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a b s t r a c t

With the emergence of affordable access to data sources, machine learning models and computational
resources, sophisticated control concepts for residential energy management systems (EMSs) are on
the rise. At the heart of those are production and consumption forecasts. Given the wide spectrum of
implementation opportunities, selection of appropriate forecasting strategies is challenging. This work
systematically evaluates forecasting-based optimization for residential EMSs in terms of trade-offs
between economic profitability, computational complexity and security. The foundation of the study
is two real prosumer cases equipped with a photovoltaic-battery system. Results demonstrate that,
within the considered scenarios, best trade-offs are achieved based on forecasts of a default gradient-
boosted decision trees model, using a short initial training set, weather forecast inputs and regular
retraining. Over 90% of the theoretical maximum economic benefit is achieved in this scenario, at
significantly lower computational complexity than others with similar savings, while being applicable
to new systems without large data history. In terms of security, this scenario exhibits tolerance
against weather input manipulation. However, sensitivity to price tampering may require data integrity
checking in residential EMSs.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Electricity grids are facing increasing shares of volatile renew-
ble generation and variable consumption due to the electrifi-
ation of the mobility and heating sectors [1,2]. The resulting
arger temporal changes in supply and demand are entailing a
eed for electricity flexibility, with a great potential found within
he residential sector [3]. At the same time, the increase and
luctuations in electricity prices motivate consumers to optimize
heir consumption. In that context, residential energy manage-
ent systems (EMSs) constitute a promising solution, as control-

ing flexible energy resources allows to simultaneously provide
1) flexibility to the power system, and (2) financial benefits
o consumers.

Given their steady cost decrease, photovoltaic (PV)-battery
ystems have become prominent examples of residential flex-
bility assets [4]. Existing EMSs typically apply simple myopic
euristics or rule-based controls for battery scheduling, without
onsideration of future electricity prices, production and con-
umption [5]. More advanced approaches combine optimization
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352-4677/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
techniques with PV production and load forecasts. Given the af-
fordable or even free access to weather and electricity prices data,
machine learning (ML) models and computational resources, such
more advanced concepts slowly find their way into application.

The use of forecasts is at the center of these optimization-
based approaches. However, the wide range of implementation
options and limitations makes selection of an appropriate fore-
casting strategy a compelling task. Overly complex models may
provide minimal improvements at the cost of computational
overhead. On the contrary, the lack of historical data for newly
installed PV-battery systems may render the implementation of
advanced models infeasible. Finally, strategies relying on data
integration via the Internet (e.g., weather data or cloud-based
forecasts) may open new opportunities for adversaries aiming at
financial damage, for example, through data manipulation. These
observations illustrate the need for a systematic and holistic
assessment of different forecasting strategies for optimization in
residential EMSs, considering trade-offs of profitability, complex-
ity and security (see Fig. 1). In a nutshell, this can be expressed
by the following research question: ‘‘Under which conditions of
data availability, computing resources and model complexity can
forecasting-based battery scheduling in residential EMSs provide best
trade-offs regarding economic profitability, computational complex-

ity and security?’’ To address this question, this work evaluates

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Abbreviations

ANN Artificial neural network
BMS Battery management system
EMS Energy management system
GBDT Gradient-boosted decision trees
GHI Global horizontal irradiance
HPC High-performance computing
IoT Internet of things
ML Machine learning
PV Photovoltaic
PVMS Photovoltaic management system
RMSE Root mean squared error
SM Smart meter
SOC State of charge
TPE Tree Parzen Estimator

Parameters

α Aggressiveness of the attack [–]
∆T Normalized duration of a time step [–]
η Battery efficiency [–]
pinv Inverter power capacity limit [kW]
s Battery upper SOC limit [kWh]
s Battery lower SOC limit [kWh]
d Feature dimension [–]
k Depth of decision trees [–]
L Dataset length [–]
m Number of decision trees [–]
N Number [–]
v Number of nodes in decision trees [–]
w Time series window length [–]

Sets

Ω Hyperparameter space
ω Set of hyperparameters
T Set of steps in the optimization horizon
W Set of optimization variables

Indices

σ Time step in moving average window
τ 5-min time step
C Forecasting case
C ′ EMS scenario
h 1-h time step
i Dataset observation
j 1-h time steps ahead index
q Time-series cross-validation fold

Variables

X Vector of covariate values [–]
δ Battery charging/discharging status [–]
Λ̂ Forecast of spot price [e/kWh]
P̂L 1-h avg. load forecast [kW]
P̂PV 1-h avg. PV production forecast [kW]
Λ Spot price of a 1-h time step [e/kWh]
λ Spot price of a 5-min time step [e/kWh]
nRMSE Normalized RMSE [–]
rRMSE Relative RMSE [–]
f

2

˜
Λ Manipulated spot price [e/kWh]
ĜHI 1-h average GHI forecast [W/m2]
Ô 1-h avg. cloud opacity forecast [–]
A Indicator of prosumer absence [–]
B Economic benefit [e]
D Day of the week [–]
F Fees and taxes [e/kWh]
f Fees and taxes of a 5-min time step [e/kWh]
H Hour of the day [–]
K Energy cost [e]
M Memory need [–]
O Approximated number of operations [–]
p 5-min avg. net demand (pL − pPV) [kW]
pb 5-min avg. power from the grid [kW]
pc 5-min avg. battery charging power [kW]
pd 5-min avg. battery discharging power [kW]
PL 1-h avg. load consumption [kW]
pL 5-min avg. load consumption [kW]
PPV 1-h average PV production [kW]
pPV 5-min avg. PV production [kW]
ps 5-min avg. power sold to the grid [kW]
R Random number drawn from uniform distribu-

tion [–]
rB Relative economic benefit [–]
rM Relative memory need [–]
rO Relative approximated number of operations [–]
s SOC at end of a 5-min time step [kWh]

optimization-based control in residential EMS under several fore-
casting cases defined by a variety of model types, data availability
scenarios and modeling strategies on two real prosumer cases.

Fig. 1. Aspects for evaluating forecasting-based optimization in EMSs.

.1. Related work

Most works on optimization in residential EMSs assess fore-
asting only by means of profitability. Typical approaches in-
lude the comparison of state-of-the-art rule-based control with
orecasting-based optimization techniques [6,7], and the evalua-
ion of different levels of forecast accuracy [8–12]. The authors
f [7] compare a rule- and optimization-based strategy over the
eriod of one year. Results demonstrate an up to 25% cost re-
uction by applying the latter. However, perfect weather and
oad forecasts (i.e., actual measured values) are assumed. The
uthors of [9] evaluate the impact of forecast uncertainty. Instead
f evaluating real forecasts, random errors are artificially added
o measurements to model forecasting uncertainty. Moreover,
he evaluation is only based on simulation data for one week
n a 30-min resolution. As shown in [11,13], time resolution,
nd thus the frequency at which the system is re-optimized
optimization frequency), has significant impact on economic per-
ormance assessment. In [8,10], the authors compare the impact
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f perfect and realistic forecasts on economic performance. Both
onsider data of hourly resolution. Moreover, [8] is based on an
rtificially created dataset. Separate consumption and production
ata sources are combined, which breaks any existing correlation
mong those. The authors of [11] compare various forecasts for
V generation and load consumption. Several types of persistence
odels as well as perfect forecasts are considered for both PV
nd load forecasts. Additionally, artificial neural network (ANN)-
ased forecasts are used for load consumption, and an irradiation
orecast-based PV model for PV forecasts. Compared to the pre-
iously described works, optimization frequency is two minutes.
oreover, several sensitivity analyses are conducted, including
arying forecast errors, optimization frequencies and battery ca-
acities. Results demonstrate that advanced forecast models al-
ow for further price savings compared to persistence. However,
rices are assumed to be always known for the next 24 h, which
s not the case for spot prices. Moreover, PV generation and load
onsumption profiles of different buildings from different regions
re combined, and PV production is artificially scaled. Finally,
he impact of data availability (e.g., different amounts of training
ata) and modeling strategies (e.g., retraining) is not explored.
In contrast to the above-mentioned works, some extend

conomic evaluation with considerations of computational com-
lexity. In [5,6], the authors compare multiple EMS strategies,
overing both rule-based heuristics and forecasting-based opti-
ization. The authors claim that the former achieve near-optimal
olutions with lower computing resources compared to the latter.
owever, the optimization only runs on a 30-min frequency.
oreover, only persistence forecasts for PV generation and load
onsumption are considered as realistic forecasting approach.
he authors of [14] propose a multi-objective predictive energy
anagement strategy. The proposed prediction model is com-
ared to several ML-based PV and load forecast models regarding
rofitability and computational complexity. However, only hourly
ata and one-step ahead predictions are considered.
In summary, the review of related literature demonstrates

hat most works only evaluate forecasting-based optimization in
erms of profitability. Further, a large fraction exhibits method-
logically shortcomings as they use short evaluation sets with low
ata resolution (30–60 min), assume to know prices for the entire
ptimization period or rely on artificially constructed prosumer
atasets. To the best of the authors knowledge, no work system-
tically assesses several forecasting strategies for optimization in
esidential EMSs regarding economic profitability, computational
omplexity and security.

.2. Contribution and paper structure

The main contributions of this work are as follows:

• Systematic and holistic evaluation of multiple scenarios of
forecasting-based battery schedule optimization in residen-
tial EMSs.
• Consideration of various forecast cases defined by different

model types, data availability and modeling strategies.
• Investigation of two real prosumer cases on an evaluation

period of more than one year, considering an optimization
frequency of 5 min and realistic price availability.
• Recommendations on optimal strategies for forecasting-

based optimization in residential EMSs regarding trade-offs
between economic profitability, computational complexity
and security.

The remainder of this paper is structured as follows: In Sec-
ion 2, the investigated prosumer scenarios are described. Sec-
ion 3 introduces the applied methodology with regards to con-
rol strategies and underlying forecasting cases. In Section 4, de-
ails on the experimental setup and metrics are provided. Results
3

are presented and evaluated in Section 5. Finally, a discussion
of result implications is provided in Section 6, followed by a
conclusion and view on future work in Section 7.

2. Prosumer concept and case description

In this study, two different residential prosumers are con-
sidered, which are each equipped with rooftop PV, a stationary
storage system and an EMS (see Fig. 2). A common PV-battery
inverter is assumed. The EMS comes with a dedicated smart
meter smart meter (SM) that measures power at the grid con-
nection point. PV and battery measurements are provided by the
battery management system (battery management system (BMS))
and PV management system PV management system (PVMS),
respectively, while load consumption is deducted from these
measurements. The BMS further provides the current state of
charge state of charge (SOC). While the measurements are sam-
pled at high rates, they are usually available to users in extracted
reports at, for example, 5-min resolution. The present work is
based on such 5-min average values. Load and PV variations
within the averaging period are not taken into account. Note that
another meter is installed by the utility company for billing, but
typically these meters provide only accumulated energy import
and export values at 15- to 60-min rate. The prosumers are
subject to instantaneous summation netting, that is imports and
exports are summed up separately on the net result of all three
phases [13].

Fig. 2. Schematic representation of the residential energy system of both
considered prosumers.

Apart from residential energy system-specific data, such as
power measurements or the battery’s SOC, the EMS has access to
spot prices, which are published every day at 13:00 for the fol-
lowing day. Additionally, prosumers may acquire forecasts from
third parties. One scenario is receiving weather forecasts, which
can be used to generate PV and load forecasts locally. Another
is direct procurement of the latter, for example, from providers
of cloud-based forecasts. In this case, prosumers may need to
provide historical and/or real-time measurements.

The consideration of two prosumers is justified by differ-
ent production and consumption levels and patterns, allowing a
broader evaluation of forecasting-based optimization. Production
levels differ due to a higher nominal power of the PV plant of
prosumer 1. Differences in load consumption mainly result from
electric vehicle (EV) charging in case of prosumer 1, which entails
a higher load level and less predictable patterns compared to the
second one. Moreover, prosumer 1 purchased another EV in 2022,
resulting in a change of load level and patterns during the record-
ings. Finally, prosumer 1 exhibits a higher self-consumption due
to alignment of EV charging to PV production. Based on these
characteristics, prosumer 2 can be considered a more traditional
passive consumer, while prosumer 1 represents an already active
future consumer. More details on the prosumers’ setup follow in

Section 4.1.
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. Methodology

This section introduces the underlying methodology of the
ifferent scenarios of forecasting-based optimization and a rule-
ased control benchmark, which together are referred to as EMS

scenarios in the following. Section 3.1 describes the considered
battery control strategies. In Section 3.2, different cases of PV and
load forecasts are presented, which constitute the central foun-
dation of the EMS scenarios. Finally, the realization of spot price
forecasts is addressed in Section 3.3, followed by the introduction
of two data manipulation scenarios in Section 3.4.

3.1. Battery control strategies

This subsection describes the two considered battery con-
trol strategies, namely an offline rule-based control benchmark
(Section 3.1.1) and forecasting-based rolling-horizon optimiza-
tion (Section 3.1.2).

3.1.1. Offline rule-based control benchmark
Rule-based controllers not depending on any prosumer-exter-

nal information are common in real-life applications because they
are robust, easy to implement and have minimal computational
requirements. Thus, this offline approach will serve as a bench-
mark in the present study. The control mode that is used in
this work, and many commercial PV-battery systems, minimizes
the exchange of energy between the prosumer and the grid [5].
Let pLτ and pPVτ denote the 5-min average consumption and PV
generation at time step τ , respectively. The difference of the
two is the net demand pτ = pLτ − pPVτ . Each time step τ has
a normalized duration of ∆T , where ∆T = 1/12 for a 5-min
step duration. When there is power surplus from the prosumer
side, energy is stored in the battery. Once the battery is fully
charged, excess energy is fed to the grid. If there is power deficit,
energy from the battery supplies the load. If this is not possible
because there is no sufficient energy stored, power is drawn from
the grid. In all cases, battery inverter constraints are taken into
account. A common inverter for the PV and the battery is assumed
(see Fig. 2), so that the total power produced by the PV and
flowing out of the battery cannot exceed the inverter’s power
capacity. The described control logic is summarized in the form
of an algorithmic description in Algorithm 1, where η, pcτ and pdτ
denote the battery’s efficiency, charging and discharging power,
respectively. sτ is the SOC at the end of a 5-min period τ . The
verage power bought from/sold to the grid at τ is represented
y pbτ and psτ , while s, s and pinv represent the upper/lower SOC
imit and inverter power capacity, respectively.

Algorithm 1 Rule-based strategy for minimizing energy ex-
changes with the network.
pτ ← pLτ − pPVτ
if pτ ≥ 0 then

pdτ ← min(pinv − pPVτ , pτ , (sτ−1 − s)η/∆T )
pbτ ← pτ − pdτ
psτ ← 0
pcτ ← 0

else
pcτ ← min(pinv,−pτ , (s− sτ−1)/(η∆T ))
psτ ←−pτ − pcτ
pbτ ← 0
pdτ ← 0
t

4

3.1.2. Forecasting-based rolling-horizon optimization
More advanced battery control schemes consider schedule op-

timization, which typically relies on prosumer-external informa-
tion such as spot prices (see Fig. 2). In this work, an optimization
problem according to

min
W

∑
τ∈T

[
(λτ |λ̂τ + fτ )pbτ − λτ |λ̂τpsτ

]
∆T , (1a)

.t. 0 ≤ pbτ , 0 ≤ psτ (1b)

0 ≤ pcτ ≤ δτpinv (1c)

0 ≤ pdτ ≤ (1− δτ )pinv (1d)

p̂PVτ + pdτ ≤ pinv (1e)

pbτ − psτ = p̂Lτ − p̂PVτ + pcτ − pdτ (1f)

sτ+1 = sτ +
[
pcτ+1 η + pdτ+1 /η

]
∆T (1g)

s0 = ss, swopt = se (1h)

s ≤ sτ ≤ s (1i)

s considered. The set of optimization variables is denoted by
. At every 5-min time step τ , the problem is solved over a

ook-ahead horizon of size wopt, corresponding to a set of steps
= {1, 2, . . . , wopt}. Spot prices Λ and imposed fees and taxes
are hourly. Thus, constant values are used for each 5-min step
within the respective hour, represented by λτ and fτ . Unknown

uture values of pPVτ , pLτ and λτ within the look-ahead horizon are
upplemented with forecasts. These are provided as hourly values
nd denoted by P̂PV

h , P̂L
h and Λ̂h for a 1-h time step h. For all 5-min

ime steps τ within the corresponding hour h, constant forecasts
re considered, which are referred to as p̂PVτ , p̂Lτ and λ̂τ . Whether
rue or forecasted prices are used in (1a) depends on the step τ

ithin T , which is indicated through a λτ |λ̂τ notation. PV and
oad forecasts for a prediction horizon of size wpr are performed
very hour in a rolling fashion. Consequently, new forecasts are
vailable every hour. As a default, this work assumes wpr = 36,
hich corresponds to an optimization horizon of wopt = 432.

nitial studies suggest that wpr = 36 is sufficiently large to ap-
roximate the performance for wpr →∞. The impact of varying
rediction horizons is evaluated in Section 5. Prices are published
very day at 13:00 for the upcoming day. Price forecasts are
erformed at the same time and extend the published prices by
nother day. Further details on the PV, load and price forecasts
ollow in Section 3.2.

The battery charging/discharging status is represented by δτ

nd constitutes a binary decision variable. Starting and ending
OC values are denoted by ss and se. The related constraint in
1h) requires the battery to be half charged at the end of the
ptimization period. All constraints (1b)–(1i) are imposed ∀ τ ∈

except for (1g) and (1h), which hold ∀ τ ∈ T \wopt. After
mplementing the resulting optimal battery schedule at τ , a new
ptimization problem is solved at the following step based on the
atest measurements and forecasts. GLPK [15] and CVXPY [16] are
sed as open-source optimization solver and modeling language,
espectively.

.2. Forecasting cases

This subsection describes the considered cases of PV and load
orecasts required for battery schedule optimization (see Sec-
ion 3.1.2). The set of forecasting cases is created by varying
odel type, data availability and modeling strategies. While Sec-

ions 3.2.1 and 3.2.2 introduce the considered scenarios of data
vailability and modeling strategies, respectively, applied forecast
odel types are introduced in Section 3.2.3–3.2.5. An overview of
he 18 resulting cases (C1–C18) is provided in Table 1.
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.2.1. Data availability
In this work, different availability and usage scenarios are

onsidered with respect to historical training data and exter-
al weather forecasts (see Table 1). As for historical data, a
mall and large set are considered. The former represents a sce-
ario of minimal available data history, which might result from
newly installed PV plant, metering device or EMS. For the

atter, a long operation history of the PV-battery system is as-
umed. Varying the training set size aims to assess whether (1)
ata-driven forecasting can be applied to new systems ‘‘out-of-
he-box’’, and (2) extensive data histories allow for significant
orecast improvements and additional economic benefits.

As for external weather data, GHI and cloud opacity fore-
asts are considered. These can be obtained against payment
r partly free of charge [17,18]. The comparison of cases with
nd without use of weather forecasts enables to assess if addi-
ional effort and potential costs of incorporating external weather
ata are justified by savings through higher forecast accuracy.
oreover, it allows contrasting profitability gains with security
oncerns arising from the dependency on potentially manipulated
xternal data.
Both larger training sets and additional features increase the

mount of data to be processed, which ultimately impacts com-
utational complexity. If the computational burden exceeds the
apabilities of typical EMS hardware, cloud-computing may be
ecessary. In this case, sensitive consumption data may need to
e provided to third-parties, which should be taken into account
n the assessment of different forecasting strategies.

.2.2. Modeling strategies
The considered modeling strategies comprise model (hyper-

arameter) selection and regular retraining (see Table 1). Both
re typical procedures which usually improve accuracy, however,
t the cost of increased computational complexity. Contrasting
ases with and without applying these strategies provides insight
egarding optimal trade-offs between profitability and computa-
ional burden. Similar to the processing of extensive data (see
ection 3.2.1), complex modeling strategies may necessitate cloud
omputing. Resulting privacy concerns should be considered in
he evaluation of forecasting strategies.

.2.3. Naïve forecast
The first model type is a naïve persistence forecast, which

s a popular benchmark and frequently applied by studies on
orecasting-based optimization of PV-battery systems [6,11]. The
erm persistence stems from the fact that values within the pre-
iction horizon of size wpr are assumed to be the same as in a
revious period. Daily persistence is considered for PV forecasting
ccording to

ˆ PV
h+1, . . . , P̂

PV
h+wpr

= PPV
h+1−24, . . . , P

PV
h+wpr−2·24. (2)

To account for different consumption patterns between week-
days and weekends, weekly persistence is applied for load fore-
casting as given by

P̂L
h+1, . . . , P̂

L
h+wpr

= PL
h+1−7·24, . . . , P

L
h+wpr−7·24. (3)

Eqs. (2) and (3) are implemented as rolling forecasts, generat-
ing predictions at each time step h for the following wpr hours.
The model is implemented in Python using the open-source fore-
casting library Darts [19]. Persistence forecasts are independent of
training data, external weather data as well as model selection or
training processes (see Table 1). This simplicity renders it also an
attractive strategy for residential EMSs, as shown by the frequent
consideration in many related works.
5

Table 1
Overview of forecasting cases with regards to model type, data availability and
modeling strategies.
Case Model Data availability Modeling strategies

Train set size Weather data Selection Retraining

C1 Naïve None No No No
C2 GBDT Small No No No
C3 GBDT Small No No Yes
C4 GBDT Small No Yes No
C5 GBDT Small No Yes Yes
C6 GBDT Small Yes No No
C7 GBDT Small Yes No Yes
C8 GBDT Small Yes Yes No
C9 GBDT Small Yes Yes Yes
C10 GBDT Large No No No
C11 GBDT Large No No Yes
C12 GBDT Large No Yes No
C13 GBDT Large No Yes Yes
C14 GBDT Large Yes No No
C15 GBDT Large Yes No Yes
C16 GBDT Large Yes Yes No
C17 GBDT Large Yes Yes Yes
C18 Oracle – – – –

3.2.4. GBDT forecasts
To enable a fair comparison of different data availability and

modeling strategy scenarios for PV and load forecasting, the same
model type (gradient-boosted decision trees (GBDT)) is consid-
ered for the cases C2-C17 (see Table 1). Although comparing
different ML models would provide additional insights, it is out
of the scope of this work. GBDT [20] is a widely applied ML
technique. Its popularity arises from its efficiency, interpretability
and state-of-the-art accuracy, as, for example, demonstrated by
regularly winning data mining and time series forecasting compe-
titions [21]. Moreover, they are actively researched and improved
as many recent versions, such as XGBoost [22], LightGBM [23]
and CatBoost [24], demonstrate. GBDT combines the predictions
of many individual decision trees, which constitute a set of weak
learners. The trees are connected in series, so that each learner
tries to minimize the residual between ground truth and predic-
tion of the previous tree. The simultaneous high accuracy and
efficiency renders GBDT a promising candidate for residential
EMS applications.

GBDT is applied to predict the expected values for a predic-
tion horizon of wpr steps at time step h based on lag values
PPV|L
h , . . . , PPV|L

h−whist
and covariates XPV|L

h+1, . . . ,X
PV|L
h+wpr

according to

p̂PVh+1, . . . , p̂
PV
h+wpr

= Φ

(
PPV
h , . . . , PPV

h−whist
,XPV

h+1, . . . ,X
PV
h+wpr

)
(4)

and

P̂L
h+1, . . . , P̂

L
h+wpr

= Φ

(
PL
h, . . . , P

L
h−whist

,X L
h+1, . . . ,X

L
h+wpr

)
, (5)

where a history window of whist steps is considered. The fore-
casts are generated every hour in a rolling fashion to provide
up-to-date predictions. Covariates comprise calendric features,
prosumer absence and external weather forecasts (see Table 2).
Absence feature A assumes that prosumers can enter holidays in
their EMS to allow load forecast models for better predictions
in these periods. Since no correlation between PV generation
and day of the week D and prosumer absence A exists, they
are excluded for PV forecasting. As a result, XPV

= {H, ĜHI, Ô}
and X L

= {H,D, A, ĜHI, Ô} in cases considering use of weather
forecasts, and XPV

= {H} and X L
= {H,D, A} in cases without.

For scenarios applying model selection, the automatic hyper-
parameter optimization software optuna [25] is used in com-
bination with three-fold time-series cross-validation [26]. The

tuned hyperparameters and respective search spaces are listed in
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Table 2
Covariates considered for GBDT-based forecasting.
Covariate Sign Value range

Hour of the day H {H ∈ N | H = [0, . . . , 23]}

Day of the week D {D ∈ N | D = [0, . . . , 6]}

Prosumer absence A {A ∈ N | A = [0, 1]}

GHI forecasts ĜHI {ĜHI ∈ R | ĜHI ≥ 0}

Cloud opacity forecasts Ô {̂O ∈ R | Ô = [0, . . . , 1]}

Table 3. For all other hyperparameters, default values according
to [27] are used. To find optimal sets of hyperparameters for
PV (ωPV

opt) and load forecasting (ωL
opt) within the hyperparameter

pace Ω , the average root mean squared error (RMSE) over all
folds folds and wpr prediction steps is minimized by

PV|L
opt = argmin

ω∈Ω

∑Nfolds
q=1

∑wpr
j=1

√∑L(q)val
i=1

(
P̂PV|Lj,i (ω)−PPV|Li

)2
L(q)val

Nfolds · wpr
, (6)

where L(q)val is the length of the validation set of the qth fold,
P̂PV|L
j,i (ω) the j-steps ahead forecast for the ith observation in the

validation set of the qth fold based on a hyperparameter set ω and
PV|L
i the corresponding ground truth. The Bayesian optimization

algorithm Tree Parzen Estimator (TPE) [28] is applied to find ωopt
according to (6) within a predefined number of hyperparameter
set samples of Ntrails = 2000. While a large data history is
considered sufficient for identification of optimal hyperparame-
ters, small training datasets are likely to require regular model
reselection, for example, due to lack of samples of all seasons of
a year. Therefore, in cases considering a large data history (see Ta-
ble 1), model selection is only conducted once based on the initial
training set. For the ones with little training data, model selection
is conducted repeatedly every three months. Scenarios without
model selection use default parameters [27] and whist = 48.

Table 3
Tuned hyperparameters and associated search spaces for GBDT-based forecasting
No. Hyperparameter Search space

1 whist [4, . . . , 192]
2 L1 regularization [0, . . . , 100]
3 Bagging fraction [0.1, . . . , 1]
4 Max. number of leaves in one tree [20, . . . , 3000]
5 Feature fraction [0.1, . . . , 1]
6 Max. depth of a tree [3, . . . , 21]
7 Number of decision trees [100, . . . , 10000]
8 Learning rate [0.001, . . . , 0.3]

In cases which consider retraining (see Table 1), the GBDT
odel is repeatedly trained every week based on the entire previ-
us data history. If no retraining is considered, only initial training
s conducted. All GBDT-based cases (C2-C17) are implemented in
ython using the open-source forecasting library Darts [19].

.2.5. Oracle forecast
In addition to the naïve lower-end forecast benchmark, an

racle forecast is considered to quantify the theoretical optimum.
he oracle forecast is characterized by perfect knowledge of the
uture, which includes that time resolution and wpr are con-
erging to infinity. This behavior is approximated with assuming
erfect forecasts for every 5-min time step τ within a prediction
orizon of wpr = 2016 steps (seven days) according to

ˆ
PV
τ+1, . . . , p̂

PV
τ+wpr

= pPVτ+1, . . . , p
PV
τ+wpr

(7)

nd

ˆ
L , . . . , p̂L = pL , . . . , pL . (8)
τ+1 τ+wpr τ+1 τ+wpr

6

As the oracle forecast only constitutes a theoretical bench-
mark, no reasonable definition of data availability scenarios and
modeling strategies can be made (see Table 1).

3.3. Spot price forecast

Hourly spot prices are typically published every day at 13:00
for the following day [29]. This leads to varying spot price knowl-
edge horizons between 12 and 35 h, depending on the time of
the day. Thus, if optimization horizons of more than 12 h are
considered, price forecasts are required. Spot price forecasting is a
complex task which depends on inputs such as wind production,
consumption, calendric features and many more [30]. Recently,
first providers offer access to advanced forecasts [31]. However,
for the evaluation period considered in this work, historical fore-
casts could not be acquired. To avoid the assumption of knowing
true prices for the entire optimization period, price forecasts are
generated based on a GBDT model. Together with the publishing
of spot prices for the next day, prices for the day after tomorrow
are predicted at 13:00 according to

Λ̂h+36, . . . , Λ̂h+60 = Φ
(
Λh+35, . . . , Λh−whist ,X

Λ
h+36, . . . ,X

Λ
h+60

)
,

(9)

with XΛ
= {H,D}. Since advanced spot price forecasting is not

the focus of this work, only lag values and calendric covariates are
considered. Optimal hyperparameters are selected on a two-year
history following a similar approach to (6). During the prediction
of the evaluation set, the model is retrained on a daily basis. Note
that varying spot price forecasts is not explicitly part of the case
study. However, to validate this comparatively simple approach
and assess if more complex price forecasts can be justified by
significant economic benefits, a comparison to assuming true
prices is included in Section 5.2.2.

3.4. Data manipulation

Cost-optimal scheduling of batteries requires external data
such as spot prices and weather forecasts (see Fig. 2). While the
required connection to the internet is the foundation for such
smart applications, it also introduces new cyber vulnerabilities.
Events such as the Mirai botnet in 2016 have shown that attacks
on distributed internet of things (IoT)-devices are a reality [32].
Thus, also potential damage should be taken into consideration
whenever assessing the advancements of IoT-based applications.
Among the most famous and critical attacks in power systems
are false data injections [33]. Based on an impact quantification
of such attacks, the different EMS scenarios can be better assessed
in terms of trade-offs between profitability and security. For
that purpose, this subsection introduces two data manipulation
scenarios. While Section 3.4.1 describes manipulation of spot
price data, Section 3.4.2 is concerned with tampering of external
weather forecasts.

3.4.1. Spot price manipulation
The objective of the considered price manipulation is to ap-

proximate an opposite behavior of cost-optimal operation. For
that purpose, the attack model mirrors prices on their moving
average according to

˜
Λh = Λh − 2 ·

(
Λh −

wavg∑
σ=0

Λh−σ

wavg

)
, (10)

where wavg = 23. One attacker’s motivation could be finan-
cial damage of prosumers. However, more critical is the poten-
tial switch from peak shaving to peak reinforcing behavior of
flexible residential loads. If able to manipulate price input of
multiple EMSs, an attacker could target overloading situations
entailing disconnection of customers. The attack model in (10) is
exemplarily depicted in Fig. 3.
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Fig. 3. Exemplary depiction of the spot price manipulation according to (10) on
an excerpt from April 2022.

3.4.2. GHI and cloud opacity forecast manipulation
Reducing the accuracy of inputs for PV and load forecasts is

likely to translate to lower economic benefits due to sub-optimal
battery scheduling. Therefore, an attacker’s motivation for ma-
nipulating weather forecast inputs could be financial damage. As
damage increases over time, attackers may try to keep modifi-
cations discreet to avoid detection. This behavior is imitated by
adding noise of different intensity levels to GHI and cloud opacity
forecasts according to

˜̂GHIh+j = ĜHIh+j · (1+ αR) ,∀j ∈ [1, 2, ..., wpr] (11)

nd

˜ h+j = Ôh+j · (1+ αR) ,∀j ∈ [1, 2, ..., wpr], (12)

ith R being a random number drawn from the uniform distri-
ution R ∼ U(−1, 1) and α the aggressiveness of the attack with
∈ [0.2, 1, 10]. To further hide the attack, physically implau-

ible values are avoided by containing manipulated GHI values
etween zero and the maximum value in the respective region,
nd cloud opacity between zero and one. The attack models in
11) and (12) are exemplarily depicted in Fig. 4.

Fig. 4. Exemplary depiction of (a) GHI and (b) cloud opacity forecast
manipulations on an excerpt from June 2022.

4. Experimental setup and metrics

This section is concerned with the experimental setup and
applied metrics of the present study. Section 4.1 provides pro-
sumer and data specifications. Thereafter, the applied forecasting
7

performance metrics (Section 4.2) and economic performance
indicators (Section 4.3) are introduced.

4.1. Prosumer and data specification

The two prosumers are located in Roskilde, Denmark, and
are subject to the DK2 day-ahead price zone. Both follow the
schematic representation in Fig. 2. They are equipped with a
PV system of 6 kWp (prosumer 1) and 5kWp (prosumer 2), re-
spectively. For the battery system, s = 8 kWh, s = 0.8 kWh
and η = 0.95 is considered. Moreover, the inverter comes with
pinv = 6 kW for prosumer 1 and pinv = 5 kW for prosumer
2. All components of the residential energy systems follow a
dimensioning typical for the Danish case. The self-consumption of
the two prosumers without battery is 67% and 44%, respectively.
In both cases the EMS receives PV and load measurements as 5-
min averages. External weather forecasts (GHI and cloud opacity)
are provided with an hourly resolution. For the two prosumers,
historical data of different length is available. The dataset of pro-
sumer 1 comprises approximately three years, beginning on the
1st of September 2019 and ending on the 30th of October 2022.
For prosumer 2, 14.5 months between the 15th of August 2021
and the 30th of October 2022 are available. In both cases, the last
14 months (1st of September 2021 to 30th of October 2022) are
reserved for evaluation in Section 5. As detailed in Section 3.2.1,
historical training data of different size are considered within
the forecasting cases. While the small set comprises the last two
weeks of August 2021, the large one spans over two years from
1st of September 2019 to 31st of August 2021. Since historical
data of prosumer 2 are not available before the 15th of August
2021, forecasting cases considering two years of training data are
only evaluated on prosumer 1.

4.2. Forecasting performance metrics

This subsection introduces the performance metrics applied to
evaluate accuracy (Section 4.2.1) and computational complexity
(Section 4.2.2) of the forecasting cases.

4.2.1. Accuracy
The accuracy for a j-steps ahead PV or load prediction under

forecasting case C is quantified based on the normalized RMSE
according to

nRMSEPV|L,C
j =

√∑Leval
i=1

(
P̂PV|L,Cj,i −PPV|Li

)2
Leval∑Leval

i=1 PPV|Li
Leval

=

√
Leval

∑Leval
i=1

(
P̂PV|L,C
j,i − PPV|L

i

)2
∑Leval

i=1 PPV|L
i

,

(13)

where Leval is the length of the 14 month evaluation set. Nor-
malization removes the impact of the scale of PV production and
load consumption and thus facilitates comparison among different
prosumers. The overall performance of the considered multi-step
forecasts is quantified as the average over the entire forecasting
horizon of size wpr according to

RMSEPV|L,C
avg =

∑wpr
j=1 nRMSEPV|L,C

j

wpr
. (14)

For comparison of different forecasting cases on the same
prosumer, the relative averaged normalized RMSE rRMSEPV|L,C is
avg
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onsidered, which follows from dividing nRMSEPV,C
avg and nRMSEL,C

avg
y the respective highest value among all cases1 as given by

rRMSEPV|L,C
avg =

nRMSEPV|L,C
avg

max
{
nRMSEPV|L,C1

avg , . . . , nRMSEPV|L,C17
avg

} . (15)

.2.2. Computational complexity
The computational complexity of an ML model in terms of

raining time, prediction time and space can be expressed with
he respective big O notation [34]. For the considered GBDT
odel, these are given as Otrain (Ltrain log(Ltrain)dm) (train time

complexity), Opred (km) (prediction time complexity) and
Ospace (vm) (space complexity), where Ltrain is the length of the
training set, d the feature dimension, m the number of trees,

the depth of the trees and v the number of nodes in the
trees [35,36]. Based on these notations, the number of operations
for training and prediction as well as memory needs of a PV and
load forecasting model of case C are approximated by

OPV|L,C
train ≈ NC

trailsL
C
train log(L

C
train)d

PV|L,CmPV|L,C , (16)

PV|L,C
pred ≈ kPV|L,CmPV|L,C (17)

nd
PV|L,C

≈ vC
maxm

C
max, (18)

here mC
max and vC

max constitute the maximum implemented
umber of trees and nodes in trees, respectively.2 For cases con-
idering retraining, LPV|L,Ctrain is defined by the size of the largest re-
raining set during evaluation. To facilitate comparison among the
ifferent forecasting cases, OPV|L,C

train , OPV|L,C
pred and MPV|L,C are divided

y the respective maximum value across all cases according to

OPV|L,C
train =

OPV|L,C
train

max
{
OPV|L,C1
train , . . . ,OPV|L,C17

train

} , (19)

rOPV|L,C
pred =

OPV|L,C
pred

max
{
OPV|L,C1
pred , . . . ,OPV|L,C17

pred

} (20)

nd

MPV|L,C
=

MPV|L,C

max
{
MPV|L,C1, . . . ,MPV|L,C17

} . (21)

.3. Economic performance indicators

The set of evaluated EMS scenarios comprises rolling-horizon
ptimization based on the forecasting cases C1–C18 and the
ffline rule-based benchmark. For simplicity, optimization-based
MS scenarios are referred to as their underlying forecasting case.
he energy cost under an EMS scenario C ′ is calculated by

C ′
=

Leval,τ∑
i=1

[
pb,C

′

i (λi + fi)− ps,C
′

i λi

]
∆T , (22)

here Leval,τ is the length of the evaluation period in 5-min
esolution. Based on the costs, the economic benefit under a
cenario C ′ is expressed as the difference to the baseline cost
without a battery (K base) according to

BC ′
= K base

− K C ′ . (23)

1 C18 (oracle) is excluded as it constitutes no realistic forecasting case.
2 In cases considering model selection, combinations of v and m may occur
hich entail higher memory needs than the finally selected model.
8

To simplify comparison among the scenarios, their benefit is
ssessed by comparing with the theoretical maximum. As the
aximum benefit is achieved in case of assuming oracle forecasts

C18), the resulting relative benefit under an EMS scenario C ′ can
be expressed as

rBC ′
=

BC ′

BC18 . (24)

Note that in case of a monthly cost analysis of the evaluation
period, the relative benefit rBC ′ will be denoted as rBC ′

m .

5. Results

This section evaluates the considered EMS scenarios regard-
ing profitability, complexity and security. In preparation of that,
Section 5.1 examines the underlying forecasting cases in terms
of accuracy and computational complexity. Thereafter, the eval-
uation of EMS scenarios follows in Section 5.2. Unless otherwise
stated, results are based on the default forecasting horizon wpr =

6 (see Section 3.1.2).

.1. Performance evaluation of forecasting cases

In this subsection, the forecasting cases are first evaluated
egarding accuracy (Section 5.1.1) and computational complexity
Section 5.1.2). In Section 5.1.3, a conclusion on the trade-off
etween these factors is provided. Finally, Section 5.1.4 analyzes
he error behavior of PV and load forecasts over the forecasting
orizon.

.1.1. Accuracy
A performance overview for all cases is provided in Table 4.

ote that rRMSEavg is depicted, which shows the relative perfor-
ance of each case against the worst forecast for a given variable
nd prosumer. Highest accuracy is written in bold, second best
s underlined and third best dotted underlined. The absolute av-
raged RMSEs of the best performing cases are RMSEPV,C17

avg =

.3196kW and RMSEL,C9
avg = 0.5065kW (prosumer 1) as well as

MSEPV,C9
avg = 0.2569kW and RMSEL,C9

avg = 0.2555kW (prosumer 2).

odel type. The persistence model (C1) forms the lower per-
ormance end for load forecasting. For PV forecasting, the GBDT
odel without large training data, external weather forecasts,
odel selection and retraining (C2) performs worst. Apart from

his exception, GBDT-based forecasts outperform the persistence
enchmark by at least 12.3 percentage points, which proves
he existence of learnable patterns in PPV and PL, justifying the
pplication of ML models.

istorical data size. The availability of comprehensive training
ata improves accuracy significantly in cases without use of ex-
ernal weather input or retraining (e.g., C2 vs. C10 and C6 vs.
14). Other cases only exhibit minor improvements, which is
aused by two factors. On the one hand, using highly correlated
eather forecasts as input simplifies the problem and makes
omprehensive training data obsolete. On the other hand, retrain-
ng exploits newly incoming data and thus minimizes the need
or large data histories. These findings suggest that data-driven
orecasting can also be applied in scenarios of small data histories,
uch as newly installed EMSs. For load forecasts, large training
ata can even worsen results (e.g., C9 vs. C17). The reason is a
hanging consumption behavior of prosumer 1 due to purchase
f a second EV in 2022, which renders older load data less useful
nd hinders model selection and training.
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Table 4
Accuracy and computational complexity for PV and load forecasts. Highest accuracy in bold, second best underlined and third best dotted underlined.
Case Model Train set size Weather data Selection Retraining Accuracy Computational complexity

rRMSEavg (–) rOtrain (–) rOpred (–) rM (–)

Prosumer 1 Prosumer 2 Prosumer 1 Prosumer 2 Prosumer 1 Prosumer 2 Prosumer 1 Prosumer 2

PV Load PV Load PV Load PV Load PV Load PV Load PV Load PV Load

C1 Naïve – No No No 0.916 1 0.954 1 0 0 0 0 0 0 0 0 0 0 0 0
C2 GBDT Small No No No 1 0.999 1 0.78 0 0 0 0 0 0 0 0 0 0 0 0
C3 GBDT Small No No Yes 0.754 0.782 0.778 0.715 0 0 0 0 0 0 0 0 0 0 0 0
C4 GBDT Small No Yes No 0.795 0.838 0.835 0.722 0.9 0.3 0.9 0.5 0.6 0.9 0.3 0.8 1 1 1 1
C5 GBDT Small No Yes Yes 0.719 0.759 0.753 0.702 1 0.3 1 0.5 0.6 0.9 0.3 0.8 1 1 1 1
C6 GBDT Small Yes No No 0.541 0.877 0.567 0.769 0 0 0 0 0 0 0 0 0 0 0 0
C7 GBDT Small Yes No Yes 0.401 0.678 0.429 . . . . . . . .0.709 0 0 0 0 0 0 0 0 0 0 0 0
C8 GBDT Small Yes Yes No 0.412 0.714 . . . . . . . .0.446 0.725 0.9 0.3 0.9 0.9 1 1 1 1 1 1 1 1
C9 GBDT Small Yes Yes Yes 0.381 0.664 0.411 0.701 1 0.4 1 1 1 1 1 1 1 1 1 1
C10 GBDT Large No No No 0.705 0.828 – – 0 0 – – 0 0 – – 0 0 – –
C11 GBDT Large No No Yes 0.701 0.761 – – 0 0 – – 0 0 – – 0 0 – –
C12 GBDT Large No Yes No 0.694 0.791 – – 0.2 0.2 – – 0 0.1 – – 1 1 – –
C13 GBDT Large No Yes Yes 0.693 0.752 – – 0.4 0.3 – – 0 0.1 – – 1 1 – –
C14 GBDT Large Yes No No 0.377 0.77 – – 0 0 – – 0 0 – – 0 0 – –
C15 GBDT Large Yes No Yes . . . . . . . .0.373 0.693 – – 0 0 – – 0 0 – – 0 0 – –
C16 GBDT Large Yes Yes No 0.363 0.753 – – 0.5 0.6 – – 0.1 0.7 – – 1 1 – –
C17 GBDT Large Yes Yes Yes 0.36 . . . . . . . .0.681 – – 0.8 1 – – 0.1 0.7 – – 1 1 – –
C18 Oracle – – – – 0 0 0 0 – – – – – – – – – – – –
Weather forecasts. Incorporating GHI and cloud opacity forecasts
mproves both PV and load forecasting in all cases (e.g., C3 vs.
7). While the impact is significant for PV forecasts as anticipated,
he potential for load forecast improvement depends on the pro-
umer. As prosumer 1 is aligning consumption (EV charging) with
V production, the impact is stronger compared to prosumer 2.

odel selection. Model selection improves accuracy in all cases.
owever, the improvement compared to using default hyperpa-
ameters usually is only in the range of 1 to 3 percentage points
e.g., C15 vs. C17).

etraining. Cases considering retraining exhibit lower rRMSE val-
es compared to their non-retrained counterparts (e.g., C6 vs. C7).
s expected, the impact is larger for models with small initial
raining sets. Nevertheless, even for cases assuming two years of
raining data, retraining can significantly improve accuracy, given
hat new changes in data distributions appear. As mentioned
bove, this is the case for load consumption of prosumer 1, which
xplains the comparatively large improvement for PL forecasts,
or example, between C16 and C17. In contrast, PV models trained
n two years of historical data have learned most patterns, ren-
ering improvement through frequent retraining marginal (C16
s. C17). Compared to model selection, the improvement poten-
ial of retraining is at least in the same range and in many cases
arger.

.1.2. Computational complexity
An overview of the computational complexities for all cases is

rovided in Table 4. As for rRMSEavg, relative complexities of each
case against the highest value for a given variable and prosumer
are shown.

Time complexity. From Table 4 it can be seen that model selection
is the dominating factor for both training and prediction time
complexity (rOtrain and rOpred). Cases without selection appear as
0 because their complexities are orders of magnitude smaller.
The time required for the considered model selection process (see
Section 3.2.4) and training of one GBDT model is in the range of
2 to 24 h on a high-performance computing (HPC) cluster [37].
This process could not be realized locally using the hardware of a
residential EMS and would require cloud computing. In contrast,
training a default model is in the order of seconds to minutes on
a standard laptop, allowing local realization. The strong impact
of model selection results from the entailed increase of model
size, which is a key driver of rOtrain and rOpred. For example, in
most cases the number of decision trees raises from 100 (default
value) to over 7000. In addition, selection requires training of
N models, which further increases rO .
trails train

9

The use of weather forecasts as model input also impacts
rOtrain and rOpred, as can be seen from comparison of C13 and
C17. This can be mainly explained by a higher feature dimension.
Retraining does not affect rOpred as it does not increase model size
(e.g., C12 vs. C13). In contrast, since retraining is conducted on
larger data than initial training, rOtrain increases as the compari-
son of C16 and C17 shows. Nevertheless, the impact of additional
weather input and retraining is negligible in cases without model
selection.

Space complexity. Space complexity is also dominated by model
selection (see Table 4). In these cases, rM is orders of magnitude
larger since the defined hyperparameter space (see Table 3) re-
quires evaluation of models of significantly larger size compared
to the default model.

5.1.3. Trade-off between accuracy and complexity
The highest accuracy (apart from oracle case C18) is achieved

by GBDT-based forecasting using external weather forecasts,
model selection and retraining (C9 and C17). As can be seen from
Table 4, this comes at the cost of high time and space complexity.
However, second or third best results are achieved by models
with significantly smaller complexity (C7 and C15). In these cases,
a default model is combined with the use of external weather
data and retraining. The loss in accuracy in terms of rRMSEavg
is in the range of 1 to 2 percentage points. It can be concluded
that C7 and C15 provide best trade-offs with regards to accuracy
and complexity. An example of the forecasts under C7 is depicted
in Fig. 5.

Fig. 5. Representative excerpts of 1- and 36-steps (hours) ahead forecasts of (a)
PV production and (b) load consumption.
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.1.4. Error development over the prediction horizon
Understanding the error behavior over the forecasting horizon

dds further insight to the comparison of average performance
alues in Section 5.1.1. The nRMSEPV,C9 and nRMSEL,C9 are depicted
n Fig. 6 over the prediction horizon.

In all cases the error increases with the horizon. This consti-
utes a typical behavior as predictions further into the future are
sually more difficult. PV forecast errors of both prosumers follow
similar trend, which can be explained by their local proximity.
he error increases rapidly up to a four-steps ahead horizon.
hereafter, the gradient drops. The accuracy of load forecasts is
ower than for PV forecasts, which can be attributed to the ran-
omness of consumer behavior. Moreover, the nRMSEL,C9 evolves
ifferently among the prosumers. While errors begin in a similar
ange at one-step ahead, they follow different gradients over the
onsecutive horizon. The error of prosumer 2 almost stays con-
tant. This stems from comparatively similar load patterns among
ifferent days. The resulting correlation with time of the day
enders load forecasting rather a regression problem, explaining
he stable nRMSEL,C9 over the horizon. For prosumer 1 the error
ncreases rapidly until five-steps ahead, followed by a saturation
hase. In this case, load patterns exhibit more variation between
ifferent days due to less predictable EV charging. The error can
e kept small within the first hours, due to similarity with the
ost recent lag values of PL. Once this effect cancels out, the
tronger variation results in higher nRMSEL,C9 values compared to
rosumer 2.

Fig. 6. nRMSE of (a) P̂PV and (b) P̂L for both prosumers over the forecasting
horizon exemplary on C9.

5.2. Performance evaluation of EMS scenarios

This subsection evaluates the economic benefit of the EMS
scenarios, considering trade-offs with computational complexity
and security. Section 5.2.1 provides a summary of the prosumers
energy and cost quantities. In Section 5.2.2, scenarios are com-
pared and recommendations on best trade-offs provided. Based
on the suggested scenario, the impact of time of the year (Sec-
tion 5.2.3), optimization horizon (Section 5.2.4) and data ma-
nipulation (Section 5.2.5) on the economic value is assessed.

5.2.1. Prosumers overview
Table 5 provides an overview of the prosumers energy and

cost characteristics. Prosumer 1 exhibits higher production and
consumption values over the 14-month evaluation period. Both
 e

10
Table 5
Overview of energy and cost quantities of prosumer 1 and 2 based on the full
14-month evaluation period.
Energy and cost quantities Prosumer 1 Prosumer 2

PV production (kWh) 7505 5748
Consumption (kWh) 4766 3210

Base cost K base (e) −282 −43
Max benefit BC18 (e) 466 555
Rule-based benefit Brb (e) 209 310

exhibit negative energy costs3 without using a battery, equal
to K base

= −282e and −43e, respectively. The addition of a
storage system enables a maximum additional benefit of BC18

=

466e and 555e for the theoretical EMS scenario considering
optimization based on perfect forecasts (C18). Consequently, the
maximum total revenue over the evaluation period amounts to
748e and 598e, respectively. The offline rule-based benchmark,
which minimizes energy exchanges, achieves 45% and 56% of
BC18 for prosumer 1 and 2, respectively. The following evaluation
examines what fraction of the maximum theoretical benefit BC18

the various EMS scenarios achieve based on their underlying
forecasting case.

5.2.2. Scenario comparison and recommendation
In Fig. 7, the relative benefit rB over the entire 14-month

evaluation period is depicted for all EMS scenarios.

Impact of price forecast. The impact of spot price forecast accu-
racy is assessed on C17 (prosumer 1) and C9 (prosumer 2). Perfect
price forecasts increase rB by 0.0004 (prosumer 1) and 0.0019
percentage points (prosumer 2). This translates to an additional
benefit of 0.2051e and 1.072e, respectively, over a period of 14
months. It can be concluded that sophisticated price forecasts as
extension of available prices are not required for cost-optimal
control of residential PV-battery systems.

Impact of PV and load forecasts. From C1–C9, it can be seen that
differences of rB between scenarios exhibit similar trends for
the two prosumers. In both cases, even naïve persistence-based
optimization (C1) achieves significant improvements compared
to offline rule-based control (78% and 86% of the theoretical
optimum), without need for model training and selection or ex-
ternal weather forecasts. Consequently, even in the simplest case,
rolling-horizon optimization enables additional gains of 152.11e
and 168.2e to the prosumers compared to the offline rule-based
scheme. Nevertheless, with the exception of C2, all GBDT-based
scenarios outperform persistence-based optimization, motivating
the use of ML. This is in line with the rRMSEavg-based findings
presented in Section 5.1.1.

As can be seen from Fig. 7, highest relative benefits are
achieved by C7, C9, C15 and C17 (rB = 0.9 for prosumer 1
and rB = 0.93 for prosumer 2). This translates to additional
income of 56.01e and 36.53e, respectively, through use of ML
models compared to simple persistence forecasting. Among these
scenarios, C7 exhibits advantages from a computational com-
plexity perspective, since it avoids model selection (opposed
to C9 and C17) and dependency on large historical data (in
contrast to C15 and C17). On the one hand, this indicates that ML-
based forecasts are also economically beneficial for new systems
without extensive data history. On the other hand, it suggests
that the computational burden of extensive model selection (see
Section 5.1.2) is economically not justified.

3 Negative energy costs result from the fact that revenues for PV production
xceed electricity costs in the evaluation period.
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Fig. 7. Relative benefit rB of all EMS scenarios over the full evaluation period for (a) prosumer 1 and (b) prosumer 2. Best values are written in bold (excluding
racle). Impact of assuming perfect future spot price knowledge is exemplary shown on C17 and C9.
The computational simplicity of C7 also translates to benefits
n terms of security. The use of default parameters facilitates
ocal implementation, avoiding any need for externalization of
V and load forecasts to cloud-based solutions (see Section 5.1.2).
hus, no (potentially sensitive) data need to be provided to third-
arties. Nevertheless, C7 is dependent on external weather fore-
asts, which might introduces opportunities for adversaries, as
urther evaluated in Section 5.2.5. In contrast, C3 avoids using
xternal weather data, while exhibiting the same advantages
n terms of computational complexity. However, the potential
ecurity advantage comes at the cost of a benefit reduction of 3-
percentage points, which translates to 19.09e for prosumer 1
nd 17.76e for prosumer 2. Note that all optimization-based
cenarios (C1–C18) require external price data. Thus, to run the
esidential energy system (Fig. 2) isolated from public networks,
ffline rule-based control is the only opportunity among the
onsidered EMS scenarios. The impact of price manipulations is
valuated in Section 5.2.5.
To conclude, the EMS scenario providing best trade-offs in

erms of economic profitability and computational complexity
s seen in rolling-horizon optimization based on forecasts of a
efault GBDT model, using a short two weeks initial training set,
xternal weather forecast inputs and weekly retraining (C7). It
chieves the same financial gain as models resulting from ex-
ensive selection processes at significantly lower computational
osts. Moreover, it can be applied to new systems with short
ata history. The small computational burden also eases local im-
lementation, providing data security advantages. Nevertheless,
or a holistic assessment of C7, the sensitivity to attacks on re-
uired external data streams (price and weather forecasts) must
e quantified, which follows in Section 5.2.5. In the subsequent
ections, C7 is considered as representative case for GBDT-based
orecasts.

.2.3. Impact of time of the year
Fig. 8 depicts the monthly relative benefit rBm for offline rule-

ased control as well as persistence-, GBDT- and oracle-based
ptimization. Relative benefits are volatile under the rule-based
cheme in both prosumer cases, ranging from rBm = 0.102 to
Bm = 0.887. The pronounced under-performance of rule-based

ontrol around December 2021 and July 2022 is driven by two

11
factors. On the one hand, the margin for battery utilization is
low, either due to small PV production (December) or low con-
sumption because of holidays (July). While optimization exploits
the remaining benefits, the battery is barely used under rule-
based control. On the other hand, the respective months exhibit
particularly high and volatile prices. As the considered rule-based
scheme only discharges to cover load demand, high prices cannot
be actively exploited by grid exports.

Optimization-based battery scheduling provides more stable
values over the year, even in case of persistence forecasts. There-
fore, the difference between persistence- and GBDT-based opti-
mization is largely stable. While persistence-based optimization
is outperformed by rule-based control in some months, GBDT-
based optimization achieves the best results across the entire
evaluation period.

Fig. 8. Monthly relative benefit rBm for (a) prosumer 1 and (b) prosumer 2.
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.2.4. Impact of prediction horizon
In Fig. 9, the relative benefit rB is depicted for varying fore-

asting horizons.4 The oracle-based scenario (C18) and offline
ule-based benchmark are included for the sake of easier compar-
son, although they do not depend on wpr and therefore remain
onstant. On horizons wpr < 4, rule-based control outperforms
persistence- and GBDT-based optimization. This can be explained
by under-utilization of the battery due to the 50% SOC condition
at the end of the optimization horizon (see Section 3.1.2). To
satisfy this constraint for short horizons, the battery remains at
a SOC close to 50% even in periods of abundant PV production,
instead of charging. Removing this constraint further deteriorates
performance, as the myopic optimal decision is to fully discharge
the battery. For wpr ≥ 4, optimization outperforms rule-based
control. In case of GBDT-based optimization, the relative benefit
saturates around wpr = 16 at rB = 0.9 (prosumer 1) and rB =
.93 (prosumer 2), respectively. Thus, horizons between wpr = 16
nd wpr = 20 should be favored because the additional eco-
omic benefit of a longer horizon is negligible and unnecessarily
ncreases complexity.

Fig. 9. Relative benefit rB over the forecasting horizon for (a) prosumer 1 and
b) prosumer 2.

.2.5. Impact of data manipulation
The impact of weather forecast and price manipulation on the

conomic benefits is evaluated on C7 and shown in Fig. 10.

eather forecast manipulation. The manipulation of weather
orecast model input exhibits minor economic impact on both
rosumers. Even for α = 10, the relative benefit over the entire
valuation period only drops from rBC7

= 0.902 to rBC7
= 0.877

prosumer 1) and rBC7
= 0.928 to rBC7

= 0.904 (prosumer 2),
hich translates to loss of 11.62e and 13.53e, respectively. This
ehavior can be explained by two factors. (1) Regular retraining
llows the model to recognize and react on reduced information
ontent of weather forecasts by putting less weight on these
nputs. If the weather forecasts would contain no information, the
odel would approximate C3, which neglects external weather
ata. Therefore, the maximum reduction which can result from
eather forecast manipulation can be quantified for C7 as rBC7

=

4 Note that wpr = 1 is not included, since it may often lead to infeasible
ptimization problems due to the ending SOC constraint.
 d

12
Fig. 10. Impact of data manipulation on the monthly relative benefit rBm for (a)
rosumer 1 and (b) prosumer 2.

BC3
= 0.863 (prosumer 1) and rBC7

= rBC3
= 0.894 (pro-

umer 2), respectively. (2) As the introduced errors are randomly
istributed around the true values, simultaneously processing
sequence of wpr = 36 steps allows the model to derive a

olling average of the weather inputs. Therefore, they provide
nformation even under high noise levels as the case for α =
0 (see Fig. 4). It can be concluded that manipulation of ex-
ernal weather forecasts constitutes only a small economic risk
or prosumers applying forecasting-based optimization on their
V-battery system. Therefore, avoiding use of external weather
orecasts for security reasons is not well justified. This supports
he highlighting of C7 in Section 5.2.2 as best trade-off in terms
f profitability, complexity and security within the considered
cenarios.

pot price manipulation. As can be seen from Fig. 10, price manip-
lation severely decreases the relative benefits in both prosumer
ases. Benefits are lower than under offline rule-based control for
ach month of the evaluation period. Over the entire evaluation
eriod, values drop from rBC7

= 0.902 to rBC7
= −0.362

prosumer 1) and rBC7
= 0.928 to rBC7

= −0.099 (prosumer 2).
his translates to a loss of 579.32e and 570.34e respectively,
ompared to the non-manipulated cases. It can be concluded
hat a manipulation of spot prices would reduce the economic
enefit of optimization-based battery scheduling drastically and
ven generate additional cost compared to a scenario without a
attery. Since all optimization-based scenarios (C1–C18) depend
n price data, only offline rule-based control mitigates such risk
ithin the considered EMS scenarios.
Although the potential impact of price manipulation is high,

t would require an attack to last for months. To avoid price
anipulations remaining undetected over long periods, residen-

ial EMSs should be equipped with concepts for spot price data
ntegrity checking. In this case, forecasting-based rolling-horizon
ptimization according to C7 still provides the best trade-off in
erms of economic profitability, computational complexity and
ecurity within the evaluated scenarios.

. Discussion

In this section, implications of the results from Section 5 are
iscussed in a broader context. Considered aspects include the
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se of ML in residential EMSs (Section 6.1), result transferability
Section 6.2) and market readiness (Section 6.3).

.1. ML for residential EMSs

Scenario C7 demonstrates that highest economic benefits from
V-battery systems can even be obtained by using default ML
orecasting models with almost no initial training data. Instead
f model selection and extensive training data, the incorporation
f weather forecasts and frequent retraining is of key relevance.
his importance results from characteristics of residential pro-
uction and consumption patterns. On the one hand, the strong
orrelation of PV production and weather features enables ac-
urate forecasts even with simple models. On the other hand,
esidential consumption exhibits regular changes (e.g., through
ew electronic devices), which reduces the value of extensive
ata histories and explains the importance of frequent retrain-
ng. These findings suggest that ML-based forecasting is ben-
ficial for residential EMSs. However, data- and computation-
ntensive approaches, including deep learning, are not suitable
nd justifiable.
An alternative to combining ML-based forecasting with op-

imization may be seen in more advanced rule-based concepts,
hich include price and weather forecast information. An ar-
ument often used in favor of the latter is low computational
urden. However, the simplicity of C7 can hardly be undercut, and
t avoids manual development and tweaking of control rules. Both
oncepts can be locally implemented and thus avoid provision of
ensitive consumption data to third parties. However, ML-based
orecasting additionally exhibits robustness against weather in-
ut manipulations, since it automatically puts less weight on
ffected features through retraining. Last but not least, rule-based
pproaches can only approximate the economic benefits achieved
y forecasting-based optimization.

.2. Transferability

Section 5 shows similar impact of forecasting strategies on
oth prosumers. For example, relative benefits exhibit the same
rends over varying forecasting cases (see Fig. 7) and horizons
see Fig. 9). Since prosumers with substantially different produc-
ion and consumption levels, patterns and uncertainties are con-
idered, this similarity points towards transferability of recom-
endations on forecasting strategies to other prosumers. Never-

heless, case studies with large and versatile prosumer portfolios
overing different locations, weather conditions and component
imensions are required to substantiate the findings.
The main difference between the two is a lower benefit level

cross all scenarios for prosumer 1. This is explained by the
rosumers’ contrast with respect to predictability and optimiza-
ion potential. While prosumer 2 exhibits strong repetitiveness
n load patterns, EV charging introduces more randomness in the
ther case. Moreover, the active alignment of EV charging to PV
roduction reduces the margin for further load optimization in
ontrast to the passive behavior of prosumer 2. Given that the
wo considered users represent rather extreme cases, it can be
xpected that the relative benefits of other prosumers in many
ases will lie between those two.
Although results are based on prosumers located in Denmark,

indings transfer to other regions with similar instantaneous net-
ing schemes, for example, Belgium and parts of the United States
Nevada, Arizona and New York) [13]. Further states and con-
ederations move towards instantaneous metering (e.g., Nether-
ands) or are promoting the roll-out of SMs (European Union),
hich provide the technical means for employing time-varying

rices and short netting intervals.

13
6.3. Market readiness

The data [17], models [19] and optimization algorithms [15]
used in C7 can already be acquired and used free of charge for
private use. Moreover, simple hardware in the range of existing
EMSs or small single-board computers is capable of hosting such
applications. Therefore, forecasting-based optimization as in C7
can be considered market ready.

7. Conclusion and future work

In this work, trade-offs between economic profitability, com-
putational complexity and security of forecasting-based opti-
mization in residential EMSs are evaluated. Two PV-battery sys-
tems of real prosumers exhibiting different production and con-
sumption characteristics serve as the foundation of the study.
Several forecasting cases are considered, which result from vari-
ations of model type, data availability and modeling strategies.
The resulting EMS scenarios and underlying forecasts are system-
atically quantified and assessed regarding forecasting accuracy,
computational complexity and economic benefits, including sen-
sitivity analyses on time of the year and length of the forecasting
horizon. Moreover, two data manipulation scenarios are included
to quantify possible attack impact and assess the EMS scenarios
in terms of security. Results show that the theoretical maximum
benefit over a 14-month period in the two prosumer cases is
466e and 555e, respectively, compared to a scenario with-
out battery. Optimization based on naïve persistence forecasts
achieves 78% (prosumer 1) and 86% (prosumer 2) of this up-
per limit. The relative benefits further raise to 90% and 93%,
respectively, in scenarios considering GBDT-based forecasts. This
performance increase already is achieved in a scenario which (1)
can be applied to new systems with short data history and (2)
can be implemented locally without need for extensive comput-
ing resources (e.g., cloud computing). The highlighted scenario
does not depend on sophisticated price forecasts and is tolerant
against manipulations of weather model inputs. However, due
to sensitivity to price manipulations, incorporation of concepts
for price data integrity checking into residential EMSs should be
considered.

Future studies should evaluate the profitability, complexity
and security trade-offs for other residential energy systems, such
as electric vehicle- or heat-pump-based setups. Another aspect of
interest is to understand if intra-hourly forecasts can provide fur-
ther benefits despite the high randomness of load consumption.
Finally, new error metrics for forecast model selection should be
developed, which improve translation of forecasting accuracy to
financial gains and thus might increase efficiency and benefits of
hyperparameter selection.
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