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Abstract: This paper reviews the literature on model-driven engineering (MDE) tools and languages
for the internet of things (IoT). Due to the abundance of big data in the IoT, data analytics and machine
learning (DAML) techniques play a key role in providing smart IoT applications. In particular, since
a significant portion of the IoT data is sequential time series data, such as sensor data, time series
analysis techniques are required. Therefore, IoT modeling languages and tools are expected to
support DAML methods, including time series analysis techniques, out of the box. In this paper,
we study and classify prior work in the literature through the mentioned lens and following the
scoping review approach. Hence, the key underlying research questions are what MDE approaches,
tools, and languages have been proposed and which ones have supported DAML techniques at the
modeling level and in the scope of smart IoT services.

Keywords: model-driven engineering; internet of things; data analytics and machine learning; time
series; literature review; scoping review

1. Introduction

Internet of things (IoT) generally refers to many cyber-physical things, including
objects and devices around us that are connected to the Internet and can be controlled,
accessed, and managed by a myriad of applications running on smartphones and other
computational environments [1]. Things can interact with each other and with the users of
the digital services that are based on the IoT, thus, called IoT applications or services [2].
Sensors and devices are connected to a network through which they can interact with each
other and their users. The IoT concept can be illustrated with a simple example, such as
connecting a smartphone to a TV, or with more complex examples, such as monitoring
urban infrastructures and traffic [3,4]. IoT-based applications monitor, control, or interact
with the physical world. The most popular IoT application domains are healthcare, envi-
ronment, smart cities, commercial, and industrial [2]. Furthermore, artificial intelligence
techniques are being used in IoT applications to add intelligence to devices and related
services [5].

IoT data analytics is the process of analyzing the data that are produced from IoT
devices and services [6]. In this scope, data analytics and machine learning (DAML)
techniques help to make IoT services smarter by finding patterns, hidden correlations,
trends, inferences, and actionable insights that have not been seen before. This would
lead to more intelligence, better decision-making, performance, automation, productivity,
and accuracy. However, the huge increase in the amount and complexity of data poses
new challenges for data analytics [7]. In particular, non-i.i.d data (i.e., data instances for
which the usual assumption of independent and identically distributed data may not hold),
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such as sequential time series data requires reliable methods and techniques that should be
supported in tools that are focused on IoT data analytics.

However, designing and developing IoT applications requires skills in various areas.
Furthermore, several technologies, such as programming embedded systems, commu-
nication, networks, data science, and web engineering [8]. To successfully implement
IoT applications that are often quite complex, efficient software development method-
ologies, approaches, and solutions have been provided to address various issues, in-
cluding heterogeneity, collaborative development, reusability of software artifacts, and
self-adaptation [9,10].

One such proposal is model-driven engineering (MDE), which is a general engineering
approach that focuses on using models as the primary artifact for software development [10].
In MDE, models can be used to capture the structure and behavior of a system, and these
models can then be transformed into the final implementation of the system using model
transformations and code generators. MDE aims to improve the efficiency of the software
development process by automating the transformation of models into code, and by
providing domain-specific abstractions and notation that make it easier to reason about
and design complex systems. MDE is often used with domain-specific languages (DSLs),
as the models used in MDE are often expressed using these languages. DSLs are languages
designed for a particular domain, such as a particular problem or a particular domain
of expertise [11]. DSLs are designed to be more concise and more accessible to use than
general-purpose languages; they often provide domain-specific abstractions and notation
that make it easier to express solutions to problems in that domain [12].

According to the MDE paradigm, a key artifact is the “model”; thus, the whole
software development cycle revolves around models. Many MDE approaches aim to
generate code for various platforms automatically [10]. An MDE approach can follow two
general stages. The first stage involves the creation of MDE artifacts such as languages
and tool workbenches with features like authoring, model-to-model, and model-to-text
transformations. In the second stage, people without advanced computer training can
easily use these artefacts to design and develop their software systems [12].

However, because various MDE tools and languages are emerging, understanding and
selecting the most suitable tools and languages are always challenging, especially for new
developers or researchers in the area. From our knowledge, there is no general framework
or guideline to help to select which tool(s) and language(s) should be used for supporting
the various MDE activities in the development of IoT applications (or just “MDE4IoT” for
short) [13,14].

Furthermore, the current literature that reviews MDE4IoT does not provide a compre-
hensive and complete classification and analysis of the languages, model-based transforma-
tions, application domains, and even the supported DAML techniques, as we discuss in this
paper. For example, Salman et al. [15] analyzed only a few textual and graphic modeling
languages and respective tools, but without an accurate classification, and they did not
classify those tools and languages or identify their specific features like model-to-model
or model-to-text transformations, as we propose in this paper. A further discussion of the
related work is presented below in Section 3.

This paper presents a scoping review of research studies that have proposed or used
MDE4IoT. This review includes an accurate classification of the used modeling languages,
model-to-model, and model-to-text transformations, but also on identifying the application
domains and even on the DAML techniques with a particular focus on time series data. This
review can assist researchers and developers in selecting the best MDE tools, languages,
and techniques for their IoT projects. Moreover, this paper provides a general discussion
of future trends by arguing that more work on DAML, in the context of MDE4IoT, is a
worthy research area. We select, classify and review 68 studies presenting the stat-of-the-art
in MDE4IoT, a few of them focusing on DAML techniques. In addition, we identify the
limitations of prior work and discuss some challenges that address these shortcomings.
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This paper is organized into seven sections. Section 2 introduces the background by
reviewing the basic concepts of MDE, IoT, and DAML. Section 3 presents the related work,
i.e., other papers that have also addressed literature reviews on similar topics. Section 4
describes the followed research methodology based on the scoping review approach.
Section 5 presents the results from the scoping review. Section 6 discusses the results
obtained from the review and identifies the limitations. Finally, Section 7 presents the main
conclusion and open issues.

2. Background

The key concepts considered in the scope of this research are MDE, IoT, and DAML,
as introduced below.

2.1. Model-Driven Engineering (MDE)

Model-driven engineering (MDE) is a software development approach that empha-
sizes using models as a primary means for specifying, designing, and implementing
software systems. A simple and popular formula used to describe MDE is the follow-
ing [16]: Models + Transformations = Software, thus, we briefly introduce these essential
concepts as follows [14,16,17]:

A model is an abstract representation of a system that eliminates unnecessary details
to increase the users’ understanding of the system under consideration. In addition, a
metamodel is a particular model that describes the structure of a modeling language, i.e., a
metamodel defines the abstract syntax of a modeling language [14,17]. Transformations are
special programs that convert models to other models or to text (e.g., source code) according
to specific rules previously defined. Model transformations are commonly classified as
model-to-model (M2M) and model-to-text (M2T). In M2M, both the input and the output
of the transformation are models, whereas in M2T, the input is a model, but the output is
text, such as source code in a programming language like Java or Python.

MDE involves creating and manipulating abstract, high-level models that represent
the different aspects of a system, such as its functionality, structure, and deployment.
These models can then be analyzed, validated, and transformed using various tools and
techniques to generate the actual software code and related artifacts [14,18]. A common
goal of MDE is to improve the efficiency and reliability of software development by
providing a more abstract and flexible way of specifying and designing systems. MDE
also aims to reduce the gap between the conceptual models and the implementation
by automating the transformation and code generation process. MDE is often used in
complex, large-scale software projects where traditional development approaches can be
very cumbersome, and error-prone [19]. MDE relies on using modeling languages, such
as UML, SysML, and domain-specific languages (DSLs); and model-driven tools, such
as model checkers, and M2M and M2T transformations. MDE is commonly specialized
by more concrete approaches, such as model-driven architecture (MDA), model-driven
development (MDD) [14], model-based testing (MBT) [20].

2.2. Internet of Things (IoT)

The Internet of things (IoT) refers to the interconnected network of physical devices,
vehicles, buildings, and other objects embedded with sensors, software, and connectivity,
allowing them to collect and exchange data over the Internet. These connected devices
can range from smart appliances, and wearable devices to industrial equipment and
infrastructure [21,22].

The main goal of IoT is to improve the efficiency, productivity, and safety of various
industries and applications by enabling the seamless exchange of data and information
between devices and systems. IoT also enables the creation of new services and business
models by leveraging data analytics and machine learning techniques to extract insights
and value from the collected data.



Sensors 2023, 23, 1458 4 of 27

IoT relies on various technologies, such as sensors, communication protocols, and
cloud computing, to enable the connectivity and interoperability of devices. It also involves
using various frameworks, such as the IoT Reference Model, to define the architecture and
interoperability of IoT systems.

IoT has the potential to transform various sectors, such as transport and mobility,
healthcare, manufacturing, and agriculture, by providing real-time data and insights that
can improve the decision-making process and optimize the performance of various systems
and processes [21,23]. However, IoT also raises concerns about privacy, security, and
sustainability, as the proliferation of connected devices can create new vulnerabilities and
risks. Therefore, developing and deploying IoT applications requires careful consideration
of these issues and adopting appropriate security measures and best practices.

2.3. Data Analytics and Machine Learning (DAML)

Data analytics and machine learning (DAML) refers to the use of techniques to extract
insights and knowledge from data. Data analytics (DA) involves the use of statistical,
computational, and visualization techniques to analyze and interpret data. DA can be
used to identify patterns, trends, and relationships in data, and to make predictions and
decisions based on this analysis. On the other hand, machine learning (ML) involves the
use of algorithms and models that can learn and improve their performance over time
without explicit programming. This is achieved by training the algorithms on data and
allowing them to automatically discover patterns and relationships in the data.

Together, DAML can be used to solve a wide range of problems, including predictive
modeling, classification, clustering, and optimization [24]. It can be applied to a variety
of domains. These approaches are broadly classified into four types [25]: supervised,
unsupervised, semi-supervised, and reinforcement learning.

Most of the data that IoT devices produce are sequential time series data. This means
the order of data instances matters, and instances are not independent. The main goal of
time series analysis is to learn patterns in this kind of data to find valuable features, predict
future patterns, and find out how different data streams are related. Auto-correlation is a
property of time series data. This means that the current value in the time series is linked to
values from the past. In linear models, the current value is a linear function of the previous
values. In nonlinear models, the current value is not a linear function of the previous values.
If the properties of a stochastic process change over time, it is hard to predict its future
values based on what has happened in the past, and this is called a non-stationary process.
Auto-Regressive Integrated Moving Average (ARIMA), Hidden Markov Models (HMMs),
and Recurrent Neural Networks (RNNs) are some of the well-established methods to model
time series data [26].

3. Related Work

Since this research reviews the state-of-the-art of MDE tools and languages for IoT,
this section introduces other related secondary studies, i.e., surveys, systematic mapping,
and systematic review articles. Table 1 presents a summary of these related works.

Table 1. Related works.

Authors Study Paradigm Target System Analyzed Papers Years

Sabin et al., 2018 [27] MDE IoT 26 N/A
Felicien et al., 2020 [28] Low-code Engineering IoT 16 2000–2020
Muzaffar et al., 2017 [29] MDE Cloud computing 25 2009–2016
Abshir Mohamed et al., 2021 [30] MDE CPS 140 2010–2018
Casalaro et al., 2022 [31] MDE Mobile Robot systems 69 2000–2022
Mashkoor et al., 2021 [32] MDE Safety and Security Systems 95 1992–2020
Salman et al., 2020 [15] DSL IoT 23 2014–2020
Edsonde et al., 2021 [33] MDE Robotics 63 2014–2022
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Sabin et al. [27] analyzed the state of the art in MDE4IoT by reviewing 26 papers
using Google Scholar and the snowballing method. These authors investigated MDE
techniques for addressing IoT challenges. Furthermore, they examined IoT concepts related
to MDE4IoT approaches, which included: device description, discovery, deployment, self-
adaptation, service composition, cloud computing, fog, edge computing, and middle-ware
frameworks. The most addressed IoT concept in this review was service composition,
which was identified in 16 studies reviewed.

Felicien et al. [28] showed the current state of existing low-code platforms for develop-
ing IoT systems. They analyzed 16 platforms and defined a set of features that corresponded
to the functions and services that each platform supports. In particular, they focused on
languages and tools available in the MDE field and the emergent low-code development
platforms for the IoT domain.

Muzaffar et al. [29] discussed the use of MDE tools in cloud computing scenarios.
They defined research questions regarding MDE paradigms and techniques applied in
cloud computing (e.g., SaaS, PaaS, and IaaS), and the leading cloud computing tools that
include some MDE features.

Abshir Mohamed et al. [30] reviewed MDE techniques, tools, and languages used in
cyber-physical systems (CPSs) and IoT components that are modeled. They raised four
research questions, and to answer them, they analyzed 140 papers published between
2010–2018. The domain of their study was CPS, while ours is IoT services with a focus on
DAML techniques.

Casalaro et al. [31] provided a framework for the software engineering research in
MDE for the particular class of mobile robotic systems (MRS). That framework includes
the following aspects: the types of robots supported by existing MDE approaches; the
types and characteristics of MRS that are engineered using MDE approaches; description
of how MDE approaches support the engineering of MRS; how existing MDE approaches
are validated; and how tools support the existing MDE approaches.

Mashkoor et al. [32] presented a systematic mapping study on MDE in the context of
safety and security systems. They analyzed key questions such as what are the commonly
used methods and tools in this field, their development phases, and the most common
application domains that have been evaluated?

Salman et al. [15] performed a systematic literature review on DSLs for the IoT by
considering four research questions: what are the most common hardware and software
platforms in each domain; what are the used DSLs; how are these DSLs evaluated; and,
what are the scenarios in which these DSLs were applied.

Edsonde et al. [33] selected and analyzed 63 papers focusing on DSLs and concluded
that robot self-adaptation is a well-established area. Still, with the advancements in machine
learning techniques, it is possible to employ model-based approaches to make robotic
software even more autonomous.

Differently, our review focuses on identifying and classifying the MDE tools and
languages used to develop IoT services for different application domains. This review
includes analyzing the involved tools, types of model-based transformations (e.g., M2M and
M2T), the transformation-supported tools used, and even the DAML techniques provided
by these tools.

4. Research Methodology

There are several MDE tools and languages for developing IoT applications; however,
selecting the most suitable options is always challenging, especially for new developers
or researchers. From our knowledge, there is no general framework or guideline to help
select which tool(s) and language(s) should support MDE4IoT activities. For instance, the
current reviews on MDE4IoT do not provide a comprehensive and complete classification
and analysis of the languages, model-based transformations, application domains, and
even DAML techniques, as proposed in this review.
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This paper presents a scoping review of research studies that have proposed or used
MDE technologies for IoT applications. A scoping review is a type of literature review used
to map the key concepts, types of studies, and sources of information within a specific
research area [34,35]. It is typically used to identify the breadth and depth of existing
research on a particular topic and to identify gaps in the literature that may need to be
addressed in future studies. The scoping review method involves a systematic search
and analysis of the literature, using predefined inclusion and exclusion criteria to identify
relevant studies. The findings of a scoping review are usually presented in a narrative
or tabular format and can be used to inform the design and implementation of future
research studies.

A scoping review and a systematic literature review (SLR) are both types of literature
reviews, but they have some key differences in terms of purpose, methodology, and
output [35,36]: Purpose. The main purpose of a scoping review is to map the key concepts,
types of studies, and sources of information within a specific research area. It is used to
identify the breadth and depth of existing research on a particular topic and to identify
gaps in the literature that may need to be addressed in future studies. On the other
hand, the main purpose of an SLR is to summarize and critically evaluate the existing
evidence on a specific research question or topic. Methodology. A scoping review typically
has a less rigorous methodology than an SLR. Scoping reviews often use more inclusive
inclusion criteria, and the search and analysis of the literature are typically less formal
and less comprehensive. On the other hand, SLRs follow a more rigorous methodology,
including a comprehensive search strategy, predefined inclusion and exclusion criteria,
and a formal data extraction and synthesis process. Output. The output of a scoping
review is typically presented in a narrative or tabular format and can be used to inform the
design and implementation of future research studies. On the other hand, the output of
an SLR is typically presented in the form of a systematic review or a meta-analysis, which
summarizes and critically evaluates the existing evidence on a specific research question
or topic. In summary, a scoping review is a broad overview of the existing literature on a
topic and is used to identify gaps and opportunities for future research, while an SLR is
a more in-depth and rigorous examination of the existing literature on a specific research
question or topic, to summarize and critically evaluate that topic.

A scoping review can follow a 5-stage process, as originally discussed by Arksey
and O’Malley [37], which is a rigorous process of transparency that allows replication
of the search technique and enhances the dependability of the study’s conclusions. As
shown in Figure 1, scoping review involves a sequence of the following five stages (or
tasks): (1) Identify the initial research questions; (2) identify relevant studies; (3) select
the relevant studies; (4) chart the data; and (5) summarize and report the results. We ran
these stages, reacted to each stage, and repeated some stages, as needed, to ensure that all
of the literature was covered and analyzed. This means that the process ran iterative (as
suggested in the figure), i.e., ran several times until we got confident with the results.

The current section is organized around the presentation of these stages. Stages 1 to 4
are presented in the following subsections; Stage 5 is in Section 5.

Figure 1. Followed stages of the scoping review framework.
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4.1. Identify the Research Questions (Stage-1)

The first stage of the scoping review consisted of defining the initial research questions.
These questions help frame and conduct the review and are the following:

RQ1. What is the current state of MDE languages and tools for developing IoT
applications? This question is broken down into the following sub-questions: RQ1.1.
What modeling languages are used? RQ1.2. What tools are used? RQ1.3. What model
transformations and the respective supported languages and tools are employed? RQ1.4.
What are the outputs of M2M and M2T transformations?

RQ2. What application domains are these MDE approaches mostly applied to?
RQ3. What DAML techniques are supported by these MDE approaches?

4.2. Identify Relevant Studies (Stage-2)

The second stage of the research aims to identify relevant studies in the field of
MDE4IoT by conducting a comprehensive literature search. This stage consists of three
activities: (1) defining the search expression or search terms, (2) discussing and defining
the eligibility criteria, and (3) selecting databases or repositories to collect research papers.

Search expression: To obtain a broad coverage of the available literature, Arksey and
O’Malley [37] recommend using a broad definition of keywords for search terms. Thus,
key concepts and search terms were defined to capture most of the literature related to the
MDE4IoT topic. Search tools and Boolean operators were used to narrow, broaden, and
combine literature searches. The defined search expression for this study is (“model-driven
development” OR “model-driven engineering” OR “model-driven architecture” OR “model-based
approach” OR “model-driven approach” OR “domain specific model*” OR “metamodel”) AND
(“IoT*” OR “Internet of thing*”).

Eligibility criteria: To ensure the relevance of the selected papers, the following
inclusion and exclusion criteria were defined:

Inclusion criteria: The study must propose at least one MDE tool, language, or technique
for IoT; The study must be a peer-reviewed manuscript, i.e., a journal, conference, or
workshop paper; The study must be published between 2010 and 2023.

Exclusion criteria: The study is a secondary manuscript, i.e., a survey, systematic
mapping, or systematic review; The study is not applied or relevant to the IoT domains, or
it does not follow an MDE approach; The study is a type of educational, editorial, tutorial,
or other, i.e., it is not a scientific paper; The study is written in other languages than English.

Databases of research papers: To identify peer-reviewed literature, the following
electronic databases were used: IEEE Explore (https://ieeexplore.ieee.org, accessed on
13 December 2022), ACM Digital Library (https://dl.acm.org, accessed on 13 December
2022), ScienceDirect (https://www.sciencedirect.com, accessed on 13 December 2022),
Web of Science (https://clarivate.com, accessed on 13 December 2022), SCOPUS (https:
//www.scopus.com, accessed on 13 December 2022), and DBLP (https://dblp.org, accessed
on 13 December 2022). These databases are considered the most popular and widely used
in the IT domain.

4.3. Select Relevant Studies (Stage-3)

The third stage of the scoping review is the most critical and time-consuming stage of
the research. This stage involves selecting the relevant studies that will be included in the
review. Two research team members (ZM and AM) worked together to conduct an extensive
selection of relevant studies. This stage was guided by the PRISMA framework [38] and
involved the following activities:

https://ieeexplore.ieee.org
https://dl.acm.org
https://www.sciencedirect.com
https://clarivate.com
https://www.scopus.com
https://www.scopus.com
https://dblp.org


Sensors 2023, 23, 1458 8 of 27

Identifying papers: The research expression (previously defined) was used to search
the selected databases, as well as Google Scholar (n = 621).

Screening the title and abstract of the papers: All the collected papers were screened
based on their title and abstract, and duplicates were eliminated (n = 511). Papers that were
secondary studies or not relevant to the MDE4IoT topic were also eliminated (n = 100).

Assessing the full papers: The remaining papers were assessed in full, and the
eligibility criteria were applied to eliminate those papers that were not relevant (n = 68).

Final set of included papers: The final set was reached (n = 68).
Figure 2 summarizes the papers collected in each stage based on the PRISMA guide-

line [38]. This process of selecting relevant studies ensures that the review is comprehensive,
relevant, and unbiased.

Figure 2. PRISMA flow diagram for paper selection.

4.4. Chart the Data (Stage-4)

The fourth stage of the scoping review involves charting the selected papers by creating
summaries of each paper, including information on the author, year, location of study, study
design, study methods, and sample size, as well as a brief comment on the limitations and
recommendations of the individual study.

We reviewed the final 68 papers to confirm that the selection was appropriate. Table A1
provides an overview of these papers, including their titles, years, publication types,
countries, names of journals/conferences, and the number of authors.

In terms of distribution of papers by year and publication type (see Figure 3), we
found that 40 studies were published in conferences, 19 in journals, and 9 in workshops.
Researchers in this field prefer conferences over journals, except for 2022, which showed
increased journal papers.
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Regarding the distribution of papers by year and the number of authors, Figure 4
illustrates the authorship pattern for the past thirteen years. The study classified the number
of authors in each paper into six clusters: single authors, two authors, three authors, four
authors, five authors, and six or more authors. It was found that 25 papers were published
by four authors, 22 papers by three authors, and 7 papers by five. Additionally, 6 papers
were authored by two authors and 1 paper by a single author, indicating a growing trend
of collaboration among researchers.

The authors’ affiliations were considered to determine the country of origin for each
publication. As shown in Figure 5, the majority of the 68 papers were from Spain (11),
Germany (9), France (8), Belgium (6), and Italy (5). Figure 5 shows the distribution of
papers from the remaining 32 countries.

Regarding the distribution of papers by year and journal, 21 papers were published
in 14 journals. Figure 6 displays the distribution of papers per journal from 2010 to 2022,
showing an increase in journal publications in recent years.

Finally, Figure 7 illustrates the distribution of papers by year of publication and
digital databases. It shows that 2017 and 2019 had the highest number of articles, with the
majority of publications found in IEEExplore (36), followed by the ACM digital library (10),
Science Direct (4), Web of Science (3), and other databases (14).

Figure 3. Distribution of papers by year and publication type.

Figure 4. Distribution of papers by year and the number of authors.
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Figure 5. Distribution of papers by country.

Figure 6. Distribution of papers by year and Journal.

Figure 7. Distribution of papers by year and digital databases.

4.5. Summarize and Report the Results (Stage-5)

The results are summarized and reported in the fifth stage of the scoping review
process, and these results are presented and discussed in Section 5.
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5. Results Analysis

This section presents the results of the analysis of the responses to the research ques-
tions defined in Section 4.1.

5.1. What Is the Current State of MDE Languages and Tools for Developing IoT Applications?
(RQ1)

The focus of this question is to analyze the state of the art on the MDE languages,
tools, and model-based transformations used in developing IoT applications. However,
this question is divided into the following sub-questions.

What modeling languages are used? (RQ1.1)
According to the MDE, the use of modeling languages helps define models with

different perspectives (e.g., structure and behavior) and different levels of abstraction
(e.g., platform-independent and platform-specific). These models support the design and
development of complex software applications.

From the complete set of 68 reviewed studies, 29 studies reported the creation or
the use of different DSLs (P1, P3, P5, P6, P7, P9, P10, P13, P14, P18, P19, P20, P24, P29,
P30, P32, P35, P36, P39, P46, P41, P48, P50, P56, P59, P65, P66, P68); 11 studies use UML
(P61, P55, P53, P51, P42, P38, P37, P25, P16, P11, P1); 2 studies use BPMN (P38, P41);
and 5 studies reported the creation or use of UML Profiles (P29, P31, P44, P49, P52). For
example, SoaML is an OMG graphical modeling language for designing systems according
to service-oriented architecture (SOA), and SOAML4IOT is an extension of specific concepts
for the IoT domain. Both languages are defined as UML profiles as discussed in study
P29. Study P43 uses SysML to explore the application of model-based design. Study P60
describes SysML4IoT, a SysML profile based on the IoT-A reference model, and discusses
model-based transformations from SysML into the NuSMV language. Study P10 describes
the CHESSIoT framework that uses the CHESSML language, a UML profile also based on
SysML and MARTE languages and implemented with the Papyrus workbench.

Study P38 applies the SEMIoTICS framework that directs using various modeling
languages (for instance, Situation Modeling Language) and IoT platform technologies
to enhance interoperability inside and between early warning systems. From a different
perspective, Study P54 describes the OMG IFML (Interaction Flow Modeling Language) to
support the design of software applications’ user interfaces.

Table 2 summarizes the modeling languages used in the reviewed papers.
What tools are used? (RQ1.2)
A modeling language has multiple facets, such as its abstract syntax (i.e., its con-

cepts, relationships, and constraints) and concrete syntax (i.e., its textual or graphical
concrete representation). These facets are implemented and supported by specific tools
commonly known as language workbenches or language frameworks [13,14,39]. Popular
language workbenches that provide graphical editors are DiaGen, Eugenia, GMF, Graphiti,
MetaEdit+, Obeo Designer, and Sirius [40], while those that support textual languages are
Xtext and MetaEdit. Six (6) studies (P1, P4, P21, P32, P46, P56) refer to the use of textual
languages implemented with the Xtext framework, while, regarding visual modeling lan-
guages (i.e., with graphical concrete syntax), 7 studies reported the use of Sirius (P3, P10,
P14, P12, P22, P24, P35), 4 studies the use of Eugenia (P5, P7, P13, P50), 6 studies the use of
GMF (P2, P7, P13, P65, P67, P50), and other studies report the use of language workbenches
like Obeo Designer (P12) and MetaEdit+ (P39).

Table 3 presents the studies that refer to the implementation or use of textual and
graphical modeling languages.
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Table 2. Distribution of papers by modeling language.

PID Framework DSLs UML BPMN SysMl UML Profile Other

P1 ML-Quadrat (ML2) X X

P3 Monitor-IoT X

P5 SimulateIoT-FIWARE X

P6 CyprIoT-DSL X

P7 X

P9 HealMA X

P10 CHESSIoT X

P11 FTG+PM X X

P13 SimulateIoT X

P14 X

P16 FaultFlow X

P18 X

P19 DSML4contiki X

P20 X

P22 X

P24 X

P25 X

P29 SoaML4IoT X X X

P30 X X

P31 X

P32 Cypriot X

P35 X

P36 X

P37 X

P38 Semiotics X X X

P39 SiMoNa X

P41 X

P42 X

P43 X

P44 UMLOA X

P46 X

P47 SmartHomeML X

P48 X

P49 UML4IoT X

P50 X

P51 ThingML X

P52 IoTA-MD X

P53 X

P54 X

P55 X

P56 X

P59 X

P60 SysML4IoT X

P61 MDE4IoT X

P65 FRASAD X

P66 X

P68 X

Total 29 11 2 2 5 5
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Table 3. Distribution of papers by textual and graphical modeling language tools.

Textual Modeling Language Tools Graphical Modeling Language Tools
PID Framework Xtext MontiCore Sirius Obeo Designer GMF Metaedit+ Eugenia

P1 ML-Quadrat (ML2) X

P2 X

P3 Monitor-IoT X

P4 X

p5 SimulateIoT-FIWARE X

P6 CyprIoT-DSL

P7 X X

P9 HealMA X

P10 CHESSIoT

P12 X X

P13 SimulateIoT X X

P14 X

P21 IoTSuite X

P22 X

P24 X

P30 X

P32 Cypiot X

P35 X

P39 SiMoNa X

P46 EL4IoT X

P50 X X

P56 X

P65 FRASAD X

P67 X

Total 6 1 7 1 6 1 4

What model transformations and the respective supported languages and tools are
employed? (RQ1.3)

Model transformations are used in MDE to convert models from one representation to
another. There are various languages and tools that have been used to perform these transfor-
mations. For instance, Meta3, Xpand, and Xtend covered both M2M and M2T transformation,
while Acceleo and JET covered only M2T transformation. However, despite their popularity,
some of these frameworks, like the JET (Java Emitter Templates) are not maintained anymore.

Twenty-five (25) studies refer to using some transformations. Eighteen (18) studies
refer using M2T (P1, P5, P6, P7, P10, P11, P13, P14, P22, P23, P24, P25, P26, P27, P36, P47,
P62, P68) and 14 studies report using M2M transformations (P5,P6, P11, P15, P19, P23,
P26, P27, P28, P41, P52, P58, P62, P68). Only 8 studies refer to using both M2T and M2M
transformations. Eleven (11) studies refer the implementation of M2T transformations
with Accelo (P5, P6, P10, P13, P14, P19, P22, P24, P36, P62, P67) and 7 studies refer M2M
transformation with the ATL framework (P5, P6, P26, P41, P42, P52, P62).

Table 4 shows the distribution of papers by types of model-based transformations and
the supported tools.

What are the outputs of M2M and M2T transformations? (RQ1.4)
M2M and M2T transformations are techniques used in MDE to convert models from

one representation to another. The output of an M2M transformation is a new model in a
different format or representation. This new model is typically semantically equivalent to
the original but may have a different structure or syntax. On the other hand, the output of
an M2T transformation is text, typically in the form of source code, but it also can be in the
form of documentation, configuration files, or other textual artifacts. The text generated is
typically based on the structure and/or the information contained in the original model.
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In general, M2M transformations are used to transform models from one meta-model
to another, for example, from UML to SysML, or from one notation to another, for example,
from BPMN to EPC. In comparison, M2T transformations generate source code, documen-
tation, or other textual artifacts from a model. Both M2M and M2T transformations can be
performed using a variety of languages and tools, such as QVT, ATL, Acceleo, and Xtend.

For example, Study P10 includes an advanced multi-platform code generation frame-
work that supports multiple target programming languages, such as C, C++, Java, Arduino,
and JavaScript. Study P11 uses the ATL framework and discusses M2M and M2T trans-
formations of platform-specific models and software code for systems like RIOT, Arduino,
Contiki, and TinyOS, with code written for multiple programming languages C, nesC, Java,
JSON, XML. Study P14 discusses a semi-automatic process for generating Ballerina code
for RESTful and orchestrator services, Arduino code for deploying IoT nodes, NCL-Lua
code for the DTV interface, and Android code for smartphones. Study P24 reports using
Acceleo to generate code for programming languages like Flutter, React JS, and VHDL.
Studies P8, P56, P59, and P67 discuss M2T transformations with the generation of C++ or
Java code. Study P62 discusses M2T transformations that generate Java code and SQL DDL
scripts from JavaSE and database models.

5.2. What Application Domains Are These MDE Approaches Applied to? (RQ2)

MDE approaches and tools are applied to a wide range of application domains in
IoT, including for Smart Home Automation, Industrial Internet of Things, Smart Grid,
Healthcare, Agriculture, Predictive maintenance [41].

However, from the selected papers the most popular domains are the followings: smart
buildings and living, smart healthcare, smart environment, smart cities, smart energy, smart
transport, and mobility. Table 5 shows the distribution of papers by application domains.

Eight (8) studies show or discuss MDE4IoT techniques applied into the Smart Manu-
facturing domain (P4, P7, P10, P23, P24, P51, P53, P30); 10 studies into Smart healthcare
domain (P4, P7, P10, P23, P24, P51, P53, P30); 3 studies into Smart Cities (P48, P61, P16); 5
studies into Smart Environment (P19, P35, P45, P62, P50); 2 studies into Smart Energy (P1,
P39); 16 studies into Smart buildings and living (P1, P5, P7, P8, P13, P14, P18, P20, P21, P22,
P27, P28, P32, P36, P47, P53); 6 studies into Smart Transportation (P6, P26, P37, P38, P44,
P64); and 3 studies into Smart Agricultural (P11, P43, P25).

Smart Manufacturing aims to increase factories’ efficiency by enhancing manufacturing,
process control, and monitoring systems. Smart healthcare aims to enhance medical systems,
making them more efficient, convenient, and personalized, by supporting remote patient
monitoring, telemedicine, and medical device management systems [42]. Smart cities is
a new domain that not only improves the quality of life in a city but also lowers the
operating costs of public services like transportation, parking, and waste management
systems [43]. Smart Environment involves rare event detection, is in high demand because
it can warn against natural disasters; may also monitor various environmental factors
such as air quality, noise level, and weather conditions, to improve the overall quality of
life in cities and other areas. Smart Energy refers to the improvements in the distribution
and consumption of utilities such as electricity, gas, and water, and may involve control
and monitoring lighting in buildings, streets, and other public areas, to increase energy
efficiency and reduce costs [41]. Smart buildings and living aims to make buildings more
energy-efficient and enhance the quality of life of their users [41]. Smart transport is a method
of incorporating modern technologies into transportation systems. Cloud computing,
wireless communication, location-based services, computer vision, and other mobility-
enhancing tools are all part of this [44]. Smart Agricultural refers to systems that may
monitor and control various aspects of agriculture, such as irrigation, fertilization, and
crop management, to increase efficiency, reduce environmental impact and increase crop
yield [41].
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Table 4. Distribution of papers by types of model-based transformations and tools.

Transformation Tools for Transformation

PID Framework M2T M2M Accelo ATL M2T Output M2M Output

P1 ML-Quadrat X Java, Python

P2
Intermediary Macro-Code Generation,

Code Generation for Node-RED
Target, Java code application

P3

P4 X C for Arduino, Python

P5 SimulateIoT-
FIWARE X X X X

P6 CyprIoT-DSL X X X X C, Java, Arduino, AC rules and
documentation

P7 X Java, configuration code

P8 MontiThings C++

P9 HealMA X X Java, XML

P11 FTG+PM X X

C, nesC, Java, JSON, XML,
GenerateContiki Code,
GenerateTinyOSCode,

GenerateJavaCode,
GeneratePetrinetConfiguration,

GenerateArduinoCode,
GenerateRIOTCode

RIOTMode, SystemModel,
GenerateContikiModel,
GenerateTinyOSModel,
GenrateGatewayModel,
GeneratePetrinetModel,

GenerateNodeRedModel,
GenerateArduinoModel,

GenerateRIOTModel,
GenerateRIOTModel

P13 SimulateIoT X X Java, configuration code

P14 X X Java, Xml, Ardunio code, json
RESTful APIs Associated

P15 MoSIoT X

P19 DSMl4Contiki X X Petri-net Models

P22 X X Arduino code files (.ino), code
Node-Red(.json), Ballerina code (.bal)

P23 AutoIoT X X

P24 X X Flutter, React JS, And VHDL.

P25 X

P26 X X X

P27 X X

P28 BRAIN-IoT X Java, Osgi Artifact, C

P33 GreyCat Java, TypeScript.

P35

Code for Mote (SourceNode),
SinkNode, Raspberry Pi (Java Code),

ESP8266 (Arduino code),
configuration for IoT Log Manager

Petri-net Models

P36 X X Ardunio code

P41 X X

P42 X

P47 SmartHomeML X

P51 ThingML

C/C++, Java, and JavaScript and
several libraries and open platforms
(Arduino, Raspberry Pi, Intel Edison,

Linux, and so on).

P52 X X

P56 Java

P58 X

P59 Java

P61 MDE4IoT C

P62 X X X java code and SQL DDL

P67 X Java

P68 X X

Total 18 14 11 7
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Table 5. Distribution of papers by application domains.

PID Framework Healthcare Agricultural City Energy Manufacturing Building Environment Transport

P1 ML-Quadrat
(ML2) X X

P4 X

P5 SimulateIoT-
FIWARE X

P6 CyprIoT-DSL X X

P7 X X

P8 X

P9 HealMA X

P10 CHESSIoT X

P11 FTG+PM X

P13 SimulateIoT X X

P14 X

P15 MoSIoT X

P16 FaultFlow X

P19 DSMl4Contiki X

P20 X

P21 X

P22 X

P23 AutoIoT X

P24 X

P25 X

P26 X

P27 X

P28 BRAIN-IoT X

P30 X

P31 X

P32 Cypriot X

P35 X

P36 X

P37 X

P38 Semiotics X

P39 SiMoNa X

P40 X

P43 X

P44 UMLOA X

P45 X

P47 SmartHomeML X

P48 X

P50 X

P51 ThingML X X

P52 IoTA-MD X

P53 X

P54 X

P55 X

P57 X

P58 X

P61 MDE4IoT X

P62 X

P64 X

Total 10 3 3 2 8 16 5 6
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5.3. What DAML Techniques Are Supported by These MDE Approaches? (RQ3)

DAML methods and techniques are crucial for developing smart IoT services and
CPS applications [45]. After analyzing these studies, we identified only four studies
that discussed the application of DAML techniques in the scope of MDE4IoT: P1, P4,
P33, and P15.

Study P1 introduced the ML-Quadrat (ML2) framework that supports supervised
ML with different techniques such as Logistic Regression for linear classification, Linear
Regression, Gaussian Naive Bayes, Multinomial Naive Bayes, Complement Naive Bayes,
Bernoulli Naive Bayes, Categorical Naive Bayes, Decision tree Regressor and Decision Tree
Classifier, the random forest regressor and Random Forest Classifier ensemble methods,
The Multi-Layer Perceptron (MLP) Artificial Neural Networks (ANN). ML2 also supports
unsupervised ML-included techniques, like K-Means, Mini-Batch K-Means, DB-SCAN,
spectral clustering, and the Gaussian Mixture Model, and semi-supervised ML support
techniques like self-training, label propagation, and label spreading (See Table 6).

Table 6. Data Analytics and Machine Learning in MDE4IoT.

Types of Machine Learning Algorithms
PID Framework Supervised Unsupervised Semi Supervised Time Series Models

P1 ML-Quadrat(ML2)

Logistic Regression
Linear Regression,

Gaussian Naive Bayes,
Multinomial Naive
Bayes, Complement

Naive Bayes, Bernoulli
Naive Bayes,

Categorical Naive
Bayes, Decision Tree

Regressor Decision Tree
Classifier, Decision Tree
Regressor Decision Tree

Classifier, Random
Forest Classifier,

Multi-Layer Perceptron
(MLP) Artificial Neural

Networks (ANN)

K-Means, Mini-Batch
K-Means, DB-SCAN,
Spectral Clustering,
Gaussian Mixture

Model,

Self-Training, Label
Propagation,

Scikit-Learn Label
Spreading

NO

P4

Logistic Regression
Linear Regression,

Gaussian Naive Bayes,
Multinomial Naive
Bayes, Complement

Naive Bayes, Bernoulli
Naive Bayes,

Categorical Naive
Bayes, Decision Tree

Regressor Decision Tree
Classifier, Decision Tree
Regressor Decision Tree

Classifier, Random
Forest Classifier,

Multi-Layer Perceptron
(MLP) Artificial Neural

Networks (ANN)

K-Means, Mini-Batch
K-Means, DB-SCAN,
Spectral Clustering,
Gaussian Mixture

Model,

Self-Training, Label
Propagation,

Scikit-Learn Label
Spreading

NO

P15 MoSIoT

Live linear regression,
Live decision trees

Naive Bayesian models
Gaussian Bayesian

models baz

KNN, StreamKM++
Gaussian Mixture

Models
NO

P33 GreyCat

Live linear regression,
Live decision trees

Naive Bayesian models
Gaussian Bayesian

models baz

KNN, StreamKM++
Gaussian Mixture

Models
NO

Study P4 proposes a novel approach to software and AI engineering for smart IoT
services that allow data analytics and machine learning components to run in part or
entirely on IoT edge devices, which may be severely limited in terms of power and com-
putational resources. The proposed approach for software development is based on the
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DSM methodology of the MDSE paradigm. In particular, it builds on the previous work of
ML-Quadrat [P1].

Study P15 proposed the MoSIoT framework, which integrates a prediction module
into the MoSIoT framework that applies an integrated set of learning attributes to the
scenario model related to ML algorithms. This framework applied an approach based on
GreyCat, which seamlessly integrated machine-learning algorithms into a domain model.

Study P33 integrated ML algorithms with software models. This work implemented
the following algorithms: (1) Regression: Live linear regression; (2) Classification: Live de-
cision trees, Naive Bayesian models, Gaussian Bayesian models; and (3) Profiling: Gaussian
Mixture Models (Simple Multinomial).

Due to the significance of time series forecasting for IoT systems, we examined these
studies to determine whether they discussed or proposed time series modeling techniques.
However, our analysis shows that none of the studies has yet considered time series
modeling techniques.

6. Discussion

In addition to the thorough evaluation of the outcomes of the scoping review provided
in Section 5, this section includes a general discussion of the acquired findings and their
consequences.

6.1. Main Findings

Regarding modeling languages addressed by RQ1, results from RQ1.1 showed that the
top 3 most used modeling languages for IoT applications are: DSLls, UML, and UMLProfile.
The most popular type of modeling language is DSLs which is reported in 29 studies. Then,
UML with 11 studies, and UML Profile with 5 studies reported.

Concerning question RQ1.2, our analysis revealed that 6 studies used Xtext and Mon-
tiCore with 1 study reported for textual modeling language tools. Regarding graphical
modeling language tools, 7 studies reported using Sirius, 6 using GMF, 4 using Eugenia, 1
using Metaedit+, and 1 using Obeo-Designer. These findings showed that graphical model-
ing language makes it easy to understand because most people benefit from a visual aid.

The analysis of the results from RQ1.3 showed that the M2T transformation, with 18
studies, gains more attention in terms of the existing or developed tools and languages
compared to the M2M transformation with only 14 studies. In addition, it is observed that
tools like Accelo and ATL are the most popular for model-based transformations, being
Accelo the most tool for M2T transformation, as reported in 10 studies.

For the application domain, RQ2 results revealed that most studies reported IoT appli-
cations in the smart buildings and living application domains, which were mentioned in 16
studies out of 68. The other application domains were smart healthcare (with 10 studies),
smart environment (with 5 studies), smart cities (with 3 studies), smart manufacturing
(with 8 studies), smart transport and mobility (with 6 studies), smart agricultural and smart
energy (with 2 studies).

Regarding question RQ3, concerning the use of DAML techniques in MDE4IoT, We
find 4 studies among all of the analyzed studies. Few researchers have developed super-
vised machine learning techniques (reported in only 2 studies), unsupervised machine
learning (4 studies), and semi-supervised machine learning (4 studies) for this purpose. We
also verify that none of the studies supports time series forecasting. The results show that
the total number of studies that reported using DAML is quite low (only 4 studies out of
68) for a wide and complex domain like the IoT.

6.2. Study Limitations

The potential of missing primary research frequently threatens any literature review.
The databases we checked might not have included all the pertinent studies. However, to
increase external validity, we employed several strategies. First, we looked at the author
profiles of the most prolific authors to see if we missed any relevant studies. Second,
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because we were all familiar with the subject, we talked about whether we were aware of
any studies that might have been relevant but were suspiciously missing from the sample.
Third, we looked at the first 200 Google Scholar results from the same search.

However, despite these safeguards, it is possible that some pertinent studies were still
overlooked. The results are biased toward publishing because we decided not to include
unpublished work. Still, based on this work, we can observe some research issues, which
are mentioned in the next section as future work.

7. Conclusions

MDE approaches may positively affect the quality of IoT systems easily by managing
the increasing complexity of such IoT systems. MDE helps easily integrate various tech-
nologies (or migrate to new technologies) and make them compatible with the required
changes, as well as the maintenance and documentation of the facilities.

The scoping review presented in this paper aimed to analyze and discuss the current
state of the art of the MDE applied to the IoT domain. To do this, we selected 68 papers in
the field, published between 2010 and 2022, and focused on languages, tools, application
domains, and data analytics and machine learning techniques in the MDE field, specifically
related to the IoT domain.

Our findings indicate that DSLs were favored above other modeling languages. Xtext
and Sirius are the most popular tools for both textual and graphical modeling languages,
respectively. Regarding the application domains, smart buildings and living are the most
commonly used domains for IoT applications, namely, in what concerns the studies ana-
lyzed. Additionally, our review found that few studies have proposed MDE approaches for
DAML techniques, and none have considered techniques for analyzing time series data.

Based on our review, it is clear that there is a need for further research in the area of
MDE for IoT. Specifically, studies need to investigate the use of different types of modeling
languages and tools for IoT systems and explore the various application domains where
MDE can be applied.

Additionally, research is needed to explore integrating DAML techniques with MDE
for IoT, specifically concerning time series data. This could include developing new
methods and techniques for effectively representing and managing the complexity of
time series data in the MDE process and for integrating DAML techniques into the MDE
process to allow for efficient and effective analysis and processing of time series data. Time
series data can be highly dynamic and involve many variables, making creating accurate
and comprehensive models difficult. Another challenge is the need to integrate DAML
techniques into the MDE process in a way that allows for the efficient and effective analysis
and processing of time series data. This may require developing specialized methods and
approaches for working with DAML in MDE for IoT services. A further challenge is the
need to ensure the scalability and performance of MDE for IoT services when working with
large amounts of time series data. This may involve specialized techniques and tools for
optimizing the MDE process in this context.
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Appendix A

Table A1. Included studies in the scoping review.

PID Study Title Year Type Country Name of Jour-
nal/Conference

Number of
Authors

P1 [46] A model-driven approach to machine learning and
software modeling for the IoT 2022 Journal Germany,

Belgium SoSyM 4

P2 [47] IoT efficient data exploitation process using Model
Driven Engineering 2022 Conference France ICC 5

P3 [48] A Domain-Specific Language for Modeling IoT System
Architectures That Support Monitoring 2022 Journal Argentina,

Ecuador lEEE Access 4

P4 [49] Supporting AI Engineering on the IoT Edge through
Model-Driven TinyML 2022 Conference

Germany,
Belgium,
United

Kingdom

COMPSAC 4

P5 [50]
SimulateIoT-FIWARE: Domain Specific Language to

Design, Code Generation and Execute IoT Simulation
Environments on FIWARE

2022 Journal Spain IEEE Access 4

P6 [51] A Model-Driven Methodology to Accelerate Software
Engineering in the Internet of Things 2022 Journal

France,
Canada,

Luxembourg
IoT-J 4

P7 [52] Designing and simulating IoT environments by using
a model-driven approach 2022 Conference Spain CISTI 2

P8 [53] MontiThings:Model-Driven Development and
Deployment of Reliable IoT Applications 2022 Journal Germany JSS 4

P9 [54]
HealMA: a model-driven framework for automatic
generation of IoT-based Android health monitoring

applications
2022 Journal Iran, Canada ASE 3

P10 [55] Towards a modeling and analysis environment for
industrial IoT systems 2021 Workshop Italy CEUR 4

P11 [56] FTG+PM for the Model-Driven Development of
Wireless Sensor Network based IoT Systems 2021 Conference Belgium,

Canada MODELS 3

P12 [57] A Model-Driven Framework for Early Analysis of Kill
Chain Attacks 2021 Conference Pakistan,

Saudi-Arabia NCCC 5

P13 [58]
SimulateIoT: Domain Specific Language to Design,

Code Generation and Execute IoT Simulation
Environments

2021 Journal Spain IEEE Access 4

P14 [59] An approach to integrate IoT systems with no-web
interfaces 2021 Conference Spain ICITS 3

P15 [60]
MoSIoT: Modeling and Simulating IoT

Healthcare-Monitoring Systems for People with
Disabilities

2021 Journal Spain IJERPH 4

P16 [61] FaultFlow: A tool supporting an MDE approach for
Timed Failure Logic Analysis 2021 Conference Italy EDCC 3

P17 [62]
The Need for Model-driven Engineering in the

Development of IoT Software for Public
Transportation Systems

2021 Conference Turkey UYMS 2

P18 [63] Model-driven Development for ESP-based IoT
Systems 2021 Workshop Belgium SERP4IoT 2

P19 [64]
Analyzing WSN-based IoT Systems Analyzing

WSN-based IoT Systems using MDE Techniques and
Petri-net Models

2020 Conference Belgium MODELS 4

P20 [65] A Model-Driven Approach to Unravel the
Interoperability Problem of the Internet of Things 2020 Conference France,

Canada AINA 5

P21 [66] IoTSuite: A ToolSuite for Prototyping Internet of
Things Applications. 2020 Workshop Spain AINA 4
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Table A1. Cont.

PID Study Title Year Type Country Name of Jour-
nal/Conference

Number of
Authors

P22 [10] A model-driven engineering approach for the service
integration of IoT systems 2020 Journal Spain Cluster

computing 5

P23 [8] AutoIoT: a Framework based on User-driven MDE for
Generating IoT Applications 2020 Conference Germany SAC 3

P24 [67] A Model-Driven Approach for IoT-Based Monitoring
Systems in Industry 4.0 2020 Conference Iran SCIOT 3

P25 [68]
A Conceptual Data Model and Its Automatic

Implementation for IoT-Based Business Intelligence
Applications

2020 Journal France, China,
Colombia IoT-J 9

P26 [69] An Application Development Framework for
Internet-of-Things Service Orchestration 2020 Journal

China,
Saudi-Arabia,
South-Korea,

Australia

IoT-J 6

P27 [70] A Model-Driven Framework for Ensuring Role Based
Access Control in IoT Devices. 2020 Conference Pakistan ICCAI 4

P28 [71]
BRAIN-IoT: Model-Based Framework for Dependable
Sensing and Actuation in Intelligent Decentralized IoT

Systems
2019 Conference Italy, Spain IoT-J 6

P29 [72] Modeling SOA-Based IoT Applications with
SoaML4IoT 2019 Conference Brazil WF-IoT 3

P30 [73] Towards privacy-preserving IoT systems using
model-driven engineering 2019 Workshop Germany MODELS 4

P31 [69] A Model-Driven Approach for Load-Balanced MQTT
Protocol in the Internet of Things ( IoT ) 2019 Conference Pakistan,

Saudi Arabia. CISIS 4

P32 [74] Cypriot: Framework for modelling and controlling
network-based IoT applications 2019 Conference Canada,

France SAC 5

P33 [75] The next evolution of MDE: a seamless integration of
machine learning into domain modeling 2019 Journal Luxembourg SoSyM 4

P34 [76] Model-driven evidence-based privacy risk control in
trustworthy smart IoT systems 2019 Workshop Spain, France CEUR-WS.org 4

P35 [77] Applying model driven engineering techniques to the
development of Contiki-based IoT systems 2019 Workshop Turkey SERP4IoT 6

P36 [78] A model-driven approach for the integration of
hardware nodes in the IoT 2019 Conference Spain WorldCIST 3

P37 [79] Enabling Model-Driven Software Development Tools
for the Internet of Things 2019 Workshop Canada MiSE 2

P38 [80] Semiotics: Semantic model-driven development for
IoT interoperability of emergency services 2019 Conference Netherland ISCRAM 1

P39 [81] SiMoNa:A Proof-of-concept Domain-Specific
Modeling Language for IoT Infographics 2018 Conference Brazil, Ireland ISCRAM 4

P40 [82] Towards an IoT-based Framework for Evolvable
Assembly Systems 2018 Conference Greece IFAC 3

P41 [83] A Methodology Based on Model-Driven Engineering
for IoT Application Development 2018 Conference Mexico ICDS 3

P42 [84] A Model-Driven Workflow for Energy-Aware
Scheduling Analysis of IoT-Enabled Use Cases 2018 Journal Germany IoT-J 2

P43 [85] A model-based approach for managing criticality
requirements in e-health IoT systems 2018 Conference Qatar, Greece SoSE 6

P44 [86] A Model-Driven Approach for Access Control in the
Internet of Things (IoT) Applications UMLOA 2018 Conference Pakistan ICIST 5

P45 [87] A Reactive and Model-Based Approach for
Developing Internet-of-Things Systems 2018 Conference Portugal QUATIC 3

P46 [88] A modeling domain-specific language for IoT-enabled
operating systems 2017 Conference Portugal InIECON 7

P47 [89] SmartHomeML: Towards a domain-specific modeling
language for creating smart home applications 2017 Conference Iceland,

Canada ICIOT 4

P48 [90] A Domain Specific Language for Smart Cities 2017 Journal Spain MDPI
Proceedings 3

P49 [91] A framework for MDE of IoT-Based Manufacturing
Cyber-Physical Systems 2017 Conference Greece IoT 3
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Table A1. Cont.

PID Study Title Year Type Country Name of Jour-
nal/Conference

Number of
Authors

P50 [92] Modelling Contiki-Based IoT Systems 2017 Conference Turkey SLATE 4

P51 [93] Model-Based Software Engineering to Tame the IoT
Jungle 2017 Journal Norway IEEE Software 3

P52 [94] IoTA-MD: A model-driven approach for applying QoS
attributes in the development of the IoT systems 2017 Conference Brazil SAC 3

P53 [91] A framework for MDE of IoT-Based Manufacturing
Cyber-Physical Systems 2017 Conference Greece IoT 3

P54 [16] Model-driven development of user interfaces for IoT
systems via domain-specific components and patterns 2017 Journal Italy JISA 3

P55 [95]
A Model-Driven Methodology for the Design of
Autonomic and Cognitive IoT-Based Systems:

Application to Healthcare
2017 Journal France TETCI 3

P56 [96] An IoT domain meta-model and an approach to
software development of IoT solutions 2017 Conference Tunisia IINTEC 3

P57 [97] Model-driven approach for body area network
application development 2016 Journal Lithuania MDPI Sensors 4

P58 [97] A model-driven framework to develop personalized
health monitoring 2016 Journal Lithuania MDPI

Symmetry 4

P59 [98] A model-driven engineering approach for the
well-being of ageing people 2016 Conference Belgium ER 4

P60 [99] Design and Analysis of IoT Applications: A
Model-Driven Approach 2016 Conference Brazil,

Australia

DASC/
PiCom/

DataCom/
CyberSciTech

5

P61 [100] Supporting the Internet of Things with Model-Driven
Engineering 2016 Conference Sweden IDC 2

P62 [101] A model-driven architecture-based data quality
management framework for the Internet of Things 2016 Conference Morocco,

France CloudTech 4

P63 [102] Model-driven interoperability: engineering
heterogeneous IoT systems 2015 Journal UK

Annals of
Telecommuni-

cations
3

P64 [103] A model-based approach across the IoT lifecycle for
scalable and distributed smart applications 2015 Conference Italy ITSC 3

P65 [104] A Framework for Model-driven IoT Application
Development 2015 Conference Germany WF-IoT 4

P66 [105] Design of a domain-specific language and IDE for
Internet of things applications 2015 Conference Bosnia-

Herzegovina MIPRO 4

P67 [106] IoTLink: An Internet of Things Prototyping Toolkit.
2014 2014 Conference Germany,

Brazil UIC-ATC 7

P68 [107] Model-driven development for data-centric sensor
network applications 2011 Conference Germany MoMM 3
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