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Abstract—Demand Response (DR) has been proposed and
implemented in recent years to enable the participation of active
consumers in energy management. However, existing programs
do not consider the characteristics and opportunities introduced
by electric vehicles (EVs). EVs have more flexibility than tradi-
tional loads and can be used as battery energy storage systems if
the vehicle-to-grid capability is available. The main contribution
of this paper is the analysis of the EV user’s point of view
concerning different DR programs (implicit and explicit) as well
as the EVs management considering different strategies. One
of the most interesting strategies that have been proposed and
tested is opportunity cost optimization, where the expected prices
of the next days are considered. Some of the results show that
DR programs with less cost are interesting for the users since
also minimise the EV charging during the DR time operation.
On the other hand, real-time pricing program is not interesting
for the users since its performance is highly dependent on the
market price.

Index Terms—Charging scheduling, Demand response, Electric
Vehicles (EVs), Optimization, User behaviour.

NOMENCLATURE

Indices
CS Index for set of charging stations t
T Index for set of time interval t
V Index for set of vehicles t
Parameters
ĒEV

v Maximum energy capacity of the EV v [kWh]
P̄CS
c Maximum power capacity of the charging

station [kW]
P̄ tot
t Power limit of the system [kW]

∆t Duration of time period t
CSP Strike Price [C/kWh]
Cch

t Cost of charging energy in period t [C/kWh]
CDch

t Cost of discharging energy in period t
[C/kWh]

ESOC
v,tlast Required SoC of the EV v in the departure

period (tLast) [kWh]
SoC%(v,t) State of Charge of Electric Vehicle EV in

period t [%]
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tlast Time of departure of the vehicle
XCS

c,v,t Binary parameter for charging station usage

Variables
AuxSOCEV

tlast Auxiliar variable with information about the
difference between the required SoC and the
actual SoC of the EV at the departure period
(tlast) [kWh]

CFv Charge Factor relating the power charge in
each period t with the SoC of each EV

EEV
v,t Energy in the batteries of the EV v in period

t [kWh]
ESOC

v,t State of charge of EV v in period t [kWh]
PCS
c,t Active power charge of the charging station

[kW]
PPeakTotal Maximum total active power charge [kW]
P ch
v,t Active power charge of EV v in period t [kW]

PDch
v,t Active power discharge of EV v in period t

[kW]
PPeak
v Maximum active power charge of EV v [kW]

P tot
t Power of the system [kW]

I. INTRODUCTION

The integration of electric vehicles (EVs)
charging/discharging management in demand response
(DR) programs have been widely studied recently [1]. Most
of these, focus on how DR can help to mitigate the increased
peak demand and the impact on the distribution system
avoiding technical constraints [2]. In [3], the contributions
that the DR, applied to EVs, can provide to the power system
are discussed, without delving into simulations. The authors
propose that this implementation should be done through an
aggregator and recommend some appropriate communication
systems to enable the quick transfer of information. A
bi-level optimal dispatching model for a community system
was developed to execute a DR program taking advantage
of an EV charging station [4]. The main novelty proposed
in [4] is the implementation of the DR program through the
flexibility offered by EV users while their energy requirement
is guaranteed at a satisfactory level. Different from the
previous works mentioned, in [5], the authors provide a more
detailed work, by presenting a “methodology for day-ahead
energy resource scheduling for smart grids considering the
intensive use of distributed generation and vehicle-to-grid
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(V2G)” by proposing two different DR programs: i) “Trip
reduce”, allowing EV users to obtain profits by reducing their
travel necessities and minimum battery state-of-charge (SoC)
requirements, ii) Shifting reduction: enables EV users to
formulate a collection of alternative traveling periods, for their
expected travels. These two DR programs are tested by using
a modified particle swarm optimisation and a mixed-integer
non-linear programming optimisation. The use of these two
computational intelligence techniques provides further insight
into the execution times differences. The study concludes that
these DR programs can “provide effectiveness regarding the
reduction of the operating costs from the network operator
point of view”. A more specific use of DR to manage EV
charging is presented in [6]. The focus lies on how a parking
lot can schedule the EV charging optimizing the costs while
taking advantage of DR services participation. To do this, a
simulation of a real-time charging scheme is done utilizing
binary optimisation. The simulation results demonstrated
that the EV charging demand could be satisfied while also
minimising monetary expenses. Another interesting work
focusing on economic aspects is presented in [7], in which
is proposed an approach to be used in house management
systems, including the control of appliances and EVs. The
goal is to profit from real-time prices (RTP) to reduce the
energy bill. At the same time, the peak consumption limit
is included in the optimization, avoiding the increase of
consumption in some periods. Similar to the previous one, the
authors in [8] incorporated a Time-of-Use (ToU) based DR
program into the stochastic profit maximization of an energy
retailer considering renewable sources and EVs, among
others. Results demonstrate that the ToU-based DR program
collaborates by shaving the peak load of the EVs. From the
knowledge of the authors, most of the studies have analyzed
consider the DR programs as part of the system in which the
main goal is to optimize the operation cost considering the
EVs flexibility or to avoid network constraints by considering
the limits imposed by some DR programs, among others.
This paper contributes to the existing literature by proposing:
1) An optimization goal focusing on the DR programs
themselves, and on the adequacy of the DR programs to
be used for the EVs user’s perspective. 2) An analysis of
different objective functions (OFs), that can be used by
the EVs instead of “simple” cost optimization. Hence, this
study will help to answer the research questions: What is
the most appropriate DR optimization goal to increase the
benefits of EV users?; and What are the implications of using
price-based DR programs versus those based incentives?

II. ELECTRIC VEHICLES SCHEDULING METHODOLOGY
CONSIDERING DEMAND RESPONSE PROGRAMS

A. Objective functions
In this sub-section, the OFs implemented in the proposed

methodology are presented. First, we use an objective function
(1) to test the business as usual (BaU). Hence, the EVs are
charged until the maximum capacity of the batteries, starting
when the EVs arrive. This OF is used for comparison purposes.

minFBaU =

nV∑
v=1

T∑
t=1

(1− SoC%(v,t)) (1)

In the second OF (2), the electricity cost is introduced. In
this case, it is considered that the cost can be different in each
period according to the tariffs defined in the DR programs
(ToU, RTP, and critical peaking pricing (CPP)). Beyond the
cost (Cch

t ), the OF includes a penalization (M.AuxSOCEV
tlast)

to guarantee that the EVs are charged when the EVs will
departure (tlast) (affected by the multiplication factor M to
have less importance).

minFcost =

nV∑
v=1

T∑
t=1

(P ch
v,t.∆t.C

ch
t ) +M.AuxSOCEV

tlast

(2)
The third OF (3), not only considers the cost as the main

objective but also the comfort level of the use of EVs as a
secondary objective (affected by the multiplication factor M
to have less importance). The comfort level can be expressed
as the availability of energy (1−SoC%(v,t)) in the EV in each
period t. This means that, when the price of the energy is the
same, the EV should be charged as soon as possible.

minFBaU+comf =
nV∑
v=1

[
T∑

t=1

(P ch
v,t.∆t.C

ch
t )+

+m.(1− SoC%(v,t)) +M.AuxSOCEV
tlast

] (3)

The fourth OF (4) considers the cost and the peak power
consumption (PPeakTotal or PPeak

v ). So, it is introduced the
perspective of the individual EV (OF (4)) or the perspective of
an aggregator (5), that represents the OF (5). The aggregator
can be a fleet operator or a parking lot/building management
system. In both cases, the peak power consumption minimiza-
tion is considered a secondary goal in the objective function.

minFCost+PeakEV =
nV∑
v=1

[
T∑

t=1

(P ch
v,t.∆t.C

ch
t )+

+M.AuxSOCEV
tlast +m.PPeak

v

] (4)

minFCost+PeakEV =
nV∑
v=1

[
T∑

t=1

(P ch
v,t.∆t.C

ch
t )+

+M.AuxSOCEV
tlast +m.PpeakTotal

] (5)

In OF (6) is considered the V2G capability of EVs. This
means that the EVs can discharge the energy stored in their
batteries to charge other vehicles. In this work, we do not
consider the option to sell energy to the network. Due to the
V2G option, it is necessary to add the costs associated with
the degradation of the batteries (CDch

t ) in the OF. The CDch
t

should also include a margin to create value for the EVs that
are selling energy.

minFcost =

nV∑
v=1

[
T∑

t=1

(P ch
v,t.∆t.C

ch
t )+

(PDch
t .∆t.C

Dch
t ) +M.AuxSOCEV

tlast

] (6)



In OF (7), the system can maximize the opportunity cost.
This OF is particularly interesting for EVs with high-capacity
batteries. In that case, the EV owner should define a charging
strike price and the system should consider the following rule:

If Cch
t ≥ Strike Price (CSP )→ The EV should charge

only if necessary
If Cch

t ≤ Strike Price (CSP )→ The EV should charge
as much as possible

minFOC =
nV∑
v=1

[
T∑

t=1

(P ch
v,t.∆t.(C

ch
t − CSP ))+

+M.AuxSOC(EV,tlast)

] (7)

B. Optimization Constraints

The constraints related to the energy and power of EVs
operation are considered. Moreover, it is necessary to include
the constraints related to the charging stations (CSs) and
the global operation of a set of EVs when managed by an
aggregator. The energy in the batteries should be lower than
the maximum capacity, as shown by (8).

SoC%(v,t) =
EEV

v,t

ĒEV
v

≤ 1 ∀v, t (8)

At the departure period, the SoC should be higher than
the energy necessary to ensure the user’s needs. When this
is not possible, a penalization variable (AuxSOCEV

tlast) will
be positive, impacting the objective function. The required
energy (SoC%(EV r)) can be limited in some DR programs,
hence, SoCDRmax represents a state of charge required for
the DR program, as illustrated by (9).

SoCv,tlast +AuxSoCEV
tlast ≥ min{SoCDRmax;SoC%(EV r)}

∀v (9)

The value of the SoC should be updated considering the
power charged/discharged in each EV in each period t, rep-
resented by (10). The parameter CFv , shown by (11), relates
the impact of the power charged in the SoC of the batteries
in each EV, in which 60 indicates the duration of the time
interval in minutes.

SoC%(v,t) = SoC%(v,t−1) + CFv(P
ch
v,t − PDch

v,t ) ∀v, t (10)

CFv =
1

ĒEV
v

.
∆t

60
∀v (11)

Concerning the charging and discharging constraints, we
should guarantee that the power charged and discharged in
each period t should be lower than the maximum limit of the
EV, as represented by (12) and (13), respectively.

P ch
v,t ≤ P̄ ch

v η ∀v, t (12)

PDch
v,t ≤ P̄Dch

v η ∀v, t (13)

The power charge/discharge can be limited by CS where
the EV is connected, as shown by (14)–(16). The connection
between the EV and CS is defined in the binary parameter

XCS
c,v,t. In the present formulation, it is considered that the

EVs have an efficiency of 100%. The global efficiency of
the process is included in the efficiency of the CS. It is also
considered that each CS can supply energy to more than one
EV (Multiple-port) [9].

PCS
c,t =

nV∑
v=1

(P ch
v,t − PDch

v,t )XCS
c,v,t ∀c, t (14)

PCS
c,t ≤ P̄CS

c ∀c, t (15)

PCS
c,t ≥ −P̄CS

c ∀c, t (16)

The CSs can be installed in a parking lot or can be managed
by a fleet operator. In both cases, global power limits should
be imposed, as illustrated by (17) and (18).

P tot
t =

nCS∑
cs=1

PCS
c,t ∀t (17)

P tot
t ≤ P̄ tot

t ∀t (18)

Finally, it is necessary to define constraints related to the peak
power for each EV and for global consumption. The variables
PPeakTotal and PPeak

v are used in the objective functions
related to peak consumption, as illustrated by (19) and (20).

PPeakTotal ≥ P tot
t ∀t (19)

PPeak
v ≥ PCh

v,t ∀v, t (20)

III. CASE STUDY AND RESULTS

In the present case study, the impact of the different
objective functions is analysed. The case study proposed aims
to emulate weekday EV trips related to the average working
schedule. The mathematical model related to the OFs has
been implemented in the general algebraic modeling (GAMS)
[10], and the solutions were obtained using the solver CPLEX
[11]. The participants would leave their homes in the morning
(6h00-8h00) and return at the end of the day (18h00-20h00).
The days are divided into 24 periods, each one representing
one hour. They were considered 200 EVs considering a mix of
(battery electric vehicles and plug-in hybrid electric vehicles,
in which each EV user charges on its individual CS, with a
maximum charging capacity of 7.2kW. This is done in order
to further simulate a regular home charging situation. EVs
data (battery capacity, charging and discharging efficiency,
V2G capability, and the maximum power of charge) were
obtained from [12]. The data related to EV user profiles such
as travel data (initial SoC, arrivals and departure periods, and
the energy losses in between), were obtained from a simulator
that effectively creates EV charging profiles as detailed in [13].
Information about the tariffs, aiming to simulate the possible
hourly price programs that the users can be placed in, three
different tariffs are considered. All time intervals and their
electricity cost associated were taken from [14]. The overall
description of these electricity costs can be seen in Table I. For



the RTP program, the electricity costs were taken from [15].
The market price was considered to be 25% of the real price
paid by the user (the rest of taxes, transportation, distribution
fees, etc). As so, all the market spot prices were divided by
0.25 in order to obtain an approximation of the price an RTP
participant would pay. In order to compare the OFs proposed
for the DR programs, there are three main things to consider:
the price of charging, the peak power demand, and the EV
charging demand curves, i.e., how much are they ”attended”
when compared to the base case, the values considered are: a
total operational cost (TOC) of C2441.38 and peak power of
1147.91 MW. The outcomes are compared to the Base Line
profile (case base), which will be called Non-Participant (NP).
This profile aims to simulate the regular charging of an EV
owner who is not enrolled in any DR program, has a single
tariff plan, and charges whenever possible (BaU). Furthermore,
three smart contracts are considered: the user agrees to reduce
the charging power, a) charging power limitation (CPL), which
establishes a maximum percentage of the charging power that
can be requested during peak hours. b) Limit the maximum
amount of battery charge (Maximum SoC Limitation (MSL)
which restricts the maximum SoC a vehicle can have during
peak hours. c) Proportional spending-charging (PSC), which
is similar to CPL but the limited power varies, depending
on the amount of battery used in the previous travel, during
certain periods of time. These time intervals are usually the
peak demand periods, helping to attend the power curves while
producing savings, by reducing the amount of money spent on
those segments.
A. Economical results

In this section, the aim is to analyse how the different
OFs can lead to various economic outcomes when applied
to the various DR programs. By multiplying all the computed
charges (kW) by the electricity price (C/kWh) at the given
period they occur (1h), the result is the TOC of supplying
energy to the EVs. This will serve as the variable for the
outcome comparison. The obtained results, for a case with
100% of EV SoC requirement, can be seen in Table II. ToU–
OF (2) performs worst within the other combinations as well
as the NP-baseline. Such is exceptionally true in the tri-hourly
case, where BaU (OF (1)) forces the charges when the EV
arrives. However, most EVs arrive at peak hours. Hence, from
the user’s perspective, it is better to charge normally. The ToU–
OFs (2)/(3) gives the same TOC outcomes seeing as both OFs
limit the charge in peak periods to the lowest possible amount,
taking full advantage of the price of parcels. OFs (4) and OFs
(5) behave the same as the previous two cost-oriented OFs.
The attending of the demand caused by them leads to the
stretching of the charging power all through the off-peak time
zone, never reaching the peak demand periods. This allows
them to still take advantage of the different tariffs provided
by the time-based program.

RTP provides the overall worst economical results, although
this may vary greatly with the season, and amount of re-
newable energy, among other factors. Considering that the
electricity prices can only be those provided by retailers (i.e.

TABLE I
DESCRIPTION OF ELECTRICITY HOURLY RATE PROGRAMS UTILISED.

Tariff Type Periods Time Intervals Electricity
Price (C/kW)

Single – – – – – 0h – 24h 0.145

Bi-Hourly Off-Peak 1h–7h; 23h–24h 0.099
Peak 8h–22h 0.185

Tri-Hourly
Off-Peak 1h–7h; 23h–24h 0.096

Partial–Peak 8h; 11h–17h; 22h 0.156
Peak 9h–11h; 18h–21h 0.272

neglecting the RTP program), MSL consistently has the best
outcomes across all OFs. It achieves this by implementing
a massive cut during peak hours, by only allowing a very
small group of vehicles to charge. This limitation forces the
optimisation to take advantage of the energy price brackets,
regardless of the OFs utilized. As a result, this DR program
is especially effective, compared to the others, when paired
with BaU by dragging the bulk of charging into the off-
peak periods, taking full advantage of the peak and off-peak
price differences. The couplings with the more cost-centered
(2), (3), (4), and (5) do not represent significant differences
from the other demand response programs pairings with these
OFs, as they already avoid charging during high price periods.
Finally, both CPL and PSC represent intermediary solutions,
being their outcomes between the ones obtained using ToU
and MSL. Despite such similarities, PSC has significantly
better results in the BaU pairing. This appears to imply
that proportional power cuts are better than static ones in
optimisations that are not focused on avoiding charging during
peak periods. As expected, reducing the required SoC of
the vehicles, at departure, from 100% to 80%, results in a
decrease in charging costs. This can be seen in Fig. 1, in
which a summary of economic results for each OF when
compared with the NP-baseline case, considering 80% of EV
SoC requirement. It is observed that the BaU (OF (1)) presents
the worst results (closer than the NP results), particularly the
ToU DR program. However, it is important to notice that the
quality of service, translated by the energy charged in the
EVs, has been reduced. Finally, ToU presents the most volatile
outcomes throughout its objective function pairings.

The results comparison between the use of the DR programs

Fig. 1. TOC results compared to the Non-Participant baseline



TABLE II
TOC OF EACH OF COMBINATION FOR THE 100% SOC REQUIREMENT

Total Operating Cost
ToU RTP CPL MSL PSC

Bi-H Tri-H Market Spot-H Bi-H Tri-H Bi-H Tri-H Bi-H Tri-H
C C C C C C C C C

OF (1) 2464.1 3042.6 2497.67 2307.8 2715.3 1720.6 1717.8 2156.0 2393.9
OF (2) 1695.3 1651.6 1994.99 1690.3 1649.0 1690.5 1645.1 1695.3 1652.8
OF (3) 1695.3 1651.6 1996.70 1690.3 1649.0 1690.5 1645.1 1695.3 1652.8
OF (4) 1695.3 1651.6 1994.99 1690.3 1649.0 1690.5 1645.1 1695.3 1652.8
OF (5) 1696.5 1655.6 1995.30 1691.5 1653.0 1691.1 1647.4 1696.5 1656.8

TABLE III
TOC COMPARISON BETWEEN V2G DR PROGRAM AND WITHOUT V2G, WITH 100% SOC REQUIREMENT

Total Operating Cost
ToU RTP CPL MSL PSC

Bi-H Tri-H Market Spot-H Bi-H Tri-H Bi-H Tri-H Bi-H Tri-H
C C C C C C C C C

OF (1) 2464.10 3042.60 2434.33 2307.80 2715.30 1720.60 1717.80 2156.00 2393.90
OF (6) -248.20 -1023.70 785.78 -250.60 -1019.40 -253.72 -1031.50 -246.60 -1013.20

without V2G and with V2G can be seen in Tables III and
IV. It is possible to see that all tested DR programs provide
significant profit to the EV user when paired with the OF (6).
This is especially true when applied to a three-hourly tariff.
It does so by utilising the larger prices during peak hours
to its advantage, allocating the extra charging to the off-peak
zone. Since the price requested is the maximum value within
the utilised tariff, plus a battery degradation compensation,
the EVs can then obtain a profitable charging/discharging
operation. A high price is expected when the grid is in
jeopardy and immediate action to safeguard is needed. The
usage of RTP with V2G capabilities performs worse than the
other OFs. The main reason is the energy prices. Despite
this, there is another reason that can be cited, since the profit
obtained will come from the battery degradation compensation
and the difference between discharge and charge prices, which
are proportional/have the same order of magnitude within the
market spot prices (in RTP) and within each tariff type (all
other OFs). Hence, this lower profit is also caused by the
smaller difference between the lowest and highest price on the
spot market, compared to the tri or bi-hourly tariff, where the
price in peak periods is almost double the price in off-peak
periods. The imposition between 100% of SoC requirement
and 80% is also interesting. Contrasting with the observed
results without V2G (Fig. 1), with SoC requirement of 80%,
the results in worse economic results, i.e., in less monetary
compensation for the EV owner. This is because the vehicles
will have less SoC to provide to the grid during peak periods,
seeing as they charge less before each travel.

Regarding the OC strategy, OF (7) aims to be applied to a
more niche driver profile, with different EV use profiles during
the week, alternating long travels with short ones [13]. The aim
is then to determine if the OC program can obtain better results
than the regular objective functions, for these types of EV
profiles. This comparison is only done for the RTP program,
since the charging process between (2) and (7) optimisation
would be roughly the same in a tariff-based program, where
it is easy to identify the line between cheap and expensive

electricity prices. Hence, for this test were obtained a TOC of
69.92 and 70.63 for OF (2) and OF (7), respectively. Then,
the (7) is able to obtain a better result than the (2), however,
with a small difference (around 1%). The level of improvement
may vary depending on the strike price (CSP ) chosen. Since
the CSP is the average value of the hourly spot prices of that
day, the effectiveness of this program may be bigger on days
when the market prices are more volatile. In other words, the
economic improvement of the OC program, compared with
other cost function approaches, can be higher when the price
changes occur in short periods. Finally, this means that the OC
program can demonstrate better performance in the long term
and in different conditions, so more studies should be done
in this regard. As a final remark, it is important to mention
that the results were obtained based on real values of tariffs
and spot markets. The differences obtained in the objective
functions reflect these differences.

B. Peak power results

In this subsection is analysed how the peak power varies
with the different OF/DR program pairings, as can be observed
by Fig. 2. It is apparent that RTP displays the worst outcomes
out of all the DR programs. Considering that the prices are
different at all the periods and the OF gives more importance
to the price instead of the peak power, the EVs charging will
be scheduled as much as possible to the hour of the lowest
price. This makes it so all vehicles charge at their maximum
charging capabilities in the periods where the prices are lower,
resulting in the peak power value being equal to the NP
baseline (1147.9 kW). When paired with OF(1) or OF (2), CPL
produces the best outcomes. Such leads to the conclusion that
it offers the lowest power limitation during the peak time zone,
resulting in a smaller charging spike in the off-peak periods.
CPL combined with the peak reduction objective function OF
(4) provides the best overall result, leading to a roughly 36%
peak power reduction in comparison with the NP position. This
is the result of the lower limitation explained previously for
OF1 and OF2, which is further magnified by the peak power
reduction component of the objective function.



TABLE IV
TOC COMPARISON BETWEEN V2G DR PROGRAM AND WITHOUT V2G, WITH 80% SOC REQUIREMENT

Total Operating Cost
ToU RTP CPL MSL PSC

Bi-H Tri-H Market Spot-H Bi-H Tri-H Bi-H Tri-H Bi-H Tri-H
C C C C C C C C C

OF (1) 2376.70 2457.96 2311.70 2280.50 2630.70 1633.25 1633.18 2068.70 2309.30
OF (6) -181.11 -921.62 737.54 -183.50 -918.33 -186.63 -929.35 -179.17 -906.82

Fig. 2. Peak Power values obtained from every OFs DR program combinations
for 80%

IV. CONCLUSIONS

The electric vehicles (EVs) point of view concerning differ-
ent demand response (DR) programs as well as the EVs man-
agement considering different strategies have been proposed
in this paper. Hence, several objective functions (OFs) are
considered aiming to analyze the participation of the EVs in
the DR programs. The case study proposed allows us to verify
the effectiveness of each DR program with EVs and compare
themselves. The results show that the DR programs are es-
pecially effective in the case of OFs with less cost since the
latter already minimise the charging that could occur during
the DR program’s time intervals of operation. The peak power
is directly correlated with how the EV demand is attended, but
it has no impact on the overall total operation cost, as this peak
can occur either in peak or off-peak periods; attending the EV
demand may lead to the EV battery not achieving its intended
required state of charge (SoC) limitations. Real-Time Pricing
is a complex choice for customers, seeing as its performance
depends entirely on aspects that may affect the market prices,
and due to the variation, Time-of-Use (ToU) is very beneficial
when paired with cost-centered OFs. This is important because
the ToU program is already widely used, so the adoption
of smart charging using these OFs could provide immediate
benefits; Maximum SoC Limitation, Charging Power Limita-
tion, and Proportional Spending-Charging programs are very
interchangeable and really depend on the travel profile of the
participant. However, the latter provides the most stable and
balanced charging cut method, which most likely will be more

agreeable to comfort and cost-focused users; Although the
location of the max power demand (in or out of peak periods)
is related to the program chosen, the reduction of this value
can only be done utilising an appropriate OF to control the
charging process.
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