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Abstract

With global concerns about carbon emissions, the proportion of renewable energy gen-
eration worldwide is increasing, and the demand for flexible resources in power systems
is growing. In recent years, as a clean means of transportation, the number of elec-
tric vehicles has increased, and the optimal scheduling of electric vehicles has become a
research hotspot. The rise of artificial intelligence, blockchain, and other innovative tech-
nologies has enriched research on optimal scheduling of electric vehicles. To reveal the
latest developments in electric vehicle optimal scheduling studies, this paper summarises
the application of state-of-the-art technologies, including deep learning, deep reinforce-
ment learning, and blockchain technology in the optimal scheduling of electric vehicles.
Moreover, the advantages and disadvantages of various technical applications are high-
lighted. Finally, considering the shortcomings and developmental status of applications of
the above three technologies, some suggestions for future research directions are proposed.
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1 INTRODUCTION

In November 2021, the 26th United Nations climate change
conference [1] was held in Glasgow, Scotland. The conference
adopted the Glasgow climate convention, which calls for the
goal of limiting global temperature rise to 1.5◦C and the grad-
ual reduction of coal use. Several countries, including China, the
United States, and Russia, have pledged to halt deforestation,
phase out coal, reduce methane emissions, and aim for net zero
emissions.
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The power system is an integral component of the energy
structure of all countries globally, and promoting the upgrade
and transformation of power systems has become a key mea-
sure for countries in fulfilling their pledge to reduce carbon
emissions. As a primary means of reducing greenhouse gas
emissions [2, 3], there has been a surge in the proportion of
photovoltaic (PV) power generation, wind power, and other
renewable energy generation. According to the International
Renewable Energy Agency (IRENA), the total share of global
renewable energy generation capacity in electricity generation
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has risen from 36.6% in 2020 to 38.3% in 2021. By the end
of 2021, the installed capacity of renewable energy genera-
tion increased by 257 GW, up to 9.1% annually [4]. However,
the influx of renewable energy generation equipment presents
new challenges to the safe operation and optimal scheduling of
power systems. Many problems, such as voltage deviation [5, 6]
and power balance [7], are becoming increasingly prominent. To
cope with these new challenges, there is an urgent need to find
innovative ways to address the uncertainty of renewable energy
generation [8, 9]. The rapid development of electric vehicles
(EVs) [10, 11] provides a solution to the new problems faced
by power grids. EVs are not only a new type of load, but also a
crucial flexible resource because of their long parking time and
large energy storage capacity [12–14]. However, if a large num-
ber of electric vehicle (EV) loads are not optimally scheduled
in an orderly manner, the peak and off-peak differences in the
power system loads will be further aggravated, resulting in con-
gestion of the distribution network and a waste of resources [15,
16]. Therefore, formulating the charging and discharging strat-
egy of EVs is key to the interaction between EVs and the smart
grid.

Several studies have harnessed the flexibility of EVs to
address the challenges of power systems. According to the
types of problems solved, the optimal scheduling of interac-
tions between EVs and the power grid can be categorized into
five categories:(1) Load shifting [17], (2) frequency modulation
[18], (3) voltage regulation [19], (4) promotion of renewable
energy accommodation [20], and (5) congestion management
of the distribution network [21]. According to the time scale
of problem solving, they can be classified as (1) day-ahead
problems [22, 23] and (2) real-time problems [24]. Accord-
ing to the procedures of optimal scheduling, it can be divided
into: (1) The market mechanism [25, 26]; (2) scenario genera-
tion [27]; (3) load prediction [28]; (4) flexibility prediction [29];
(5) optimization dispatch and control [30, 31]. Optimization
solutions can be divided into traditional optimization meth-
ods and new technologies. Traditional optimization methods
include linear programming, mixed-integer linear programming,
and quadratic programming. New technologies primarily refer
to deep learning (DL), deep reinforcement learning (DRL), and
blockchain technology. The literature [32, 33] has comprehen-
sively summarised the application of traditional optimization
algorithms in EV strategy optimization. However, few studies
have summarised the application of novel technologies in EV
optimization.

This paper reviews new technologies for the optimal schedul-
ing of electric vehicles in renewable energy-oriented power
systems. The research contributions of this paper primarily
include the following: (1) From the perspective of application
scenarios and algorithm categories, the detailed application of
three new technologies in optimal scheduling of EVs is intro-
duced, including DL, DRL, and blockchain technology. (2) The
advantages and disadvantages of the three new technologies
in the application of EVs optimization scheduling are sum-
marised, and improvement measures for further application of
the new technologies are proposed. (3) Based on the studies on

the optimal scheduling of EVs, suggestions for future research
directions are provided.

The remainder of this paper is organised as follows. The deep
learning technology in EVs is discussed in Section 2. In Sec-
tion 3, three types of deep reinforcement learning frameworks
are introduced for scheduling EVs: value base, policy base, and
actor-critic. The optimization of blockchain technology in EVs
is described in Section 4. Recommendations and conclusions for
future research are presented in Sections 5 and 6, respectively.

2 DEEP LEARNING TECHNOLOGY
FOR OPTIMAL SCHEDULING OF EVS

This section introduces the application of DL to the optimal
scheduling of EVs. With the advancement of big data technol-
ogy and the improvement of computer computing power, DL,
which originated from artificial neural networks, has evolved
into a new branch of machine learning. The core idea of DL is
to use a series of nonlinear transformations to achieve a hierar-
chical representation of the input information. DL can fit data
relationships, feature extraction, classification, and prediction.
With improvements in algorithm performance and substantial
increases in hardware computing power, DL has been applied
to solve the optimal scheduling problem of EVs, exhibiting
irreplaceable advantages. In short, DL can help achieve the fol-
lowing objectives in the optimal scheduling of EVs: (1) Scenario
generation, (2) load prediction, (3) flexibility prediction, and (4)
strategy optimization.

2.1 Scenario generation

In EV optimization scheduling, it is often difficult to obtain a
large amount of real data. Scenario generation can simulate the
real operating state of an EV, guide researchers in their studies
on EV traffic flow, charging demand, and scheduling strategy,
which can provide support for scheduling optimization. Most
existing research on EV operation scenario generation has used
generative adversarial networks (GANs) [34] of DL. The gen-
erative adversarial network (GAN) was first proposed in 2014.
Inspired by game theory, the algorithm generates and trains two
adversarial neural network models: Generator and discrimina-
tor. As illustrated in Figure 1, the role of the generator is to
approximate the potential distribution of the real data as closely
as possible and to generate new data samples. The discriminator
is a binary classifier aimed at accurately distinguishing real data
from generated data and maximising discriminative accuracy.

During the training process, the generator and discrimina-
tor continuously improve their respective data generation and
discriminant abilities through the game, and the optimization
goal is to find the Nash equilibrium between them. Recently,
GAN have attracted increasing attention and research fervours.
The GAN and its derivative models are prominent in scenario
generation and data restoration of electric vehicle operations.
To enhance data quality, Zhao et al. [35] proposed a data
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FIGURE 1 Framework of GAN in EV scenario generation

interpolation model based on gated recurrent unit neural
network cells for imputation and a GAN for the accurate inter-
polation of missing and outlier values in the load data of EVs.
In [36], a data-driven convolutional self-encoder and condi-
tional adversarial generative network-based EVs charging load
scenario generation method was proposed to implicitly learn
the conditional probabilities of EVs charging loads correspond-
ing to different traffic network travel patterns, which supports
grid and charging station operations. The evaluation indexes
of the load generated by the GAN method were improved
to different degrees compared with those generated by the
non-convolutional encoder method.

2.2 Load prediction of EVs

Load prediction is a vital step in the optimal scheduling of EVs
[28, 37, 38]. It can evaluate the charging requirements of charg-
ing facilities in advance, formulate guidance measures to guide
the optimized scheduling of EVs, and balance the load of differ-
ent charging facilities. Owing to the time-series nature of EVs
loads, it is suitable to predict EV loads using a recurrent neural
network (RNN) [39]. An RNN is a class of neural networks that
processes sequence data.

To simplify the network structure, an RNN uses a parame-
ter sharing network structure. RNN can be regarded as several
hidden layer chain connections, whose network structure in
series maintains the long-term dependence relationship in the
data. Lv et al. [40, 41] adopted RNN techniques to predict the
load of EVs on multiple timescales, and achieved good predic-
tions. However, RNN has a gradient dispersion effect in the
training process, resulting in information not being transmitted
over long distances. Therefore, to address the problem of long
sequence data, Hochreiter et al. [42] proposed long short-term

memory (LSTM) networks. Linear intervention and an internal
sector control mechanism were added to the network structure
of LSTM, which effectively solved the problem of long-distance
dependence. LSTM has been widely used to recognize speech,
describe the image, and process natural language. Zhu et al. [43,
44] used the charging price and blocking factor as input features
to predict the load of EVs charging stations with LSTM net-
works. Compared with traditional artificial neural networks, the
prediction accuracy of LSTM is significantly improved.

Ref. [35] introduced a gating mechanism in LSTM networks
to form a Mogrifier LSTM that fully interacts with the hid-
den state h with the current input x. Mogrifier LSTM networks
obtained more accurate short-term prediction results for the
load of EVs via training. Wang et al. [45] proposed an EVs
load forecasting method based on fuzzy entropy and integrated
learning. Accordingly, the sub-sequences with different frequen-
cies are predicted using LSTM networks and support vector
machines. The method based on fuzzy entropy and integrated
learning achieved outstanding results in both single-step and
multi-step short-term predictions. The prediction error reduced
more than 30% compared with the LSTM.

It is worth mentioning that some studies also used deep belief
networks (DBN) [46] to predict the EVs load. In [47], Li et al.
learned and analysed the historical data of operating charging
stations based on the DBN, extracted the feature information
of the generalised influence factors, and established the feature
mapping neural network accordingly. The final DBN capacity
prediction model was obtained by iteratively learning historical
data.

2.3 Prediction of electric vehicle flexibility

Flexibility of EVs is defined as the adjustable power of EVs.
Similar to a traditional generator that can provide a two-
direction reserve to the power system, the adjustable power
of EVs is divided into up reserve and down reserve. The up
reserve is the amount of power that can be reduced, and the
down reserve is the amount of power that can be increased. This
flexibility provides a power-adjustable range for the optimal
scheduling of EVs. Although the definitions of EV flexibil-
ity and the EV load mentioned in Section 2.2 are different,
the same forecasting method applies to the prediction of both
powers because of their similarity.

Ren et al. [48] used convolutional neural networks (CNNs) to
predict flexibility. A convolutional neural network (CNN) [49]
is a neural network that processes grid structural data, such as
image data, with a 2D pixel grid. A CNN structure comprises
multiple convolution layers and pooling layers, which perform
convolutional operations and pooling on the input data layer by
layer to obtain a feature representation with constant data trans-
lation, rotation, and scaling. The convolution layer maintains the
spatial continuity of the image and extracts its local features.
The pooling layer reduces the dimensions of the hidden layers
and computation. CNNs are the most successful DL mod-
els for processing 2D image data and have become a research
hotspot in image processing. The prediction of EV flexibility
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TABLE 1 General comparison between the DL algorithms

Algorithms Performance Drawback Applicability References

CNN CNN performs well in dealing with 2D
EV data.

The problem of gradient
dissipation occurs easily.

(1) EV load prediction
(2) Flexibility prediction

[48]

TCN TCN is less prone to vanishing
/exploding gradient

Poor transfer learning ability (1) Flexibility prediction [50]

RNN RNN is a model in time dimension,
which can model the sequence

A set of training parameters,
vanishing /exploding gradient

(1) EV load prediction
(2) Flexibility prediction

[40, 41]

LSTM LSTM exhibits the function of
long-term memory

Difficulty in parallel processing (1) EV load prediction
(2) Flexibility prediction
(3) Strategy optimization

[52, 53]

GAN GAN is a generative model Nash equilibrium difficulty (1) Scenario generation [35, 36]

DBN DBN learns joint probability
distribution and reflects data similarity

Higher complexity (1) EV load prediction [47]

requires considering the time dimension and the spatial distri-
bution characteristics. Another study [48] proposed a temporal
and spatial prediction method for the flexibility of shared EVs.
In that study, the training sample set included three dimen-
sions: Time, space, and the value of flexibility. Compared with
similar prediction algorithms, the mean square error of the pre-
diction method proposed in this study decreased by 2.41% and
2.36% in the weekday and non-weekday scenarios, respectively.
In addition, [50] proposed a flexibility prediction method based
on the temporal convolution network (TCN) transformer. The
EV resource and demand response signals, as well as his-
torical data, are used to train the network model, improving
its long-term dependence ability through its multi-attentional
and self-generating mechanisms. Compared with other neural
networks, this makes the prediction of flexibility more accurate.

2.4 Optimization strategy

The DL algorithm is not only applied in scene generation, load
prediction, and flexibility prediction but also the optimization
strategy of EVs. First, a traditional optimization model is estab-
lished to solve the scheduling strategy of EVs, and the deep
neural network is trained based on the results of the optimized
scheduling strategy. The optimization strategy results can be
obtained by providing input information to the trained net-
work in real time. Shi et al. [51] established an EV strategy
optimization structure that includes day-ahead optimization and
model training. First, a mixed-integer linear model is estab-
lished to solve the EV scheduling strategy. Second, the long
short-term memory networks are trained based on the solution
results. In the intra-day scheduling stage, the input information
is turned over to the trained network to obtain the intra-day
scheduling plan for the EVs. A real-time automatic optimal
scheduling strategy for EVs based on a k-means clustering algo-
rithm and LSTM has been proposed [52, 53]. The computation
time of the proposed strategy can reach the millisecond level,
and the average value is lower than 0.005 s, which is 0.016% of
the solution time using the mixed-integer linear programming
method.

Table 1 lists a summary of the performance, insufficiency, and
applicability of DL algorithms. The GAN has unique advan-
tages for solving the problem of scenario generation. However,
it is difficult to achieve a balanced state. Generating EV opera-
tion scenarios often requires considerable computing resources,
resulting in high time costs. For the prediction problem, if it
is the prediction of the load power or adjustable power, the
performance of the LSTM is the best. The LSTM exhibits an
improvement over the RNN. It inherits the characteristics of
RNN time-series data processing and simultaneously realizes
the mining of time-series data associations. Although LSTM can
accurately predict power time series, it cannot handle the spa-
tial relationship between data. The advantage of CNN is that it
can achieve the feature extraction of 2D data, but its prediction
accuracy is somewhat reduced compared to LSTM. The DBN
can predict the probability distribution of power data, which has
critical guiding significance for the uncertainty analysis of the
optimal scheduling of EVs. However, its complexity is higher,
and convergence is more difficult. The advantage of the DL
method for the optimal scheduling problem of EVs is that it
can realize a rapid solution to the scheduling plan. However,
the DL-trained decision-making model exhibits poor transfer-
ability and can only be applied to training data scenarios. If the
EV operating scenario changes, a significant amount of time is
required to retrain the applicable model.

3 DEEP REINFORCEMENT
LEARNING TECHNOLOGY FOR
OPTIMAL SCHEDULING OF EVS

This section introduces the application of DRL in EV schedul-
ing. In recent years, reinforcement learning (RL) has been widely
studied as a sequential decision-making problem. In contrast,
DRL integrates DL with robust perceptual capabilities based
on RL, which significantly improves the quality of model deci-
sions. DRL is mainly applied to the optimization of EV charging
and discharging. Unlike the structure in Section 2, this section
presents a review of the application of DRL to the optimal
scheduling of EVs according to the algorithm class. The DRL
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MA ET AL. 349

algorithms can be divided into three categories: (1) Value-based,
(2) policy-based, and (3) actor-critic (AC). Value-based algo-
rithms require sample actions, they can only deal with discrete
actions. The policy-gradient algorithm, a policy-based repre-
sentative algorithm, directly uses the policy network to search
for actions and can be used to handle the case of continuous
actions. AC algorithms combine value-based algorithms with
policy-based algorithms. In the structure of AC algorithms, the
actor uses the strategy gradient method to select actions, and
the critic evaluates the actions. In addition, the parameters of
the actor and critic are updated alternately during training.

3.1 Reinforcement learning

The RL has been used to optimize the scheduling strategies of
EVs. Chis et al. [54] proposed an RL algorithm to reduce EV
charging costs. The algorithm uses the EV charging quantity
daily as a decision variable to construct an Markov Decision
Process (MDP). However, the training dataset was produced
using a linear model. The simulation demonstrated that the pro-
posed algorithm could save EV users 10%–50% of the cost. Liu
et al. [55] developed an energy management strategy for parallel
hybrid EVs based on speed prediction and RL. A new energy
management strategy based on RL was introduced to deter-
mine the optimal control behaviour and distribution between
multiple power storage systems. The test results show that the
optimization can significantly reduce cost and time for EV
users.

3.2 Value-based algorithms

Value-based algorithms use a deep neural network to fit the
value or action value functions, defined as a critic network.
During the network training process, a value or action-value
function is updated through Q-learning. Value-based DRL algo-
rithms primarily include a deep Q-network series of algorithms.
In 2015, the deep Q-network (DQN) [56] developed by the
DeepMind team reached the level of human players in Atari
2600 games. The framework of the DQN is shown in Figure 2.

Considering the randomness of EV charging and the uncer-
tainty of renewable energy and load, Li and Wang et al. [57]
established a real-time scheduling model based on the DQN
to minimize power fluctuation and charging cost. However,
because the optimization objective of the DQN is to maxi-
mize the valuation function, a maximum operation is performed
on the target network at each update, which leads to over-
estimation. A double deep Q-network (DDQN) [58] adopts
the structure of a double network in the objective function to
address this problem. The DDQN selects the optimal action
based on the Q-network and evaluates the optimal action using
the target Q-network. The two sets of parameters of the Q-
networks consider action selection separately from strategy
evaluation, thereby preventing the risk of overestimation. The
literature [59] focuses on applying DDQN to the EV charging
control problem to increase the EV state of charge at departure.

FIGURE 2 Framework of DQN

The duelling deep Q-network (duelling-DQN) [60] algo-
rithm was developed to improve the accurate estimation of
the Q-function. Unlike the DQN and DDQN algorithms, the
duelling-DQN algorithm splits the Q-function into two parts:
The state value function without the action and the advantage
function with the action. The dominant function is often decen-
tralised to improve the stability of the algorithm. Du and Li
et al. [61, 62] optimized an EV charging control strategy to
maintain the node voltage stability. Based on the duelling-DQN
algorithm, the state evaluation function and action advan-
tage evaluation function networks are trained. Compared with
the DQN training process, the duelling-DQN structure has a
higher loss function decline rate; however, the loss function
fluctuation rate is lower during the iterative training process,
indicating that the duelling-DQN structure algorithm is more
stable.

The DQN, DDQN, and duelling-DQN use evenly dis-
tributed sampling in experience replay, which is inefficient.
These data are often of different importance to an agent; there-
fore, the prioritised replay deep Q-network was proposed by
Schaul et al. in 2016 [63]. The prioritised replay DQN adds
priority replay technology based on the DQN. The prioritised
replay DQN first builds a sum tree. Next, the weights are added
based on the time difference errors of samples during network
training such that the importance of different data is introduced
into the network training process. Tuchnitz et al. [64] inves-
tigated a smart charging strategy for an EV fleet based on a
prioritised replay DQN, which offers a flexible, easily adapt-
able, scalable approach for an EV fleet under realistic operating
conditions.

DDQN, duelling-DQN and prioritised replay DQN all
improve the performance of DQNs in different manners.
Because the algorithms mentioned above are all built on the
same framework, these technologies can be integrated into a
rainbow-deep Q-network. Wang and Chen et al. [65] analysed
the random characteristics of EV charging on a time scale and
optimized the EV charging strategy based on the rainbow deep
Q-network algorithm; however, convergence still restricts the
development of this algorithm.
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FIGURE 3 Flow chart of PG application to electric vehicle strategy
optimization

3.3 Policy-based algorithm

In contrast to value-based deep reinforcement learning algo-
rithms, policy-based deep reinforcement learning algorithms
create actor networks, instead of critic networks. It is observed
that the process of finding the optimal decision is accomplished
through an actor-network update.

The policy gradient (PG) algorithm was used in [66] to estab-
lish a real-time optimization scheduling model for EV charging
and battery swap station. The flow chart of PG application to
EV strategy optimization is shown in Figure 3. The optimal
actor network is learned from the battery status data, time of
use, and number of queuing EVs.

Since each set of training data acquired by the PG algorithm
can only update the model parameters once, training data must
be collected again after updating the model parameters, which
results in inefficient training. If the training data can update the
model parameters several times, the training efficiency can be
improved significantly. The proximal policy optimization (PPO)
[67] algorithm proposes the use of two policy networks, one for
collecting training datasets and the other for training. As the first
network does not participate in the training, its parameters do
not change, and the corresponding data group could be used
for repeated training. In [68], a queue-charging control method
was proposed for EVs in intelligent buildings based on the PPO
algorithm. It has been proven that the PPO algorithm can sig-
nificantly improve training efficiency and shorten the training
time.

3.4 Actor-critic

The structure of actor-critic algorithms combines value-based
and policy-based algorithm structures, as shown in Figure 4. AC
constructs two networks: Actor and critic. The actor is used to
predict the probability of the behaviour, and critic is used to
evaluate the value of the state.

The advantage of AC is that it can realize an one-step update
in the training process, which does not need to wait for the end

FIGURE 4 Structure of AC algorithms

of the sequence to update, making data collection easier and
improving training efficiency. Relatively few studies have been
conducted on EV optimization control using the AC algorithm.
Nevertheless, most studies have used an improved AC algo-
rithm. The advantage actor-critic (A2C) algorithm was adopted
to optimize the EV charging strategy in [69]. The value func-
tion is replaced by an advantage function in the algorithm to
improve the probability of the occurrence of actions with a high
state value by reducing the variance of the algorithm. Pan and
Wang et al. [70] proposed a cooperative mode between a wind
farm and an EV aggregator, developed a cooperation and bene-
fit distribution model, and adopted the asynchronous advantage
actor-critic (A3C) [71] algorithm to solve the model. A3C intro-
duces the idea of asynchronous reinforcement learning, which
significantly reduces the training time and improves the average
performance of the algorithm.

To improve the convergence of the algorithm, the deep deter-
ministic policy gradient (DDPG) [72] algorithm combines the
ideas of DPG and DQN to generate four neural networks:
actor, target actor, critic, and target critic networks. The actor
network is equivalent to the actor in the AC structure; the
critic network is used to evaluate the action, and the target net-
works are used to estimate the target value. Indeed, DDPG
is more stable in continuous action-space tasks. Following an
analysis of the uncertainty of electric vehicles, [73] proposed an
optimal EVs charging strategy that satisfies the voltage safety
constraints of the distribution network. Compared with the tra-
ditional stochastic optimization method, the DDPG algorithm
strictly guarantees voltage safety primarily because the DDPG
method considers the temporal correlation more comprehen-
sively. Additionally, the payoff of the DDPG-based agent is
higher than that of Q-Learning in all cases, which proves that
the DDPG algorithm performs better.

The twin delay deep deterministic policy gradient (TD3)
[74] algorithm further optimizes DDPG. In TD3, two sets of
networks were used to represent different Q values, and the
smallest set was selected as the value used to suppress persistent
overestimation. However, the update frequency of critic net-
works is adjusted slightly higher than that of actor networks in
TD3 to reduce some incorrect updates. Finally, in the expected
return of the target value network estimation, random noise was
introduced into the actor network to ensure better exploration.
Hu and Zhao et al. [75] optimized the EVs charging behaviour
from the perspective of an aggregator based on real-time feed-
back data and the time-of-use signal of charging. The charging
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MA ET AL. 351

process of a single EV was modelled using TD3. The model
has strong generalisation ability, good stability, and fast con-
vergence speed, realising high-speed distributed optimization of
the charging behaviour of large EVs.

Furthermore, the deep reinforcement learning of AC struc-
tures has a soft actor-critic (SAC), which introduces the idea
of adding entropy into the objective function. SAC maximises
the reward as well as entropy. In other words, the agent can
complete the task while using random actions as soon as possi-
ble. The SAC algorithm solves the convergence problem in the
AC algorithm and avoids fine adjustments of the learning rate,
exploration factor, and other hyperparameters. On one hand,
SAC can avoid agent convergence to a suboptimal strategy; on
the other hand, it can improve the robustness of the algorithm.
Considering the multiple spatial and temporal characteristics
of optimal operation in EV charging and battery change sta-
tions, Liu et al. [76] developed an optimization scheduling model
under different scenarios. SAC has achieved excellent economy
and high efficiency when applied to the real-time optimization
scheduling of large-scale EVs. Moreover, the simulation proves
that the SAC algorithm has an excellent performance, similar
to that of the TD3 algorithm. A novel continuous SAC control
framework was adopted to design a DRL-based approach for
optimal EVs charging to realize fine-grained control in [77].

In addition, in transportation and power systems, deep rein-
forcement learning can effectively solve the complex coupling
problem and provide support for optimal scheduling of EVs.
Ref. [78] considered the randomness of traffic conditions,
charging price, and charging waiting time and proposed an opti-
mal charging strategy based on deep reinforcement learning to
reduce the total driving time and charging cost to the maximum
degree. A traffic network flow modelling method based on DRL
was proposed in [79]. The driving area of EVs is divided into
regular hexagons, and the optimal scheduling strategy of the
EV fleet is formulated via the optimization of the traffic and
charging actions of EVs. The simulation results verify that the
proposed method can effectively improve the revenue of EV
fleets and satisfy the travel demands of users.

A general comparison between the DRL algorithms is pre-
sented in Table 2. DRL algorithms have been applied to the
optimal scheduling problems of EVs. However, different algo-
rithms have distinct advantages, disadvantages, and applicable
scenarios. Early algorithms, such as RL, DQN, and PG, pro-
vide a new solution for the optimal scheduling of EVs; however,
their performance is relatively poor and can only solve simple
optimization problems. As the problem of the optimal schedul-
ing of EVs becomes more complex, these basic algorithms
are no longer sufficient. The prioritized replay DQN, duelling-
DQN, DDQN, and rainbow DQN algorithms improve the
performance of the DQN algorithm from different aspects
and better handle the optimal scheduling problems of EVs.
DDPG, TD3, and SAC, which are deep reinforcement learn-
ing algorithms for continuous action space problems, exhibit
excellent performance in dealing with uncertainty and network
coupling constraints in the enhanced scheduling of EVs; how-
ever, these algorithms consume higher computing resources,
which makes them infeasible. In the future, with the devel-

TABLE 2 General comparison between the DRL algorithms

Algorithms Categories Problems solved References

RL / Suitable for simple
optimization

[54, 55]

DQN Value-based Basic optimization problems [57]

Prioritized
replay DQN

Value-based Higher training efficiency [63]

Duelling-DQN Value-based Value function without
action

[61]

DDQN Value-based Application scenarios with
overestimation problems

[59]

Rainbow DQN Value-based Optimizing scheduling
requires algorithms with the
best overall performance

[64]

PG Policy-based Just need to get the policy
network

[66]

PPO Policy-based Get the policy network while
taking into account the
training efficiency

[67]

A2C Actor-critic It integrates the features of
deep reinforcement learning
based on value and strategy

[69]

A3C Actor-critic Short training time required [71]

DDPG Actor-critic Complex problems requiring
strong convergence
performance

[73]

TD3 Actor-critic Continuous action interval [75]

SAC Actor-critic Problems with suboptimal
strategy

[76, 77]

opment of computer technology, this problem is likely to be
solved.

4 BLOCKCHAIN TECHNOLOGY FOR
OPTIMAL SCHEDULING OF EVS

The EVs centralised energy management model has some prob-
lems such as poor expansibility, lack of anonymity, and privacy.
With the increase in participants and transaction volume, the
centralised network severely restricts the operational efficiency
of the system, which cannot satisfy the requirements of mas-
sive distributed power transaction scales and data processing,
and the security of data cannot be guaranteed. Therefore, it
is crucial to design a transparent, secure, and efficient trad-
ing model and method. Blockchain technology is essentially a
decentralised, open, transparent, and distributed database with
two core features: Data are decentralised and difficult to tam-
per [80]. Therefore, it is not only feasible but also necessary to
integrate blockchain into electric vehicle energy management.
Blockchain technology can effectively solve the problems of pri-
vacy and safety in the centralised energy management of EVs,
and can provide a safe and efficient guarantee for the optimal
scheduling of EVs.
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352 MA ET AL.

FIGURE 5 Basic architecture of blockchain

4.1 Blockchain technology

In general, a blockchain consists of a data layer, network layer,
consensus layer, incentive layer, contract layer, and application
layer (see Figure 5).

The data layer encapsulates the underlying data blocks, and
its main role is to define the data structure inside the blockchain.
The network layer includes a distributed networking mecha-
nism, data propagation mechanism etc., which stipulates the
network communication protocol, and peer-to-peer transmis-
sion technology ensures the status of each node in the network.
The consensus layer stipulates the consensus algorithm of the
blockchain technology, which is used to ensure the symmetry
and consistency of the block data. The incentive layer stipulates
the issuance, encryption, and distribution mechanism of virtual
currency, which adopts an asymmetric encryption algorithm
to encrypt virtual currency. Each block is also interconnected
via this encryption technology. The contract layer stipulates
the smart contract written by the developer, and the user can
not only renew the contract operation but also send other
messages or even create a contract, and the user can create
a new contract on the blockchain using the code. The appli-

cation layer encapsulates various application and blockchain
scenarios.

4.2 Protect Privacy and secure information
in EV charging management

The optimal scheduling of EVs is normally centrally per-
formed by the aggregator platform. If the control platform has
problems, there are risks of disclosure or loss of all data, lead-
ing to the failure of EVs optimization scheduling. Blockchain
technology effectively solves this problem.

To solve the security problem of EV charging pile infor-
mation interactive transmission, Gao et al. [81] introduced
blockchain technology and used an elliptic curve encryption
algorithm to generate keys, which reduced the key storage space
and improved the communication security of charging piles.
Considering the poor interoperability between charging piles
and user identities, the difficulty of cross-carrier settlement, and
the high risk of identity data leakage, Wang et al. [82] proposed
a blockchain-based alliance trust distributed digital identity
authentication system applicable to the power industry that can
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achieve cross-domain secure sharing and autonomous control
of identity data and cross-domain identity authentication of
users.

Blockchain has obvious advantages in the security protec-
tion of data collected in the pre-transaction stage. In [83],
a novel decentralised security model based on lightning net-
works and smart contracts was utilized to protect transactions
between EVs and charging stations. Li et al. [84] proposed
a new blockchain-based energy transaction scheme that uses
anonymous authentication to protect user privacy and a time-
commitment-based mechanism to verify the fairness of energy
transactions. Mohamed et al. [85] proposed blockchain-based
energy trading schemes for vehicle-to-charge stations (V2CS)
and vehicle-to-vehicle (V2V), which preserve the privacy of
EVs’ drivers. To thwart Sybil attacks, a common prefix linkable
anonymous authentication method is adopted. Simultaneously,
an anonymous blockchain-based payment system was devel-
oped and integrated into schemes, enabling EV drivers to pay
for charging with untraceable digital coins.

The above studies primarily used the traditional blockchain
architecture of Bitcoin or Ethereum. However, as transaction
throughput is limited and transaction data are transparent to all
nodes in a public blockchain project, a blockchain architecture
that is more suitable for the performance requirements of EV
energy trading needs to be selected. Some scholars have used a
consortium blockchain, which is weakly centralised to improve
the efficiency and security of energy trading. Hu et al. [86]
used a partially decentralised consortium blockchain approach
to address privacy protection and transaction security of EVs.

4.3 Decentralized energy trading

Recently, the ubiquitous power Internet of Things (IoT) has
developed rapidly. The EVs and charging piles are located in
the perception and access layers of the ubiquitous power IoT,
respectively, which correspond to its basic levels of the per-
ception and identification, respectively. Reacting quickly during
the transaction decision to meet the real-time needs of multi-
party transaction participants, including the power grid, is the
key problem of electric vehicle energy trading. As a distributed
database and decentralised peer-to-peer network, blockchain
structure can provide technical support for the EV electric
energy trading market in terms of the operation mode and other
aspects.

The distributed optimization management of electric vehicle
energy trading through blockchain can not only meet the pri-
vacy requirements of users but also the requirements related to
the autonomous operation of subjects. The blockchain-based
energy trading process can be divided into phases, such as infor-
mation distribution, matching, settlement, and storage [87–89].
The framework of electric vehicle energy trading is presented in
Figure 6.

Based on the peer-to-peer electricity trading mechanism, the
literature [25, 90–94] addressed the electricity price and amount
of traded electricity among EVs by deploying smart contracts

in the blockchain to implement auction mechanisms for max-
imising the social welfare of electricity trading. Alvaro et al.
[95] presented a novel peer-to-peer (P2P) energy trading mech-
anism for two EV groups that greatly reduces the impact of
the charging process on the power system during working
hours and optimizes the energy cost per EV in the time-space
dimension. Xia et al. [96] proposed a Bayesian game-based
vehicle-to-vehicle electricity-trading scheme for blockchain-
enabled Internet of Vehicles and obtained the optimal price
under linear strategic equilibrium. Luo et al. [88] further
constructed a blockchain-based vehicle-to-vehicle (V2V) and
vehicle-to-grid (V2G) electricity-trading architecture and pro-
posed a two-way auction mechanism based on Bayesian games,
which reflects the superiority of BABG compared with algo-
rithms such as the iterative double auction (IDA) algorithm
proposed in [90] and algorithm proposed in [96]. Blockchain
technology can effectively reduce transaction costs and increase
the transaction forms. In [97–99], blockchain technology was
used to optimize the electric vehicle charging management
scheme. To optimize the economic dispatch of the grid, Liu et al.
[100] proposed a bidding mechanism for electric vehicle partic-
ipation in a grid using blockchain smart contract technology.
Their proposed framework achieves peak and valley reduction
of the grid load while protecting the interests of customers,
agents, and power dispatch centres.

In addition to auction mechanisms, blockchain-based trad-
ing platforms have also introduced dynamic pricing mechanisms
[101–104]. Meanwhile, the abovementioned blockchain-based
EV charging studies have mainly focused on V2V, V2CS, or
V2G, whereas the coordination of CSs has rarely been consid-
ered. To improve the EV charging capability, Wu et al. [101]
effectively guided EVs to charge in areas with low charging
flow considering the benefits of the platform and dynamic
tariff, which relieves the charging pressure in the region to
a certain extent. In [98], a two-stage EV charging coordina-
tion mechanism based on the alternating direction method of
multipliers was proposed to protect individual privacy. The
mechanism is implemented on a blockchain to enable the fully
autonomous charging coordination of EV charging stations
without third-party coordination.

Owing to the randomness, dispersion, and individual inter-
est nature of EV charging, the transaction default phenomenon
of distributed energy trading may be more serious compared
to the traditional centralised energy trading mode. If the trans-
action default situation increases, it will increase the difficulty
in power grid dispatching; therefore, it is necessary to conduct
research on the credit management for transaction subjects. To
meet the charging demands of EV users with distinct energy
consumption preferences, Su et al. [105] proposed a contract-
based energy blockchain system. To motivate electric vehicles
to participate in energy trading, a reputation-based delegated
Byzantine fault tolerance consensus algorithm is proposed to
efficiently reach consensus in an energy blockchain. Ping et al.
[106] analyzed the causes and hazards of credit risks in a
distributed energy trading market and proposed a distributed
energy credit control mechanism based on a proof-of-credit
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FIGURE 6 The framework of electric vehicle energy trading

(PoC) consensus algorithm. The PoC consensus algorithm
sets the mining difficulty of each subject as the exponential
function of credit score. The nodes with higher credit scores
attain lower mining difficulty and higher bookkeeping rights
probability. Accordingly, the market subjects are guided to con-
sciously fulfil the contract transaction and realize the credit
risk control of distributed energy trading. Table 3 presents a
comparative analysis of related works.

In summary, the application of blockchain technology to
EV energy trading has several advantages. First, blockchain
technology can ensure and respect users’ privacy to a signif-
icant extent. Second, the blockchain has the characteristic of
invalid tampering of individual nodes to ensure the security of
transaction information. Finally, the distributed structure decen-
tralizes EV energy trading, prevents monopolies, removes the
benefits of middlemen, and improves the system operation effi-
ciency. However, the application of blockchain technology has
some disadvantages as well [107]. Because blockchain technol-
ogy needs to master all transaction information, it will require
significant storage space, and generating numerous blocks will
result in huge energy consumption and a waste of resources.

5 RECOMMENDATIONS FOR FUTURE
RESEARCH

Recent developments in EVs have reached a new peak with
the development of fast charging technologies for electric
transportation and breakthroughs in charging equipment for

conventional and heavy-duty EVs, which will further expand
the regulatory potential of EVs. Based on the discussion in this
study, future research directions are suggested as follows:

First, regarding the application of DL in the optimal schedul-
ing of EVs, obtaining massive amounts of real data is key to
realizing a wider range of DL applications. In the future, com-
bining deep learning and big data will be a research direction
regarding the application of this technology to the optimal
scheduling of EVs. In addition, DL can be applied to represent
user willingness. Electric vehicle users’ behaviour has uncer-
tainty, which cannot be fully represented by traditional methods.
Owing to their ability of powerful knowledge extraction, neu-
ral networks present a novel way to extract and characterise the
behaviour of users in the future.

Second, regarding DRL, the convergence of complex prob-
lems is an important factor that restricts its application to the
optimal scheduling of EVs. Improving the convergence of the
DRL algorithm and realizing a hyperparameter search is an
effective means of improving the application prospects of DRL.
With the inception of the carbon market, the optimal schedul-
ing problem of EVs should not only consider the relationship
between electric energy and traffic but also the impact of car-
bon emissions. Consequently, the optimal scheduling problem
for EVs will become more complicated. DRL is an effective
method to address this problem.

Finally, in the application of blockchain technology, it is
necessary to continuously improve the communication network
for electric vehicle user transactions to efficiently allocate
communication resources in the future.
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TABLE 3 Blockchain technology applied in EV energy trading

Reference Main technologies used Pricing mechanism Contribution

[91] Public blockchain
Peer-to-peer
Smart contract

Double auction mechanism Proposed a blockchain-based charging right trading
mechanism and model.

[92] Peer-to-peer
Smart contract
Sub gradient method
Vickery–Clark-groves

Bidding trading mechanism Proposed a peer-to-peer market trading mechanism and
model for the virtual power plant energy management.

[93] Peer-to-peer
Smart contract

Auction mechanism Considered an energy trading system involving multiple
MCSs and EVs and formulated the incentive mechanism
between MCSs and EVs as an auction game, designed a
distributed action-based energy trading mechanism.

[94] Consortium blockchain
RPCA consensus algorithm
Bipartite graph

Auction mechanism A V2V power trading architecture based on federated
blockchain technology is proposed to address the mileage
anxiety of electric vehicle users.

[96] Public blockchain
Smart contract
Bayesian game

Auction mechanism Proposed a Bayesian game-based vehicle-to-vehicle
electricity trading scheme for blockchain enabled Internet
of Vehicles, and obtained the optimal price under linear
strategic equilibrium.

[97] Consortium blockchain
Kafka consensus algorithm
Improved krill herd (KH) algorithm

Smart contracts for charging
transactions

The KH algorithm is used to solve the large-scale MIP
problem to improve the convergence rate and accuracy of
the optimal model solution.

[98] Public blockchain
SDBFT consensus algorithm
Alternating direction method of multipliers

Nash-bargaining trading Proposed a two-stage EV charging coordination
mechanism that frees the distribution system operator
from extra burdens of EV charging coordination.

[99] Consortium blockchain
PBFT consensus algorithm
Smart contract

Smart contracts for charging
transactions

PBFT consensus algorithm is used to verify EV charging
transactions, and smart contracts are used to complete
process.

[100] Public blockchain
Smart contract
Particle swarm and genetic algorithm

Bidding trading mechanism Proposed a bidding mechanism for EVs participating in
the grid under blockchain smart contract technology.

[101] Public blockchain
DPOS consensus algorithm

Dynamic pricing mechanism A blockchain-based transaction strategy for a private
charging pile sharing platform is proposed, considering
the demands of electric vehicle users. Moreover, a charging
tariff formulation method that considers the benefits of
the platform and regional charging pressure is proposed.

[102] Public blockchain
Smart contract

Dynamic pricing
Contrary auction mechanism

The novelty in this framework is using a dynamic pricing
algorithm that can benefit all participating discharging
EVs for winning the auction.

[103] Public blockchain
PoC consensus algorithm

Auction mechanism Proposed a blockchain-based two-stage electric vehicle
charging stake phase transaction optimization method.

[104] Consortium blockchain
PBFT consensus algorithm
Smart contract

Dynamic pricing mechanism Proposed a feed-in tariff model for electric vehicle
electricity and a decentralized market trading model.

[105] Permissioned blockchain
PBFT consensus algorithm
Contract theory

Contract mechanism A contract-based energy blockchain is proposed to
optimize the charging of electric vehicles with different
energy consumption preferences.

[106] Public blockchain
PoC consensus algorithm
Smart contract

Credit score pricing mechanism Proposed a distributed energy credit assessment index,
established blockchain-based credit assessment
technology for distributed energy transactions, and
proposed a distributed energy credit control mechanism
based on credit proof consensus mechanism.

6 CONCLUSION

In summary, the advantages and disadvantages of deep learning,
deep reinforcement learning, and applying blockchain technol-

ogy in EV strategy optimization are the learning outcomes of
this study.

DL technologies exhibit excellent performance in electric
vehicle scenario generation and data prediction. The neural
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networks trained by optimized data achieve the same effect
as the traditional model in strategy optimization but greatly
shorten the computing time. Although DL technologies have
been widely used in academic research regarding the optimal
scheduling of EVs, they still face several difficulties in practical
applications. DL requires a large amount of historical data to
train neural networks to ensure their convergence and general-
isation ability. Therefore, the source and accuracy of historical
data directly affect its application. Improving the authenticity
and scale of training data are crucial to the greater success of
DL.

DRL technologies are mainly oriented toward the strategy
optimization for EVs. The main advantage of DRL is that there
is no need for historical data to train the model. DRL models
the charging process of EVs through a Markov process, sets
a reasonable reward function, and realizes an optimal decision
through the interaction between the agent and environment.
However, DRL struggles with convergence, especially during
hyperparameter tuning of the value function network. Although
DDPG, TD3, and other algorithms have improved the model
convergence significantly, the convergence problem remains a
restricting factor for the promotion of DRL.

With its decentralisation and protection against data tam-
pering, blockchain technology ensures data transparency in
the optimal scheduling of EVs and reduces the uncertainty in
energy trading. In addition, an asymmetric encryption algo-
rithm is used to encrypt transaction data to protect personal
information security and avoid private data leakage. However,
as the scale of EV trading data increases, the limited com-
puting capacity and response speed of blockchain technology
limits trading throughput. Accordingly, there is a risk that the
real-time settlement of trading cannot be completed. More-
over, the consensus algorithm determines the efficiency and
fault-tolerance rate of blockchain; the determination of a con-
sensus algorithm adapted to the needs of the scene is crucial
for the study of blockchain technology applications. Neverthe-
less, currently, there are few blockchain consensus algorithms
and incentive mechanism optimization frameworks for specific
trading scenarios of EVs entering networks.

Finally, the technologies mentioned in this study do not
conflict with each other in practical applications. Different
technologies can be applied in different applications of EVs
optimization scheduling, and greater benefits can be obtained
through integrating these technologies.
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