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Abstract—This study explores the use of transfer learning (TL)
to improve electricity consumption forecasting for electric vehicle
(EV) charging stations, particularly when faced with limited data
and varying contextual factors. The main objective is to assess
whether transfer learning can enhance forecasting accuracy for
weekend predictions by leveraging knowledge from weekday
data. Traditional models, including AutoRegressive Integrated
Moving Average (ARIMA), Random Forest (RF), Gradient Boost-
ing Machines (GBM), and Long Short-Term Memory (LSTM),
were employed, with TL integrated to transfer insights from
larger datasets to smaller ones. The results demonstrate that
TL enhances weekend forecast accuracy by mitigating data
irregularities through the application of knowledge gained from
weekday data. The research underscores the potential of TL
and machine learning in enhancing energy management for EV
charging stations, contributing to more effective power system
planning and operation in the context of the global energy
transition including electric mobility.

Index Terms—Charging Stations; Contextual Learning; Elec-
tric Vehicle; Electricity Consumption; Forecast; Transfer Learn-
ing

I. INTRODUCTION

A. Motivation

In recent years, sustainability has emerged as a central
focus across various sectors, particularly energy production
and transportation, which are two of the main contributors
to greenhouse gas emissions [1]. As the global community
intensifies efforts to reduce emissions, electricity has become
an increasingly vital energy source, driven by the ongoing
shift toward renewable energy sources (RES) and greener
technologies. The growing adoption of electric vehicles (EVs)
exemplifies this transition, reflecting a commitment to global

This work received funding from the European Union’s Horizon Eu-
rope research and innovation programme under grant agreement no.
101056765. H.M are also supported by national funds through FCT, Fundação
para a Ciência e a Tecnologia, under project UIDB/50021/2020 (DOI:
10.54499/UIDB/50021/2020), 10.54499/2022.15771.MIT, by the project nº
56 - “ATE”, financed by European Funds, namely “Recovery and Resilience
Plan - Component 5: Agendas Mobilizadoras para a Inovação Empresarial”,
included in the NextGenerationEU funding program. T.P. was supported by
the project A-MoVeR – “Mobilizing Agenda for the Development of Products
Systems towards an Intelligent and Green Mobility”, operation n.º 02/C05-
i01.01/2022.PC646908627-00000069, approved under the terms of the call n.º
02/C05-i01/2022 – Mobilizing Agendas for Business Innovation, financed by
European funds provided to Portugal by the Recovery and Resilience Plan
(RRP), in the scope of the European Recovery and Resilience Facility (RRF),
framed in the Next Generation UE, for the period from 2021 -2026.

sustainability goals [2], [3]. However, the growing demand
for electricity from sectors like transportation, along with
traditional sectors, intensifies the need for advanced energy in-
frastructure and management systems [4]. This transformation
is essential not only for ensuring a sustainable future but also
for maintaining reliable energy systems that can meet future
demand.

This dynamic landscape calls for advanced forecasting
algorithms capable of accurately predicting power demand
and production to optimize power grid operation, reduce
energy waste (renewables curtailment), and enhance overall
sustainability [4]. These forecasting techniques are critical in
addressing the unique demands of EV charging infrastructure,
where inconsistent patterns and varying consumption levels
can present challenges. The need for forecasting, however,
extends beyond the energy sector, impacting domains like
healthcare for early diagnosis [5], finance for risk assessment
and stock prediction [6], and city management for predicting
traffic [7] and preparing for natural disasters [8]. In each
case, forecasting tools empower decision-makers to optimize
resources and improve quality of life.

Most forecasting algorithms rely on Machine Learning
(ML) and statistical techniques and are adept at handling a
wide range of scenarios. Yet, these methods often struggle
in settings with limited data, leading to decreased forecast
accuracy [9]. Additionally, as energy forecasting increasingly
incorporates contextual and behavioral data, the need for
algorithms that can adapt to varied, dynamic data inputs
grows. To address these challenges, Transfer Learning (TL)
has emerged as a promising complement. By leveraging pre-
trained models, TL adapts learned insights to new scenarios,
offering a robust solution when historical data is sparse.
This approach is particularly relevant to EV infrastructure
forecasting, where TL can help bridge data gaps and support
the sustainable growth of electricity demand [10].

B. Use of Transfer Learning - Overview

The study presented in [11], based on [12], findings high-
light that 90% of the top nine algorithms employed in electric-
ity forecasting are AI-based, with Artificial Neural Networks
(ANN) representing 28% of the AI models, predominantly
used in Short-Term Load Forecasting (STLF). STLF is chosen



due to its ability to handle intricate electrical energy con-
sumption patterns compared to Long-Term Load Forecasting
(LTLF). Traditional ARIMA models accounted for 17.5% ,
showcasing efficiency in LTLF, where load fluctuations and
periodicity are less critical. Notably, a significant proportion
of regression models are utilized for LTLF prediction. Fur-
thermore, the study reveals the growing popularity of Support
Vector Machines (SVM), Particle Swarm Optimization (PSO),
and fuzzy logic in recent research, indicating increased atten-
tion from researchers towards these algorithms for Electricity
Demand (ED) forecasting. This reflects a broader trend of
applying artifitial intelligence (AI) across various economic
sectors to enhance efficiency and profitability.

When implementing TL in electricity consumption forecast-
ing, the primary models identified are predominantly ANNs.
ANNs are a type of ML model that is inspired by the structure
and function of the human brain. They are composed of layers
of interconnected nodes, or neurons, that can learn to perform
complex tasks by processing data. The ANN can model a
complex non-linear problem without prior assumptions of the
nature of the relationship using unsupervised training. This
ANNs can be categorized in 4 different types: Deep Neural
Network (DNN), Convolutional Neural Network (CNN), Feed-
Forward Neural Network (FNN) and Recurrent Neural Net-
work (RNN), all of which have been identified in studies on
electricity consumption forecasting. DNN uses multiple hidden
layers and a full connection between each layer and has been
used on the article [13] to ensure better modeling of the non-
linear problem and avoid the local optima problem.

C. Contributions

The main contribution of the present are:
• Propose TL methodologies introducing factors obtained

from weekdays dataset (large dataset) in weekends dataset
(small dataset).

• Compare the performance of the TL methodologies in
different forecasting algoritms

• Assessment of the performance of the methods in a
dataset of real charging stations.

D. Paper Organization

Following this section, Section II introduces the proposed
TL methodology and its implementation in various forecasting
algorithms. Section III presents the main results obtained by
these algorithms when applied to a real charging station.
Finally, Section IV highlights the key contributions of the work
presented in this paper.

II. FEDERATED MODEL APPLIED TO CHARGING STATIONS
POWER DEMAND FORECAST

This section presents the proposed FL methodology applied
to forecasting the power demand of EV charging stations. It
begins with a detailed description of the selected forecasting
models, the evaluation metrics employed, and the implemen-
tation of transfer learning techniques within each forecasting
method. The section concludes with an in-depth examination

of the dataset, including its contents and any modifications
made.

A. TL model

For the forecast, four methods are proposed for implemen-
tation: a statistical method, ARIMA; a neural network, LSTM;
an ensemble learning method, RF; and a ML technique, GBM.
The decision behind this choice was based on section I-B,
since statistical methods, ANNs, Ensemble and ML techniques
are the most used and effective algorithms in the universe of
electricity forecast.

The ARIMA algorithm is a powerful method for time series
forecasting. It combines AutoRegressive (AR), Integrated (I),
and Moving Average (MA) components to model the under-
lying patterns in sequential data. The AR component captures
past observations’ influence, the ’I’ component ensures station-
arity by differencing, and the MA component accounts for the
error term from a moving average of past observations. The
model’s parameters are fine-tuned to minimize the difference
between predicted and observed values, making ARIMA effec-
tive for forecasting based on historical trends and patterns in
time series data [14]. Mathematically, ARIMA can be written
as:

yt = c+

p∑
i=1

ϕi · yt−i +

q∑
j=1

θj · ϵt−j + ϵt (1)

where:
• yt is the predicted value at the time t
• c is a constant,
• ϕi are the autoregressive coefficients,
• θj are the moving average coefficients,
• ϵt is the error term at time t.

LSTM is a type of RNN architecture designed to address the
challenge of capturing long-range dependencies in sequential
data. LSTM introduces memory cells that can store and
retrieve information over extended sequences, facilitating the
modeling of intricate temporal patterns. The key innovation
lies in the incorporation of gating mechanisms, including
input, forget, and output gates. These gates regulate the flow
of information, allowing LSTM to selectively update and use
the contents of the memory cell. This architectural design
overcomes the vanishing gradient problem associated with
traditional RNNs, enabling LSTM to effectively learn and
retain complex temporal dependencies, making them partic-
ularly well-suited for time series forecasting and other tasks
involving sequential data analysis [15]. Mathematically, the
LSTM cell at time t can be expressed as:

1. Forget Gate (ft): controls what information from the
previous cell state (Ct−1) should be discarded.

ft = σ(Wf · [ht−1, xt] + bf ) (2)

where:
• σ is the sigmoid function,
• ht−1 is he hidden state from the previous timestep,
• xt is the input at time t,



• Wf and bf are the weight and bias for the forget gate.
2. Input Gate (it) and Candidate Cell State (C ′

t): Controls what
new information will be stored in the cell.

it = σ(Wi · [ht−1, xt] + bi) (3)

C ′
t = tanh(WC · [ht−1, xt] + bC) (4)

3. Cell State Update: The new cell state Ct is updated based
on the forget gate and input gate.

Ct = ft · Ct−1 + it · C ′
t (5)

4. Output Gate (ot) and Hidden State (ht): Controls what part
of the cell state is passed to the output.

ot = σ(Wo · [ht−1, xt] + bo) (6)

ht = ot · tanh(Ct) (7)

RF for forecasting involves preparing time series data, se-
lecting relevant features, training the model, tuning hyper-
parameters for optimal performance, and evaluating the model
using appropriate metrics. The algorithm builds multiple deci-
sion trees and combines their predictions to make accurate
forecasts. Hyper-parameter tuning is crucial for optimizing
the RF model, and the final step involves using the trained
model to make predictions on future data points [16]. The
mathematical representation of RF is as follows:

The prediction yt in RF is the average prediction across
multiple decision trees hi(X), where X is the input data:

yt =
1

N

N∑
i=1

hi(X) (8)

where N is the number of decision trees in the forest, and
hi(X) represents the prediction made by the i-th tree.

Similar to RF, GBM is also a powerful ML technique that
can be used for forecasting [17], where the core idea of GBM
is to improve the predictions of y by iteratively adding new
decision trees hm(X) that focus on the residuals (errors) of the
previous model. This methodology also involves preparing the
data, identifying relevant features, selecting a GBM algorithm,
training the model, tuning hyper-parameters, making predic-
tions, evaluating performance, refining the model, and fore-
casting. GBM are effective for handling complex relationships
and providing accurate predictions [18]. And mathematically,
the prediction after m iterations can be described as follow:

ym = ym−1 + αhm(X) (9)

where α is a learning rate that controls the contribution of each
tree, and hm(X) is the decision tree trained on the residuals.

Each model underwent extensive hyperparameter tuning
and cross-validation across different chargers and datasets to
ensure optimal forecast accuracy under various conditions.
This rigorous approach aimed to achieve the best possible
forecasting results for each charger across different scenarios.

1) Evaluation of the Methods: To evaluate the models, two
metrics were consistently used: RMSE and MAE.

The evaluation was conducted for forecasting one day
ahead, provided there was at least one instance of charger
connection during that day. If additional time was necessary
to observe charger activity, the evaluation was extended to two
or more days ahead, until charging activity was verified.

2) TL Methods: After the implementation of forecast mod-
els and further evaluation, TL techniques are implemented
across the different models, use cases, and scenarios to as-
sess their potential in enhancing the performance of standard
models.

In this approach, a model is trained using a data-rich dataset,
and the trained model is then applied to a data-poor dataset
[13]. Typically, the training dataset comes from a different
source than the original dataset. However, as noted earlier,
this exact scenario is not always feasible for every use case.
Therefore, the TL technique was customized for each model,
taking into account their unique architectures and principles.

To describe each TL technique more clearly, we can con-
sider two charging stations: station a, which transfers knowl-
edge, and station b, which receives and applies this knowledge
to improve predictions. Both stations are divided into equally
sized training and testing sets before the methods are applied.

In ARIMA, both datasets, from a and b are combined in
just one dataset and an initial model ARIMA model is trained
with this combined data and using the hyperparameters from
a. Afterwards, we fine tune the model on charger b with the
same hyperparameters and then we make the predictions for
station b.

ARIMA posed the most challenges in applying TL tech-
niques due to its fundamental architecture and methodology,
which typically relies on historical time series data rather than
direct knowledge transfer from other sources.

In RF, an initial model is trained based on the data from
station a and with its hyperparameters. Subsequently, this
model is employed to make predictions for charging station
b, and these predictions are saved as new feature.

Next, a new model is trained based now on the data from
station b , incorporating the new feature, which represents the
predictions made by the model from station a. This enhanced
model is then used to forecast the charging station b electricity
consumption.

For GBM, an initial model is trained using the data and
hyperparameters from station a. Subsequently, a new model is
trained with the data from charging station b, initialized with
the weights and structure of the previously trained model.

This approach allows the new model to leverage the knowl-
edge acquired by the initial model, enhancing the forecast
accuracy for charging station b.

In LSTM, the data from both charging stations a and b
are reorganized to fit the expected input format of the LSTM
model, where each sample is represented as a sequence of
timestamps with multiple features.

First, an initial model is trained using the data and hyper-
parameters from station a over 100 epochs, and this model is



saved for later use.
Next, the saved model is loaded and fine-tuned with data

from charging station b for an additional 20 epochs, enhancing
the forecast accuracy for electricity consumption at station b.

For all methods, the dataset was pre-divided into training
and testing sets based on the forecasted time period.

B. Data

The dataset concerns to a single EV station located in
Azores, Portugal, obtained under the project EV4EU, with data
spanning from November 1, 2020, to November 28, 2022. This
data, collected at 15- minute intervals, is organized in a time
series format, providing two years’ worth of information. The
time series format is ideal for forecasting electricity consump-
tion, and the 15-minute intervals are well-suited for making
day-ahead, month-ahead, or year-ahead forecasts. The initial
features of the dataset included Break Info, Date and Hour,
Active Power Consumption [kW], Reactive Inductive Power
[kvar], and Reactive Capacitive Power [kvar]. An example of
the data for weekdays and weekends is presented in Figure 1
and Figure 2, respectively.

Fig. 1. Weekdays Dataset of Azores for the month of December

Fig. 2. Weekends Dataset of Azores for the month of December

The primary goal was to determine the final target for
forecasting and identify which features were relevant. The
target feature for forecasting is Active Power Consumption
[kW]. Although, Reactive Inductive Power [kvar] and Reac-
tive Capacitive Power [kvar] are not the primary targets for
forecasting electricity consumption at an EV station, they were
retained for further analysis as they could be relevant for the
forecast models.

The Date and Hour feature, while no longer considered
a feature, serves as the index for the dataset, indicating the
time period. The Break Info feature, which was initially
included to record the maximum, average, and minimum
power consumption values, was considered neither useful nor
meaningful in this context and was therefore removed from

the dataset. Next, the dataset was examined for missing values,
which were deleted as necessary. Potential outliers, consump-
tion patterns, and irregularities in data collection were also
analyzed. And three possible irregularities were identified, all
occurring during the same time intervals. These irregularities
corresponded to periods when the charger was either off for
extended durations or exhibited constant consumption over a
long period. These patterns were unusual compared to the
overall dataset, with average values during these periods being
significantly lower than those of corresponding periods in
other parts of the dataset.

To address these irregularities, two versions of the dataset
were created: one that retained the irregularities in Feature
Active Power Consumption (kW) with no correction of ir-
regularities and another that corrected them in feature Active
Power Consumption (kW) with correction of irregularities.
The correction involved replacing the irregular periods with
data from the same time periods in different years, where
no irregularities were observed. This approach allowed for an
analysis of how these irregularities might influence the forecast
values.

Given that only two potentially relevant features are avail-
able for inclusion in the forecast model, this is insufficient
to create a robust method or perform effective feature se-
lection. Therefore, additional relevant features were added to
the dataset: weekends, weekdays, month, hour, and holidays.
Additionally, was included another new feature, the Active
Power Consumption for the day ahead (kW), which is actually
the accurate forecast target. And the previously mentioned
feature, Active Power Consumption (kW), was retained not
as the forecast target but as a regular feature to enhance the
forecast model’s accuracy. Additionally, the feature ON/OFF
was also included based on observed patterns during random
days and weeks, indicating periods when the charger was
consistently connected or disconnected.

III. RESULTS

This section provides a detailed description of the forecast-
ing scenario, along with the results obtained both with and
without the implementation of transfer learning techniques.

A. Scenario description

Given that there is only one charging station, it is not
feasible to distinguish between charging stations a and b as
separate entities. Instead, it was decided to evaluate the effects
of TL by dividing the dataset into weekdays and weekends.
The primary assumption is that forecasting accuracy for week-
ends, which has less data, would benefit from the information
gathered during weekdays. In this scenario, data collected on
weekdays is designated as a, while data collected on weekends
is designated as b.

B. Results

As the decision was made to apply TL techniques to
enhance the accuracy of weekend forecasts by leveraging
knowledge from weekday data, the results of the traditional



forecast for both weekdays and weekends are presented in
Table I and Table II, respectively.

TABLE I
WEEKDAYS DAY-AHEAD FORECAST USING THE FULL DATASET

ARIMA RF GBM LSTM
RMSE 12.20 11.47 11.36 11.58
MAE 9.48 7.37 7.31 7.24

TABLE II
WEEKENDS DAY-AHEAD FORECAST USING THE FULL DATASET

ARIMA RF GBM LSTM
RMSE 13.48 12.85 12.89 12.59
MAE 9.00 7.69 7.72 7.75

Tables II and I reveal that the forecasts for weekdays are
slightly better than those for weekends. This aligns with ex-
pectations and indicates that applying TL techniques could be
beneficial, as weekends have less data, which may contribute
to more accurate forecasts when addressed effectively.

Given that weekend forecasts are less accurate compared
to weekdays, the TL methods described in II-A2 were im-
plemented to enhance these results. The results of these
improvements are presented in Table III:

TABLE III
WEEKENDS DAY-AHEAD FORECAST USING THE FULL DATASET WITH THE

APPLICATION OF TL TECHNIQUES

ARIMA RF GBM LSTM
RMSE 13.43 12.70 12.79 12.72
MAE 10.08 7.53 7.62 7.64

Comparing Tables II and III, it is possible to observe a slight
improvement in the results mainly in RF and GBM. Never-
theless, in LSTM, the improvement was only verified in MAE
with a small increase on RMSE of 0.13 p.p. The obtained
results show that generally, TL can improve the accuracy of
the methods but this increase is not very significant.

IV. CONCLUSIONS

The first notable insight from the case of a single charger
in the Azores is that identifying and correcting irregularities
in consumption patterns, based on prior observations of “nor-
mal” consumption, can significantly improve the accuracy of
traditional forecasts. Therefore, an essential step to improve
forecast performance is to check for and address any evident
irregularities by leveraging historical consumption data from
similar periods.

Additionally, it was observed that, among traditional fore-
casting methods, the LSTM model consistently outperformed
others. This superior performance is likely due to LSTM’s
robustness and its ability to handle irregularities and complex
consumption patterns more effectively.

Finally, the use of TL improved the performance of all the
forecasting methods, though the significance of the improve-
ments was limited. It is important to note that predicting the

power demand of EV charging stations is a complex task due
to the challenges in identifying charging patterns.
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