 + 𝑆 (1) 

𝐺 = ∑ ∑(𝑃𝑡,𝑔
𝐺+𝛥𝑡𝐶𝑡,𝑔

𝐺+ + 𝑃𝑡,𝑔
𝐺−𝛥𝑡𝐶𝑡,𝑔

𝐺−)

𝑔∈𝐺𝑡∈𝑇

 (2) 

𝐿 = ∑∑(𝐿𝑡,𝑙
𝑟 𝛥𝑡𝐶𝑡,𝑙

𝑟 + 𝐿𝑡,𝑙
𝑐 𝛥𝑡𝐶𝑡,𝑙

𝑐 + 𝐿𝑡,𝑙
𝐸𝑁𝑆𝛥𝑡𝐶𝑡,𝑙

𝐸𝑁𝑆)

𝑙∈𝐿𝑡∈𝑇

 (3) 

𝐵 = ∑ ∑(𝑃𝑡,𝑏
𝐵+𝛥𝑡𝐶𝑡,𝑏

𝐵+ + 𝑃𝑡,𝑏
𝐵−𝛥𝑡𝐶𝑡,𝑏

𝐵− + (𝑃𝑡,𝑏
𝑟𝑒𝑙𝑎𝑥𝐵+)

2
𝑚 + (𝑃𝑡,𝑏

𝑟𝑒𝑙𝑎𝑥𝐵−)
2
𝑚 + 𝐸𝑡,𝑏

𝐵𝑟𝑒𝑙𝑎𝑥𝑀)

𝑔∈𝐺𝑡∈𝑇

 (4) 

𝐸𝑉 = ∑ ∑ (𝑃𝑡,𝑒𝑣
𝐸𝑉+𝛥𝑡𝐶𝑡,𝑒𝑣

𝐸𝑉+ + 𝑃𝑡,𝑒𝑣
𝐸𝑉−𝛥𝑡𝐶𝑡,𝑒𝑣

𝐸𝑉− + (𝑃𝑡,𝑒𝑣
𝑟𝑒𝑙𝑎𝑥𝐸𝑉+)

2
𝑚 + (𝑃𝑡,𝑒𝑣

𝑟𝑒𝑙𝑎𝑥𝐸𝑉−)
2
𝑚 + 𝐸𝑡,𝑒𝑣

𝐸𝑉𝑟𝑒𝑙𝑎𝑥𝑀)

𝑒𝑣∈𝐸𝑉𝑡∈𝑇

 (5) 

𝑆 = ∑(𝑃𝑡
𝐼𝑚𝑝

𝛥𝑡𝐶𝑡
𝑏𝑢𝑦

− 𝑃𝑡
𝐸𝑥𝑝

𝛥𝑡𝐶𝑡
𝑠𝑒𝑙𝑙 + 𝑃𝑡

𝐼𝑚𝑝𝑟𝑒𝑙𝑎𝑥
𝑝)

𝑡∈𝑇

 (6) 

Each expression is associated with the energy generated or consumed by each component and the 
corresponding energy prices, in which 𝛥𝑡 represents the time interval. Thus, 𝑃𝑡,𝑔

𝐺+ and 𝑃𝑡,𝑔
𝐺− represents 

the energy imported/exported by the generators, with 𝐶𝑡,𝑔
𝐺+ and 𝐶𝑡,𝑔

𝐺− denoting the associated costs. 𝐿𝑡,𝑙
𝑟 , 

𝐿𝑡,𝑙
𝑐 , and 𝐿𝑡,𝑙

𝐸𝑁𝑆refer to the energy that can be reduced, curtailed, or even not supplied for the system's 
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loads, while 𝐶𝑡,𝑙
𝑟 , 𝐶𝑡,𝑙

𝑐  and 𝐶𝑡,𝑙
𝐸𝑁𝑆  represents the prices associated with each, respectively. 𝑃𝑡,𝑏

𝐵+  and 𝑃𝑡,𝑏
𝐵− 

denotes the energy charged/discharged by the batteries, with 𝐶𝑡,𝑏
𝐵+  and 𝐶𝑡,𝑏

𝐵−  corresponding to the 
related prices. In the case of EVs, 𝑃𝑡,𝑒𝑣

𝐸𝑉+and 𝑃𝑡,𝑒𝑣
𝐸𝑉−represent the energy charged/discharged by them, 

while 𝐶𝑡,𝑒𝑣
𝐸𝑉+ and 𝐶𝑡,𝑒𝑣

𝐸𝑉− indicate the associated prices. For the system, 𝑃𝑡
𝐼𝑚𝑝and 𝑃𝑡

𝐸𝑥𝑝represent the import 

and exported power, respective, while 𝐶𝑡
𝑏𝑢𝑦

 and 𝐶𝑡
𝑆𝑒𝑙𝑙  indicate the associated prices. The OF is subject 

to operational constraints related to EVs, CSs, BESS, generators (including PVs), main grid constrains 
related to import and export power, and energy balance in the system.  

2.3.3 Metaheuristic models 

Metaheuristic-based optimization models are increasingly being used for the integration of EVs into 
energy communities. These models are crucial in addressing the complexities and uncertainties 
associated with RES, demand response, and EV charging behaviours [6]. Some of the most popular are 
the genetic algorithm (GA) [22], Differential Evolution (DE) [6], Particle Swarm Optimization (PSO) [23], 
the Mountain Gazelle Optimizer (MGO) [6], the Dandelion Optimizer (DO) [6], and the Hybrid Adaptive 
Differential Evolution with Decay Function (HyDE-DF) [6], among others.  

In the context of energy communities, GA is used to optimize the scheduling of EV charging and 
discharging, ensuring that the demand is met while minimizing costs and emissions. It is particularly 
effective in handling the non-linear and non-convex nature of EV integration problems. DE is effective 
in continuous optimization problems and is used in EV integration to optimize charging schedules and 
grid interactions. It has been shown to be robust in finding global optima in complex, high-dimensional 
spaces. PSO, inspired by the social behaviour of birds flocking or fish schooling, is used for optimizing 
multi-objective functions in EV integration, such as minimizing energy costs while maximizing the use 
of RESs. PSO is known for its ability to converge quickly to a good solution, making it suitable for real-
time application. MGO and DO could be used to optimize various aspects of EV design and operation, 
such as battery management systems, energy efficiency, and the logistics of CSs placement, moreover, 
by simulating the dispersal and refinement process of dandelion seeds, DO optimizer could help in 
finding optimal solutions in these complex, multidimensional problems. HyDE-DF can be applied to 
various aspects of EV technology, particularly in optimizing complex systems such as battery 
management, energy efficiency, and the design of charging infrastructure. For example, HyDE-DF could 
be used to fine-tune the parameters of battery management systems to extend battery life and 
improve performance, or to optimize the placement and operation of CSs in a smart grid environment. 
The metaheuristic-based model implemented with PyECOM [6] is driven by a minimization OF as 
outlined in Eq. (7) – (9). The overall OF, as presented in Eq. (7), resembles that of the deterministic 
model, with the primary differences arising in the expressions related to EVs and BESS. Specifically, 
each component of the OF corresponds to the following: generators, represented by Eq. (2), loads by 
Eq. (3), BESS by Eq. (8), and EVs by Eq. (9). 

 
min 𝑓 = 𝐺 + 𝐿 + 𝐵 + 𝐸𝑉 + 𝑆 (7) 

𝐵 = ∑ ∑(𝑃𝑡,𝑏
𝐵+𝛥𝑡𝐶𝑡,𝑏

𝐵+ + 𝑃𝑡,𝑏
𝐵−𝛥𝑡𝐶𝑡,𝑏

𝐵− + (𝑃𝑡,𝑏
𝐵+)

2
𝑚 + 𝐸𝑡,𝑏

𝐵𝑟𝑒𝑙𝑎𝑥𝑀)

𝑔∈𝐺𝑡∈𝑇

 (8) 

𝐸𝑉 = ∑ ∑ (𝑃𝑡,𝑒𝑣
𝐸𝑉+𝛥𝑡𝐶𝑡,𝑒𝑣

𝐸𝑉+ + 𝑃𝑡,𝑒𝑣
𝐸𝑉−𝛥𝑡𝐶𝑡,𝑒𝑣

𝐸𝑉− + (𝑃𝑡,𝑒𝑣
𝐸𝑉+)

2
𝑚 + 𝐸𝑡,𝑒𝑣

𝐸𝑉𝑟𝑒𝑙𝑎𝑥𝑀)

𝑒𝑣∈𝐸𝑉𝑡∈𝑇

 (9) 
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2.3.4 Stochastic models 

The integration of RES introduces significant uncertainty due to their intermittent nature. Stochastic 
models can optimize the scheduling of EV charging/discharging while accounting for these 
uncertainties [24]. The stochastic-based model implemented with PyECOM is driven by a minimization 
OF, as outlined in equations (10) – (12). The OF min𝑓 of stochastic model is given as the sum of two 
components 𝐹𝐷𝐴 and 𝐹𝑅𝑇 , representing costs associated with day-ahead and real-time operations, 
respectively. In this case, the day-ahead component allows to make decisions to plan the next day’s 
operation based on forecasts and expected conditions. On the other hand, real-time component 
represents the adjustments made based on probable scenarios, that are in discrepancies with day-
ahead components. The proposed model identifies the most cost-effective strategy for meeting 
anticipated demand by optimally scheduling generation, imports, loads, down, and up reserves. Hence, 
the up reserves are designed to increase the generation capacity or decrease load when there is a 
shortage of power in the system. This might occur due to unexpected increases in demand or failures 
in generation units. Conversely, down reserves serve to decrease generation or increase demand when 
there is an excess of power in the system. This surplus can occur when demand is lower than forecasted 
or when variable RES, such as wind or solar, produce more energy than anticipated. 

Within the framework of stochastic programming, this model is classified as a two-stage stochastic 
model. The first stage corresponds to the day-ahead component, while the second stage addresses the 
real-time component, where the model explicitly incorporates uncertainties in demand and generation 
availability. This is reflected in the scenarios (𝑤), which are weighted by their probabilities (𝜋𝑤). Note 
that the OF is to minimize the total expected cost of operating the energy community, as is shown in 

Eq. (10). The variables 𝑅𝑡
𝑈𝑃𝑖𝑚𝑝 and 𝑅𝑡

𝐷𝑜𝑤𝑛𝑖𝑚𝑝 represent the up and down power reserve requirements 
for the main grid, necessary to increase or decrease output to meet the anticipated demand. The 

corresponding costs for each energy reserve are denoted as 𝐶𝑡
𝑈𝑃𝑖𝑚𝑝 and 𝐶𝑡

𝐷𝑜𝑤𝑛𝑖𝑚𝑝, respectively. The 
variables 𝑅𝑡,𝑠

𝑈𝑃𝑏𝑒𝑠𝑠 and 𝑅𝑡,𝑠
𝐷𝑜𝑤𝑛𝑏𝑒𝑠𝑠  represent the up and down power reserve requirements offered by the 

BESSs, necessary to increase or decrease output to meet the anticipated demand. The corresponding 

costs for each energy reserve are denoted as 𝐶𝑡,𝑠
𝑈𝑃𝑏𝑒𝑠𝑠 and 𝐶𝑡,𝑠

𝐷𝑜𝑤𝑛𝑏𝑒𝑠𝑠, respectively. The variables 𝑟𝑡,𝑤
𝑈𝑃𝑖𝑚𝑝

 

and 𝑟𝑡,𝑤
𝐷𝑜𝑤𝑛𝑖𝑚𝑝

 were introduced to define the up and down reserves from the grid import power that 

can be offered considering different scenarios. 

 
min 𝑓 = 𝐹𝐷𝐴 + 𝐹𝑅𝑇 (10) 

𝐹𝐷𝐴 = ∑  

𝑇

𝑡=1

𝑅𝑡
𝑈𝑃𝑖𝑚𝑝

𝛥𝑡𝐶𝑡
𝑈𝑃𝑖𝑚𝑝

+ 𝑅𝑡
𝐷𝑜𝑤𝑛𝑖𝑚𝑝

𝛥𝑡𝐶𝑡
𝐷𝑜𝑤𝑛𝑖𝑚𝑝

+∑  

𝑇

𝑡=1

∑ 

𝑆

𝑠=1

𝑅𝑡,𝑠
𝑈𝑃𝑏𝑒𝑠𝑠𝛥𝑡𝐶𝑡,𝑠

𝑈𝑃𝑏𝑒𝑠𝑠 + 𝑅𝑡,𝑠
𝐷𝑜𝑤𝑛𝑏𝑒𝑠𝑠𝛥𝑡𝐶𝑡,𝑠

𝐷𝑜𝑤𝑛𝑏𝑒𝑠𝑠

 (11) 

𝐹𝑅𝑇 = ∑  

𝑛𝑊

𝑤

𝜋(𝑤) × (12) 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑ ∑ 𝑃𝑡
𝐼𝑚𝑝

𝛥𝑡𝐶𝑡
𝑏𝑢𝑦

− 𝑃𝑡
𝐸𝑥𝑝

𝛥𝑡𝐶𝑡
𝑠𝑒𝑙𝑙 + 𝑃𝑡

𝐼𝑚𝑝𝑟𝑒𝑙𝑎𝑥
𝑝 + 𝑟𝑡,𝑤

𝑈𝑃𝑖𝑚𝑝
𝑐𝑡
𝑏𝑢𝑦

+ 𝑟𝑡,𝑤
𝐷𝑜𝑤𝑛𝑖𝑚𝑝

𝑐𝑡
𝑠𝑒𝑙𝑙 

𝑤

𝑤=1

𝑇

𝑡=1

+∑∑(𝑃𝑡,𝑔,𝑤
𝐺 𝛥𝑡𝐶𝑡,𝑔

𝐺 )

𝐺

𝑔=1

𝑇

𝑡=1

 

+∑ ∑ 𝑃𝑡,𝑏
𝐷𝑐ℎ𝛥𝑡 𝐶𝑡,𝑏

𝐷𝑐ℎ 

𝑛𝐵

𝑏=1

+ 𝑟𝑡,𝑠,𝑤
𝑈𝑃𝑏𝑒𝑠𝑠𝛥𝑡𝑐𝑡,𝑠

𝑈𝑃𝑏𝑒𝑠𝑠 + 𝑟𝑡,𝑠,𝑤
𝐷𝑜𝑤𝑛𝑏𝑒𝑠𝑠𝛥𝑡𝑐𝑡,𝑠

𝐷𝑜𝑤𝑛𝑏𝑒𝑠𝑠 + (𝑃𝑡,𝑏
𝑟𝑒𝑙𝑎𝑥𝐵−)

2
𝑚 + 𝐸𝑡,𝑏

𝐵𝑟𝑒𝑙𝑎𝑥𝑀)

𝑇

𝑡=1

+∑ ∑ 𝑃𝑡,𝑒𝑣
𝐸𝑉  𝛥𝑡𝐶𝑡,𝑒𝑣,𝑤

𝐸𝑉+  

𝑛𝐸𝑉

𝑒=1

+ (𝑃𝑡,𝑒𝑣,𝑤
𝑟𝑒𝑙𝑎𝑥𝐸𝑉−)

2
𝑚 + 𝐸𝑡,𝑒𝑣,𝑤

𝐸𝑉𝑟𝑒𝑙𝑎𝑥𝑀)

𝑇

𝑡=1

+∑∑ 𝐿𝑡,𝑙
𝑟  𝛥𝑡𝐶𝑡,𝑙

𝑟

𝐿

𝑙=1

+ 𝐿𝑡,𝑙
𝑐  𝛥𝑡𝐶𝑡,𝑙

𝑐

𝑇

𝑡=1

+ 𝐿𝑡,𝑙
𝐸𝑁𝑆 𝛥𝑡𝐶𝑡,𝑙

𝐸𝑁𝑆

]
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3 Simulation Results 

This section presents the simulation results, highlighting key features of the proposed Energy 
Community Management System. Subsection 3.1 details the model assumptions for the PyECOM-
based deterministic, metaheuristic, and stochastic models. Subsection 3.2 discusses the primary 
findings related PyECOM-based deterministic, metaheuristic, and stochastic models. 

3.1 Model assumptions for deterministic and metaheuristic models 

To validate the energy community management approach proposed in this document, for 
deterministic and metaheuristic models, one use case (UC) have been analysed. The UC represents an 
energy community comprising sixteen residential households and four small commercial buildings, 
twenty BESS, sixteen EVSE units, thirty-two EVs, twenty Generators (considered as PV units), and the 
distribution network technical limits, considering a local transformer with 100kW of nominal capacity 
with a usage limitation of 80%, as shown, in a representative way, by Figure 3. For each BESS, charging 
and discharging efficiencies within 0.95 and 0.96 were assumed. For the EVSEs, charging and 
discharging efficiencies of 0.95 were also considered. However, as illustrated in Figure 3, it was 
assumed that some EVSEs are equipped with V2G technology, for this UC, ten EVSEs were considered. 
Regarding the EVs, it was assumed that several of the EVs are equipped with V2G technology, in this 
case eighteen EVs. These V2G-enabled vehicles have both charging and discharging efficiencies set to 
0.98. On the other hand, vehicles without V2G technology have a charging efficiency of 0.98 and a 
discharging efficiency of 1.00. It is important to note that, since there are more cars than EVSEs, the 
mathematical model includes input data specifying the connection place of each EVs. This ensures that 
only one car is connected to each EVSE at any given time. 
For the metaheuristic model were considered the DO and HyDE-DF algorithms. Each algorithm requires 
hyperparameters to run correctly, more details can be found in [6]. The hyperparameters of each of 
them are detailed in Table 1, in which 𝑝𝑜𝑝 represents the population considered, 𝐹𝑤𝑒𝑖𝑔ℎ𝑡 is the function 
weight, and 𝐹𝐶𝑅 is the crossover value.  

Table 1: Algorithms hyperparameters settings  

Algorithm  Parameters  

HyDE-DF 𝑝𝑜𝑝 = 20, 𝐹𝑤𝑒𝑖𝑔ℎ𝑡 = 0.5, 𝐹𝐶𝑅 = 0.3 

DO 𝑝𝑜𝑝 = 20 
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Figure 3 – Energy community details for UC 

 
The input data related to Generators for the Method 1 (Forecasting data) and Method 2 (Real data) 
are illustrated by Figure 4. On the other hand, the input data about the load consumption used for 
Method 1 (Forecasting data) and Method 2 (Real data) are illustrated by Figure 5. The analysis of the 
forecasting data for generator profiles indicates that the four commercial buildings exhibit forecasted 
peaks of 7.5kW, 11.75kW, 16.09kW, and 20.6kW, while the residential houses display peak 
productions of less than 3.6kW. In contrast, the real data reveal that the generator profiles for these 
buildings have slightly higher peak power production than the forecasts, with observed peaks of 
9.3kW, 14.4kW, 19.8kW, and 25.4kW. Conversely, the residential houses demonstrate lower peak 
productions in real data, with values under 2.8kW, which are smaller than the forecasted data.  
Related to the load consumption, for the forecasting data, the profiles shows that the four commercial 
buildings exhibit peak consumptions power of 31.23kW, 24.3kW, 17.7kW, and 11.41kW, while the 
residential houses display peak power consumption less than 4.7kW. In contrast, the real data reveal 
that the peak consumption power for these buildings have slightly higher peak consumption than the 
forecasts, with observed peaks of 40.29kW, 31.33kW, 22.88kW, and 14.73kW. On the other hand, the 
residential houses demonstrate higher peak productions in real data, with values under 5.8kW, which 
are higher than the forecasted data. Moreover, for these profiles, the data on real-time information is 
sourced from a database containing actual records from several residential houses on a Portuguese 
island, hence the values of four houses were adjusted to reflect power consumption and generation 
levels typical of four commercials buildings [25]. The forecasting data is derived from a forecasting 
database, which uses input data based on the actual records from the same houses on a Portuguese 
island [25]. Data related to energy prices was taken from [26].  
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Figure 4 – Generators profiles for Method 1, forecasting data (left side), Method 2, real data (right side) 

for UC 

  
Figure 5 – Load consumption for Method 1, forecasting data (left side), Method 2, real data (right side) for 

UC 

3.2 Model assumptions for stochastic model 

To validate the energy community management approach proposed in this document, the UC analyzed 
for the deterministic model, as depicted in Figure 3, was also considered within the stochastic model 
considerations. Moreover, five distributions of probability for generators and load consumption 
profiles were considered into Method 1, as shown, in a representative way, for one commercial 
building data in Figure 6 and one household in Figure 7. To validate the stochastic model's performance 
in scheduling reserves, the reserves were programmed based on grid imported power and BESS 
managed power. The scenario combination resulted in 25 distinct cases, each with a 0.04 probability. 

  
Figure 6 – Generators distribution probability (left side) and load distribution probability (right side) for 

Method 1, considering a representative commercial building.  
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Figure 7 – Generators distribution probability (left side) and load distribution probability (right side) for 

Method 1, considering a representative household. 

 
To generate probabilistic forecasts of generators and load consumption profiles, we employed data 
from the same households on a Portuguese island, previously utilized for the deterministic model [25]. 
The Quantile Regression method [27] was implemented. The process began with data pre-processing, 
where the raw datasets were resampled from a 15-minute to a 1-hour resolution, and missing values 
were handled using forward filling. For feature engineering, date-time features were extracted, and 
lag features were created for the target variables to capture temporal dependencies. This included 
generating lag features for 1, 2, and 3 days prior, which were crucial for capturing time-dependent 
patterns. The features influencing solar power included solar radiation metrics like Global Horizontal 
Irradiance (GHI) and lagged values of solar power itself. For load, the features included not only lagged 
load values but also solar power generation. These features were then used as inputs for the 
forecasting model. Quantile Regression was selected as the forecasting method, allowing the 
estimation of different quantiles: 10th, 30th, 50th, 70th, and 90th for PV power, and 40th, 45th, 50th, 
55th, and 60th for load. The model was trained on historical data from December 7th, 2018, to 
November 5th, 2019, and forecasts were produced for the next day, November 6th, 2019. 

3.3 Energy community management results   

3.3.1 Main results for deterministic model 

The main results of the energy community management, based on the deterministic model using 
PyECOM for the three methods considered, are presented in Figure 8 – Figure 11. For Method 1, as 
shown in Figure 8 (left side), the peak import power reached 80kW, which corresponds to the 
maximum capacity of the main transformer. This peak in grid import power decreases at 12h00, 
coinciding with the start of increased generator power production. The peak EV discharging power is 
managed to occur at 19h00 with a discharge of 10.74 kW, and at 21h00 with 16.34 kW. Similarly, the 
BESS discharging power is scheduled for 20h00 reaching 25.66 kW, and 22h00 reaching 30.38 kW. 
These timings are intended to support periods of higher load consumption (19h00 – 23h00), in which 
the peak load consumption occurs at 22h00 with 103.93kW. Moreover, the algorithm manages the 
discharge of both BESS and EV during periods of low power demand, specifically when generator power 
is unavailable. The BESS primarily discharge between 01h00 and 3h00 to meet the changing 
requirements of the EVs (as illustrated on both sides of Figure 8), while the EVs discharge between 
07h00 – 11h00 to support the community's load consumption (see both sides of Figure 8).  Finally, 
during periods of elevated generation power (13h00 – 15h00), neither the BESS nor the EVs are 
discharged, as the load consumption is met by the grid import power in conjunction with the 
generation production. Moreover, the BESSs and EVs are encouraged to take advantage of the solar 
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production by maximising their charging power between 13h00 – 15h00, as shown in Figure 8 (right 
side). Hence, the peak of BESS charging power occurs at 14h00, reaching 50.28 kW, while the EVs 
achieve their peak consumption at 17h00 with 49.35 kW. In the case of the EVs, due to the non-
stationary nature of their batteries (which are dependent on user behaviour), the algorithm can 
efficiently utilize the generator power production when users return to the charging points around 
17h00. Furthermore, in this UC scenario, using Method 1, from the production point of view there is 
no observed load reduction, load curtailment, or load energy not supplied (ENS). On the other hand, 
in terms of consumption, there is no grid export power. Moreover, for this operation day, the total 
grid import energy was 1896.77kWh, the total BESS discharging energy was 156.64kWh, the total EV 
discharging energy was 49.68kWh, and the total generators energy production was 462.25kWh, in 
terms of total consumption, the EVs consumed a total 385.08kWh, the total BESS charging energy was 
139.45kWh, and the total load consumption achieved 2040.80kWh at the end of the operation day. 
 

  
Figure 8 – Production (left side) and Consumption (right side) results for deterministic model, Method 1 

 
Figure 9 presents the results for production (left side) and consumption (right side) under Method 2. 
When comparing Method 1 with Method 2, it is evident that under the analysis of real data, where 
there was a 7.0% increase in generator availability on this day of operation, the algorithm takes 
advantage of this to increase the charging of both BESS and EV, as shown in Figure 9. Consequently, 
the BESS peak charging power occurs at 13h00 reaching 54.69 kW, while the EVs reach their peak 
charging power at 16h00 with 46.07 kW. This represents an increase of 9.0% and 6.7%, respectively, 
compared to Method 1. Regarding production, it can be observed that due to the increased availability 
of generators, Method 2 exhibits more periods with reduced grid import power, particularly at 11h00, 
12h00, and 14h00. The greatest reduction occurs at 12h00 with only 17.42kW being imported. During 
this time, the system's total load (77.20 kW), considering both normal loads and EVs) is primarily 
supported by the generators, providing 63.44kW and with a small contribution from the EVs with 
3.6kW. It is important to note that some vehicles are discharged while others are charged, always 
within their operational limits. On the other hand, like Method 1, in Method 2, the BESSs and EVs are 
also managed by the algorithm to help meet the system's load, particularly during periods of higher 
demand. Between 1h00 – 4h00, the BESSs are primarily utilized to support the grid, even reaching their 
peak discharge power of 59.42 kW at 3h00. The EVs, in turn, are used between 6h00 – 12h00 to 
complement the grid, notably after the BESS have been heavily utilized. The EVs reach their peak 
discharge power of 22kW at 22h00, supporting the grid during hours when community users are 
expected to have returned to the EVSEs. Regarding consumption, the algorithm leverages the 
increased availability of generators to enhance the charging of BESS and EVs during peak production 
hours (11h00 – 17h00), thereby improving the community's utilization of sustainable resources. Finally, 
on this operational day, total grid import energy amounted to 1823.40kWh, while total BESS 
discharging energy reached 194.69kWh, the total EV discharging energy was 89.56kWh, and generator 
energy production was 496.25kWh. As a result, under this method incorporating real-time data, 
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generator power production exhibited a 7% increase compared to Method 1. Furthermore, as with 
Method 1, Method 2 showed no load reduction, load cut, or load ENS. In terms of consumption, this 
method, resulted in total EV consumption of 426.44kWh, with a total BESS charging energy of 
194.69kWh. The overall load consumption reached 1992.50kWh.  
 

  
Figure 9 – Production (left side) and Consumption (right side) results for deterministic model, Method 2 

 

Figure 10 shows production (left side) and consumption (right side) results for Method 3. For this 

method, due to its inherent uncertainties, which combines real and forecasted data, it was not possible 

to avoid load reduction, having its peak reduction (64.03kW) at 3h00, as can be seen in Figure 10 (left 

side). In terms of consumption, EVs have their peak power charging (49.83kW) at 16h00, while BESSs 

have their peak power charging of 68.08kW at 14h00, like the EVs, taking advantage of the power 

production from generators, as can be seen in Figure 10 (right side). At 16h00, this method achieved 

the greatest reduction in grid import power, driven by the availability of generator power and a small 

contribution from EVs, which provided 1.23kW of discharging power. The algorithm also manages 

BESSs and EVs to support the system's load, particularly during periods of high demand and when 

generator power is unavailable. From 1h00 – 3h00 and 20h00 – 24h00, BESSs are primarily utilized to 

assist the grid, reaching their maximum discharge power of 33.75kW at 22h00. EVs, on the other hand, 

are most active between 18h00 and 22h00, complementing the grid and achieving a peak discharge 

power of 15.41kW at 21h00. This support aligns with the expected return of community users to the 

EVSEs during these hours.  

 

 

  
Figure 10 – Production (left side) and Consumption (right side) results for deterministic model, Method 3 
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Due to the uncertainties inherent in this method, the community's power consumption was adjusted 

through load reduction and load cut. As a result, the system's net consumption load is presented in 

Figure 11. Thus, it is possible to observe how the load power consumption curve is adjusted, with the 

peaks of controllable loads (EVs and BESSs) aligning with the peaks of load reduction and load cut.  

 

 
Figure 11 – Net consumption results for deterministic model, Method 3 

 

On this operational day, total grid import energy amounted to 1920kWh, while total BESS discharging 

energy reached 263.64kWh, EVs discharging energy was 23.47kWh, generator energy production was 

496.37kWh, load energy reduction was 762.06Wh, with 136.16kWh of load cut, without load ENS. In 

terms of consumption, resulted in total EV consumption of 388.25kWh, 408.74kWh of BESS energy 

consumption, and the overall load consumption reached 1797.09kWh.  

Table 2 provides a summary of the energy produced and consumed for each method in the UC analysed 

for the deterministic model, in which the final load energy consumption includes the load power 

consumption, the BESSs, and the EVs charging power. As is evident, due to uncertainties, Method 3 is 

unable to prevent load reduction. However, the EVs were managed to charge 9% less compared to 

Method 1, while the BESS were managed to charge 25% less than in Method 1.  

Table 2: Summary of the energy production and consumption (kWh) for the three methods of the 
deterministic model  

Method 
Energy 

Imported 

Final Load 
energy 

consumption 

Community 
Load Energy 
consumption 

Energy 
reduction 

Energy 
cut 

Energy 
ENS 

Generator’s 
energy 

BESS and 
EVs Energy 
discharging 

Energy 
exported 

Method 1 1,896.77 2,565.34 2,040.80 0.00 0.00 0.00 462.24 206.33 0.00 

Method 2 1,823.40 2,603.37 1,992.50 0.00 0.00 0.00 496.37 283.59 0.00 

Method 3 1,894.24 2,594.09 1,992.50 195.40 0.00 0.00 496.37 203.47 0.00 

3.3.2 Main results for metaheuristic model 

The key outcomes of energy community management, derived from the metaheuristic DO algorithm 
using PyECOM for the three methods considered, are illustrated in Figure 12 – Figure 17. Figure 12 
presents the production (left side) and consumption (right side) results for Method 1, utilizing the DO 
algorithm. As evident from the figure, the DO algorithm demonstrates suboptimal performance, 
exhibiting load reduction, load cut, and load ENS, and grid export power. The peak discharging power 
of BESSs (67.12kW) occurs at 2h00, this aiming to help with the total load consumption considering 
the high EV charging power (79.54kW) at this same period. The DO algorithm does not take advantage 
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of the generator power availability to manage the BESSs and EVs charging power (see Figure 12, right 
side). On this operational day, the total grid import reached 1,345.18kWh, with a BESS discharge of 
791.35kWh and EV discharge energy of 35.77kWh. Load management contributed to an overall energy 
reduction of 57.95kWh, with 24.89kWh from load curt and 4.54kWh from load ENS. Furthermore, the 
total energy used on-site from generators amounted to 414.55Wh. On the consumption side, EV 
charging accounted for 309.38kWh, while BESS charging totalled 274.06kWh. The overall load 
consumption was 1,953.42kWh, with 47.69kWh exported to the grid by the end of the day. 
 

  
Figure 12 – Production (left side) and Consumption (right side) results for metaheuristic model (DO), 

Method 1 

 
Due to the poor performance of the DO algorithm, the community's power consumption was adjusted 

through load reduction, load cut, and load ENS. As a result, the system's net consumption load, for 

Method 1, is presented in Figure 13. Thus, it is possible to observe how the load power consumption 

curve is adjusted aligning with the peaks of load reduction, load cut, and load ENS.  

 

 
Figure 13 – Net consumption results for metaheuristic model (DO) Method 1 

 
Figure 14 presents the production (left side) and consumption (right side) results for Method 2, utilizing 
the DO algorithm. As evident from the figure, the DO algorithm under the usage of real time data 
demonstrates a poor performance, exhibiting a higher load reduction, load ENS, and grid export power 
when compared to the Method 1. On the other hand, in Method 2, the BESSs discharging power is 
managed to support the higher load consumption (124.14kW) at 3h00, with a peak discharging power 
of 79.73kW at the same hour, different from Method 1, in which the BESSs were used to support the 
EV charging power. Like Method 1, the DO algorithm in Method 2 does not take advantage of the 
generator power availability to manage the BESSs and EVs charging power (see Figure 14, right side). 
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On this operational day, the total grid import reached 1,289.75kWh, with a BESS discharge of 
779.90kWh and EV discharge energy of 35.97kWh. Load management contributed to an overall energy 
reduction of 60.71kWh, with 90.28kWh from load curt and 5.73kWh from load ENS. Furthermore, the 
total energy used on-site by generators amounted to 463.72kWh. On the consumption side, EV 
charging accounted for 309.96kWh, while BESS charging totalled 357.96kWh. The overall load 
consumption was 1,835.77kWh, with 32.65kWh exported to the grid by the end of the day.  
 

  
Figure 14 – Production (left side) and Consumption (right side) results for metaheuristic model (DO), 

Method 2 

 

Due to the poor performance of the DO algorithm, the community's power consumption was adjusted 

through load reduction, load cut, and load ENS. As a result, the system's net consumption load is 

presented in Figure 15. Thus, it is possible to observe how the load power consumption curve is 

adjusted aligning with the peaks of load reduction, load cut, and load ENS.  

 

 
Figure 15 – Net consumption results for metaheuristic model (DO) Method 2 

 
Figure 16 displays the outcomes for energy production (on the left) and consumption (on the right) for 

Method 3, utilizing the DO algorithm. Although Method 3 considers data uncertainty, it shows no 

notable advancements in smart energy management for BESS, EVs, and generators when compared to 

Methods 1 and 2. Challenges such as load reduction, load curtailment, load ENS, and grid export power 

continue to exist, indicating suboptimal use of the PV units. 
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Figure 16 – Production (left side) and Consumption (right side) results for metaheuristic model (DO), Method 3 

 

For this operational day, the total grid import amounted to 2,180.57kWh, with a total BESS discharge 

of 778.85kWh and EV discharge of 36.42kWh. The total energy reduction was 63.29kWh, including 

48.14kWh from load curtailment and 4.88kWh from load ENS. Additionally, the total energy used by 

the generators reached 462.80kWh. On the consumption side, EVs charged a total of 314.14kWh, while 

the BESS charging energy totalled 368.89kWh. The total load consumption amounted to 1,876.18kWh, 

with 33.56kWh exported back to the grid by the end of the day. Among the three methods, this 

approach performed the worst in terms of energy balance management for the energy community, 

importing 26.01% more energy than necessary to meet the total load consumption. This result is 

expected, as this method contends with highly uncertain and mixed input data from both forecasting 

and real-time sources.  

Due to the poor performance of the DO algorithm for method 3, the community's power consumption 

was adjusted through load reduction, load cut, and load ENS. As a result, the system's net consumption 

load is presented in Figure 17. Thus, it is possible to observe how the load power consumption curve 

is adjusted aligning with the peaks of load reduction, load cut, and load ENS.  

 

 
Figure 17 – Net consumption results for metaheuristic model (DO), Method 3 

 

Table 3 summarizes the energy production and consumption for each method in the UC analysis using 

the DO algorithm. As indicated, this algorithm, like HYDE-DF, is unable to effectively manage the energy 

community to prevent load curtailment, load reduction, and load ENS across all three methods. 
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Additionally, inefficient utilization of the generators is observed, along with the importation of more 

energy than necessary to meet the system's load demand, particularly in Method 3.  

Table 3: Summary of the energy production and consumption (kWh) for the three methods of DO algorithm 

Method 
Energy 

Imported 

Final Load 
energy 

consumption 

Community 
Load Energy 
consumption 

Energy 
reduction 

Energy 
cut 

Energy 
ENS 

Generators 
energy 

BESS and 
EVs Energy 
discharging 

Energy 
exported 

Method 1 1,345.17 2,536.87 1,953.42 57.95 24.89 4.54 414.55 827.12 47.69 

Method 2 1,289.76 2,503.11 1,835.77 60.71 90.28 5.73 463.72 815.87 32.64 

Method 3 2,180.57 2,559.21 1,876.18 63.29 48.14 4.88 462.80 815.27 33.57 

3.3.3 Main results for stochastic model 

The main results of the stochastic model for the considered UC, analysing the most provable scenario 
(Scenario 13), are presented in Figure 18 – Figure 22. Hence, Figure 18 shows the production and 
consumption results for this scenario. As can be observed, in this scenario, the stochastic model, like 
the deterministic model, manages the charging of the BESSs and EVs to take advantage of the available 
generator power. Hence, the peak charging of the BESS (34.00kW) occurs at 13h00, and for the EVs 
(49.35kW), at 16h00. In terms of energy production, the model manages the discharge of both the 
BESSs and EVs to alleviate system stress during periods when generators have low energy availability. 
Consequently, there is a high discharge from the BESSs at 3h00, reaching 12.98kW, and again at 19h00 
with 14.86kW. Meanwhile, the EVs exhibit significant discharges at 10h00 with 7.2kW, at 19h00 with 
12.54kW, and at 21h00 with 11kW. On the other hand, due to the inherent uncertainties of the 
stochastic model, it was not possible to avoid load reduction in this scenario, resulting in a peak 
reduction of 3.95kW at 22h00. Another point related to this model when compared to the 
deterministic model is that under uncertainty, the optimisation model opts to reduce the BESS 
charging/discharging power, since for this model, the BESS charging reduces by 43.6% and the BESS 
discharging power reduces by 52.0%. For this day of operation, the generators were managed to 
operate at their maximum capacity, producing a total of 487.00kWh of energy, with 0.00kWh exported 
to the grid. The BESSs discharged a total of 88.46kWh, while the EVs discharged 57.72kWh, with a total 
load energy reduction of 32.45kWh, and requiring 1,755.58kWh of grid export energy. In terms of 
consumption, the system's total load reached 1,927.95kWh, while the BESSs charged a total of 
67.46kWh and the EVs 393.48 kWh. 
Different from the deterministic and metaheuristic models, the stochastic model incorporates the 
possibility of providing both up and down reserves to the system within its intelligent community 
management, through the grid import power and the power of the BESSs. Thus, Figure 18 includes, 
into the production, the scheduling of these reserves in scenario 13. As can be observed, the grid 
import power is alleviated through the scheduling of down reserve power in this scenario, particularly 
between 11h00 – 16h00, with the maximum down reserve offered at 12h00, reaching 57.96kW. This 
results in a net grid import power of 22.03kW at that hour. This down reserve is made possible due to 
the charging management of the EVs, which reach a low charging level at 12h00, with a consumption 
of 12.19kW, and the complete reduction in consumption from the BESSs, which draw 0kW at that time, 
demonstrating that from system point of view this reserve decrease the grid import power. The total 
down reserve energy for this scenario, considering the grid import power, is 164.41kWh. On the other 
hand, when using the grid import power, no up reserve is offered because the transformer power 
capacity is at its maximum level, making impossible to increase the generation. Related to the BESSs 
power, no down neither up power was offered through this resource in Scenario 13. 
 



 
 

  EV4EU – D2.5 Integration of V2X in Energy Communities Management 

 

Page 31 of 37 

 

  
Figure 18 – Production (left side) and Consumption (right side) results for stochastic model, Method 1, 

Scenario 13 

 
The down power reserves as well as the total down reserve energy offered in each scenario are 
illustrated in Figure 19. As shown, no grid import down reserves is offered in Scenarios 3, 4, and 5. The 
highest grid import down reserve energy is offered in Scenario 21, amounting to 448.76kWh, which 
corresponds to a 30.5% reduction in grid import generation in this scenario. 
 
 

 
Figure 19 – Grid import down reserves for all scenarios, stochastic model, Method 1 

 
Figure 20 presents the results for production (left side) and consumption (right side) of the stochastic 
model, under Method 2. It is important to highlight that for this method, since the input data comes 
from the real data module, the stochastic model only sees one scenario with a probability of 1.0. When 
comparing Method 1 with Method 2, it is evident that under the analysis of real data, where there was 
a 7.0% increase in generator availability on this day of operation, the algorithm takes advantage of this 
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to increase the charging of both the BESS and EVs, as shown in Figure 20 (right side), increasing by 
63.42% the BESS charging power, and by 7.73% the EVs charging power. Consequently, the EVs peak 
charging power occurs at 16h00 reaching 47.74kW, while the BESSs reach their peak charging power 
at 14h00 with 60.53kW.  
Regarding production, it can be observed that due to the increased availability of generators, Method 
2 exhibits more periods with reduced grid import power, particularly at 11h00, 12h00, and 14h00. The 
greatest reduction occurs at 12h00, with only 10.94kW being imported. During this time, the system's 
total load (82.25kW, considering both normal loads and EVs) is primarily supported by the generators, 
providing 63.44kW and with a small contribution from the EVs with 8.16kW. It is important to note 
that some vehicles are discharged while others are charged, always within their operational limits. On 
the other hand, like Method 1, in Method 2, the BESSs and EVs are also managed by the algorithm to 
help meet the system's load, particularly during periods with no generators power availability. 
Between 1h00 – 4h00, the BESSs are primarily utilized to support the grid, even reaching their peak 
discharge power of 57.84kW at 3h00. The EVs, in turn, are used between 19h00 – 21h00 to 
complement the grid, notably after the BESSs have been heavily utilized. The EVs reach their peak 
discharge power of 22kW at 22h00, supporting the grid during hours when community users are 
expected to have returned to the EVSEs. Regarding consumption, the algorithm leverages the 
increased availability of generators to enhance the charging of BESSs and EVs during peak production 
hours (11h00 – 17h00), thereby improving the community's utilization of sustainable resources. Finally, 
on this operational day, total grid import energy amounted to 1823.40kWh, while total BESS 
discharging energy reached 194.69kWh, the total EV discharging energy was 89.56kWh, and generator 
energy production was 496.25kWh. As a result, under this method incorporating real-time data, 
generator power production exhibited a 7% increase compared to method 1. Furthermore, as with 
method 1, method 2 showed no load reduction, load cut, or load ENS. In terms of consumption, this 
method, resulted in total EV consumption of 426.44kWh, with a total BESS charging energy of 
184.42kWh. The overall load consumption reached 1992.50kWh. Moreover, when considering real 
data, this method does not provide up or down reserves for either grid import power or BESSs.  
 

  
Figure 20 – Production (left side) and Consumption (right side) results for stochastic model, Method 2 

 
Figure 21 illustrates production (left side) and consumption (right side) results for the stochastic model, 
Method 3. As can be observed, for this method, the stochastic model, due to the high uncertainty, 
presents an increase related to the load reduction power, with a peak of 51.49kW at 3h00. Despite the 
high uncertainty of this model and method, the optimisation model takes advantage of the maximum 
availability of generators to charge both BESSs and EVs. Hence, the peak charging of the BESS (36.12kW) 
occurs at 13h00, and for the EVs (49.35kW), at 16h00. In terms of energy production, the model 
manages the discharge of both the BESSs and EVs to alleviate system stress during periods when 
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generators have low energy availability. Consequently, there is a high discharge from the BESS at 3h00, 
reaching 11.56kW, and again at 22h00 with 10.77kW. Meanwhile, the EVs exhibit significant discharges 
at 10h00 with 7.2kW, at 19h00 and at 18h00 with 17.09kW. For this day of operation, the generators 
were managed to operate at their maximum capacity, producing a total of 496.37kWh of energy, with 
0.00kWh exported to the grid. The BESSs discharged a total of 88.63kWh, while the EVs discharged 
57.72kWh, with a total load energy reduction of 221.93kWh. In terms of consumption, the system's 
total load reached 1,770.57kWh, while the BESSs charged a total of 106.47kWh and the EVs 393.48 
kWh. Figure 21 includes, into the production, the scheduling of the down reserve power in Scenario 
13. As can be observed, the grid import power is alleviated through the scheduling of down reserve 
power in this scenario, particularly between 6h00 – 19h00, with the maximum down reserve offered 
at 12h00, reaching 53.12kW. This results in a net grid import power of 26.87kW at that hour. This down 
reserve is made possible due to the charging management of the EVs, which reach a low charging level 
at 12h00, with a consumption of 12.19kW, and a BESSs charging power of 4.52kW at that time, 
demonstrating that from system point of view this reserve decrease the grid import power. The total 
down reserve energy for this scenario, considering the grid import power, was 251.44kWh. On the 
other hand, using the grid import power, no up reserve is offered, this because the power capacity of 
the transformer is used at its maximum level makes impossible to increase the generation. Related to 
the BESSs power, no down neither up power was offered through this resource in Scenario 13. 
 
 

  
Figure 21 – Production (left side) and Consumption (right side) results for stochastic model, Method 3, 

Scenario 13 

Due to the high uncertainty of the stochastic model for Method 3, the community's power 

consumption was adjusted through load reduction and load cut. As a result, the system's net 

consumption load is presented in Figure 22. Thus, it is possible to observe how the load power 

consumption curve is adjusted aligning with the peaks of load reduction and load cut. 
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Figure 22 – Net consumption results for stochastic model, Method 3, scenario 13 

 

Table 4 provides a summary of energy production and consumption for each method in the UC analysis 

based on the stochastic model, specifically for Scenario 13. When incorporating both forecast data and 

a mix of forecast and real data to predict future actions, the optimization model fails to efficiently 

manage the energy community, resulting in an inability to prevent load reduction. A noteworthy 

observation is that in Method 3, when uncertainty is high, the model allocates more down reserves 

compared to the other methods.  

Table 4: Summary of the energy production and consumption (kWh) for the three methods of the stochastic 
model, Scenario 13 

Method 
Energy 

Imported  

Final Load 
energy 

consumption 

Community 
Load Energy 
consumption 

Energy 
reduction 

Energy 
cut 

Energy 
ENS 

Generators 
energy 

BESS and 
EVs Energy 
discharging 

Energy 
exported 

Method 1 1,755.59 2,256.53 1,795.58 32.45 0.00 0.00 487.12 146.18 0.00 

Method 2 1,823.41 2,603.37 1,992.50 0.00 0.00 0.00 496.37 283.59 0.00 

Method 3 1,627.80 2,270.53 1,770.57 221.92 0.00 0.00 496.37 146.35 0.00 
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4 Conclusions  

This deliverable presents a methodology for the optimal management of energy communities. The 
core of the methodology is an adaptable computational tool that operates based on three distinct 
models: deterministic, metaheuristic, and stochastic. Each model utilizes data from different sources: 
Method 1 uses input data from a forecasting module, Method 2 relies on real data, and Method 3 
combines forecasting information with real data, comparing them to predict future actions. The 
stochastic model considers five scenarios related to consumption and five scenarios related to 
production. A key innovation of the stochastic model, compared to the deterministic and metaheuristic 
models, is its ability to offer up and down power reserves using both the grid and battery energy 
storage systems (BESSs). Overall, a key conclusion is that both the deterministic and stochastic models 
demonstrate excellent management of resources within the energy community. In the case of the 
stochastic model, this includes scheduling reserves based on imported grid power. In contrast, the 
metaheuristic models exhibit poor performance, using the available resources inefficiently. 
In a deeper analysis of the results, it is possible to conclude that: 

• The deterministic model implements an optimal energy community management when using 
both forecast and real input data, successfully allocating the charging of BESSs and EVs during 
periods of high generator availability, while managing their discharging during times of limited 
generator power. This is achieved without exporting power to the grid nor reducing and 
curtailing load consumption of the community. However, when combining forecast and real 
data to predict future actions, due to the uncertainties handled in Method 3, the deterministic 
model is forced to reduce load energy to meet an increased demand, particularly from EVs and 
BESSs, resulting in a 5% and 6% increase in demand compared to Cases 1 and 2, respectively. 

• The metaheuristic model has poor performance by using the Dandelion Optimizer in the three 
methods analysed. The algorithm executed a suboptimal EV and BESS charging management 
since the generators maximum availability production power is not used to serve their power 
consumption leading to have export energy to the grid in the three methods. On the other 
hand, the algorithm is incapable of avoiding load curtailed and reduction, requiring 2.0% more 
power than necessary for Method 1, 2.6% for Method 2, and 26.0% for Method 3. Hence, this 
confirm that metaheuristic models are not recommended to be used for energy community 
management.  

• The stochastic model, like the deterministic model, yields optimal results when it comes to the 
management of BESS and EV power, prioritizing the utilization of periods with higher generator 
availability to increase their charging. However, when compared to the deterministic model, 
and due to the uncertainties addressed, the stochastic model prefers to reduce the total 
consumption of BESS by up to 52%. Nevertheless, it maintains the energy demanded by EVs at 
the same level as the deterministic model, confirming that even with uncertainties, the 
comfort of e-mobility users is preserved. 

• The provision of down reserves in the stochastic model indicates that the management of EVs 
and BESS is designed to alleviate demand from the system’s perspective. When considering 
forecast data, the model prioritizes reducing grid demand by offering down reserves.  
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