
Modeling demand response of Charge Point
Operators to consider flexibility in grid planning

António Maria Jerónimo
INESC ID / Instituto Superior Técnico
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Abstract—Electric Vehicles (EVs) are creating new challenges
to power system planning and operation such as grid over-
loads and voltage deviations, particularly at the distribution
system level, while simultaneously offering new opportunities
in congestion management through their ability to provide
flexibility. Traditional planning methodologies consider the trade-
off of investment costs against improved system reliability and
energy efficiency. However, to embed EV flexibility into grid
planning, models that estimate the flexibility of Charging Point
Operators (CPOs) managing EV charging stations are necessary.
For that, CPOs need to be characterized, allowing estimation
of their flexibility, in particular, their ability to reduce grid
overloads (congestions) and voltage deviations, as well as their
operational costs when providing such flexibility. In this paper,
a new flexibility model for CPO flexibility is proposed, which
characterizes CPOs based on their charging and occupancy rates.
The model is then embedded into the grid planning problem by
defining a new flexibility cost function. An illustrative example
is presented to show how the proposed model is embedded into
optimal planning. The obtained results show an example where
the best investment is an hybrid solution between traditional
reinforcement investment and the use of flexibility.

Index Terms—Charge point operator, distribution system plan-
ning, electric vehicles, load charging schedule, particle hopping
models.

NOMENCLATURE

R Reliability cost function.
R

′
Modified reliability cost function.

S Energy losses cost function.
I Investment cost function.
F Flexibility cost function.
C Charging rate.
O Occupancy rate.
N Number of EV charger outlets of a CPO.
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P Chargers power of a CPO.
dc Charging density.
do Occupancy density.
ENSx Energy not served in branch x
ENS

′

x Reduced energy not served in branch x due to load
being shifted by flexibility

I. INTRODUCTION

A. Motivation and Background

W ITH the increased uptake in Electric Vehicles (EVs),
distribution grids must be correctly planned so that

overload and voltage impacts are mitigated while avoiding
increased active power losses and decreased quality of service
[1]. To mitigate these impacts, Distribution System Operators
(DSOs) will have to reinforce the grid infrastructure and/or
adopt new planning strategies considering the use of flexibility
as an alternative to traditional grid reinforcement [2], [3].

Although EVs can bring additional challenges to distribution
grid planning, charging point operators (CPOs) may offer
power demand flexibility [4], the potential of which can
be exploited through smart charging [5]. Under flexibility
contracts, EVs can be seen as temporary capacity providers,
enabled for a price, allowing deferring of grid reinforcement
decisions [1].

In the business-as-usual planning, congestions are translated
into energy not supplied (ENS). Often, the regulators set an
economical value for kWh of the ENS so that the reliability
costs, R, can be traded against the energy loss costs, S and
the investment costs, I [6]. Based on such an economic value,
the distribution grid planning tools of today search for optimal
planning solutions by minimizing the corresponding total costs
of R, S, and I . Such cost functions must be evaluated on a
given planning horizon.

To incorporate flexibility into the distribution grid planning
problem, future planning tools should consider a new cost
function for the flexibility of power demand, F . To define
such a function, a model must be developed for EV flexibility
pricing and capabilities. Such a model should, on one hand,
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be capable of representing load reduction capabilities of CPO,
their limitations, and associated costs, and, on the other hand,
be simple enough not to overburden the decision-making
process behind optimal planning.

B. Relevant Literature

This paper proposes a novel method, inspired by the work
presented in [7] to model the flexibility of EVs and mainly of
CPOs to be represented in the planning problem to be used
by DSOs. In [7] the ramping limitations of direct controlled
load-shifting response dynamics were studied. To accomplish
this, the authors have used a particle hopping model, intro-
ducing the concepts of load density and shifting velocity to
quantify the ramping capabilities of ideal load-shifting (V1G)
responses. These concepts will be explored again later on, as
the proposed model relies on such concepts.

Following [7], incentive-based load-shifting dynamics were
studied in [8] to simulate aggregate responses and analyze
their predictability under time-varying prices. Vehicle-to-grid
(V2G) capabilities were later added in [9], where it was
concluded that V2G residually increased the responsive ca-
pabilities of aggregators, i.e., the number of V2G decisions
were found to be minimal when compared to V1G decisions.
However, if the response is controlled indirectly through prices
or incentives, the evidence demonstrated that V2G might
make control easier, decreasing response mismatches and
consequently decreasing the cost for the aggregator.

C. Contributions and Organization

The model used to evaluate the ramping limitations in load-
following capabilities in [7]–[9] assumed that EV charging
stations were always fully occupied, meaning that the EV
chargers outlets were always connected to EVs. This, in turn,
resulted in maximum flexibility assessment. We evolve such
model by introducing the concepts of occupancy density, thus
dropping the mentioned assumption.

This paper is organized as follows. In Section II, EV
CPO flexibility for congestion management is modeled and
evaluated. In Section III, we define and include the new
flexibility cost function into the optimal planning problem. In
Section IV, an illustrative example is presented to show how
the proposed model may be embedded into optimal planning.
In Section V, we conclude the paper.

II. MODELING CPO FLEXIBILITY FOR CONGESTION
MANAGEMENT

A. Characterization of CPOs

The proposed model characterizes the load reduction capa-
bilities of CPOs using four parameters: the charging rate, C,
the occupancy rate, O, the number of EV charging outlets,
N , and respective nominal power, P . These parameters are
defined by the CPO and communicated to the DSO, in order
to be included in the planning problem.

Both the charging and occupancy rates are given as a
percentage. The charging rate refers to the percentage of EV
charger outlets that are actively charging an EV, whereas the

occupancy rate refers to the percentage of EV charger outlets
that are occupied (either charging an EV or idling with the EV
connected). Each outlet can only be connected to a single EV.
The proposed model considers that EV charger outlets operate
always at nominal power.

Figure 1 represents an example of the charging and occu-
pancy rates of a CPO representative of workplace charging,
obtained through the analysis of a 52 EV parking lot located
in the NASA Jet Propulsion Laboratory using the Adaptive
Charging Network dataset [10]. The time resolution is set for
15 minutes, as this is the normal time resolution used by DSOs
in the planning phase, allowing for an adequate representation
of the use of charging stations [10].

Fig. 1. An example of a charging and occupancy rates of work charging
station operators.

B. Modeling CPO Shifting Flexibility
We consider the use of particle-hopping models to simu-

late a variety of dynamic processes of the charging of EVs
managed by CPOs. These models have been used to simulate
a variety of dynamic processes, including traffic flow [11],
[12]. Here, we use a particle hopping model to assess the
shifting flexibility of CPOs. Shifting flexibility is represented
as a particle hopping process on EV charging schedules, with
each charger outlet charging schedule represented as a one-
dimensional lattice of cells, where each cell represents a time
period.

The EV charging schedules are modeled using a non-
homogeneous discrete-time Markov chain. Let Ω = {0, 1, 2}
be the set of possible states. State 0 refers to a situation when
the charger outlet is empty (no EV is connected), state 1 when
the charger outlet is actively charging (EV is connected and
charging), and state 2 when the charger outlet is idle (EV is
connected but not charging).

Charge schedules span 24 hours (T = 24h) using a time
resolution of τ = 15 min, resulting in 96 representative
periods. Thus, they can be represented as a sequence of
random variables Xk. Xk can assume any value of Ω at each
time period k. To parameterize the non-homogeneous Markov
process, it is necessary to define the state probabilities of all
states, Π, as well as the Markov transition matrix, P = [pij ],
for each time period k. Hereafter, the subscript k is used for
the variables Π and P to denote time periods.

The state probabilities for each time period are set by the
charging and occupancy rates. Defining the row vector Πk as

Πk =
[
Π0

k Π1
k Π2

k

]
=

[
P(Xk = 0) P(Xk = 1) P(Xk = 2)

]
,

(1)



it follows that Π0
k corresponds to the complement of the occu-

pancy rate, Π1
k to the charging rate, and Π2

k to the difference
between the occupancy and the charging rate. Mathematically,
Π0

k = 1−Ok, Π1
k = Ck and Π2

k = Ok − Ck.
Since Ω is of size 3, then the Markov transition matrices will

be 3×3 squared matrices with each entry, pijk , representing the
probability of being at state i at time period k and transitioning
to state j in the next time period k + 1.

The parameters given by the CPO do not allow the compu-
tation of the Markov transition probabilities. Thus, they have
to be estimated. An algorithm for the estimation of the Markov
transition probabilities is used, but it is not presented, as it is
out of the scope of this paper. The estimation of the Markov
transition probabilities allows the non-homogeneous Markov
process to be fully parameterized.

Consequently, it is possible to generate a sequence of states
corresponding to the charging schedule of each EV charger
outlet contained in the charging station. By performing N
Markov chain simulations, the charging schedules are set
for all the outlets. By stacking the N charging schedules, a
two-dimensional lattice is obtained. In this lattice, the x-axis
dimension refers to the time stamp dimension of the charging
schedules and the y-axis dimension refers to the cardinality
of the EV charger outlet. Figure 2 depicts an example of the
charging schedules of 10 EV charger outlets from 06:00 to
20:00, represented in a lattice.

Fig. 2. Example of a lattice representing the original charging schedules, on
a 15 min basis, of 10 EV charger outlets.

Shifting flexibility is represented in lattices by the idle
particles ahead of each charging particle. By deciding which
charging particles are to be shifted ahead into an idle position,
it is possible to regulate the power output of the flexibility
resource. Consequently, the configuration of the lattice in time
period k + 1 is determined in time period k. The process is,
therefore, dynamic because the charging particles available to
be shifted ahead in a given time period k and their flexibility
depends on the number of charging particles that one decided
to shift ahead in time k − 1.

Since flexibility is defined as a ’controlled power adjustment
sustained for a required duration’ [1], the correct assessment of
the ability to reduce the power output of a CPO in response to
external calls for load reduction becomes necessary to evaluate
the flexibility capabilities within each CPO. In the following
subsection, we address this issue.

C. Flexibility Evaluation of CPOs

Let the EV charger outlets be identified by n = 1, . . . , N
and L be the aggregate normalized demand of the EV charging
station, such that

L(k) =

N∑
n=1

xn(k) ∀ k ∈ K (2)

where K = {1, ..., T/τ} and xn(k) ∈ {0, 1} corresponds to
the load demand of the nth charger outlet in the time period k
(xn = 0 if the charger outlet is either empty or idle and xn = 1
if the charger outlet is charging). Additionally, let L∗ be the
normalized target demand set for the EV charging station in
time period k.

Consider a peak shaving service requested by the DSO. Let
the necessary reduction in aggregate load to yield target L∗

be denoted by ∆L∗, such that

∆L∗(k) = L(k)− L∗(k). (3)

Aggregate load reductions are obtained by controlling the
number of charging particle shifts, according to

v(k) =

N∑
n=1

vn(k) ∀ k ∈ K (4)

where vn(k) is unitary if a charging particle is shifted in time
period k and zero otherwise. As v(k) refers to the number of
particles shifted in the time period k, then v can be thought
of as a shifting velocity. Thus, changes in aggregate load are
due to changes in shifting velocity [7], such that

∆L∗(k) ≈ v(k)− v(k − 1). (5)

Figure 3 depicts an arbitrary peak to shave with duration
∆T = T2 − T1. Let ∆T denote congestion time. During the
time interval T1 to T2, ∆L∗ > 0 and thus shifting velocity
increases, reaching a maximum at T2. The time evolution of
the shifting velocity is given by

v(k) =
∑
k

∆L∗(k) ∀k ∈ {T1, T1 +∆T}. (6)

Letting v∗ be the maximum shifting velocity, it follows that
v∗ corresponds to the area of the peak to be shaved,

v∗ = v(T2) =
∆T∆L

2
. (7)

However, in each time period k during congestion time, v
is limited. Let Vlim denote this limit. It follows that if

v(k) < Vlim(k), (8)

then the resource is flexible enough to shave such peak. Vlim

can be thought of as a ceiling for v. Recalling that charging
particles can only be shifted forward into idle positions, then
Vlim is proportional to the probability of having idle positions
ahead of a charging particle. Such a probability changes over
the congestion time as the charging particles are shifted ahead.
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Fig. 3. Integration of the peak to shave with magnitude ∆L and duration
∆T to compute maximum shifting velocity, v∗.

Although mathematically correct, assessing such probability is
a very cumbersome process due to shifting dynamics.

To overcome this challenge we consider the lattice to
be homogeneous during congestion time. This allows the
introduction of two new concepts: the charging density dc,
and the occupancy density do. Charging density is defined as
the average of the charging rate during congestion time;

dc =
1

∆T

T2∑
k=T1

C(k), (9)

and the occupancy density as the average of the occupancy
rate during congestion time,

do =
1

∆T

T2∑
k=T1

O(k). (10)

The difference between do and dc yields the average prob-
ability of finding an idle position at each time period during
congestion time. We argue that such probability can be used
to roughly evaluate the flexibility of a resource. Letting V∗

lim

be the limit for maximum shifting velocity such that

V∗
lim ≈ (do − dc)N , (11)

then if
v∗ ≤ V∗

lim (12)

then the resource is considered to be flexibile enough to shave
such peak.

Considering triangular peaks, as the one depicted in Fig. 3,
Eq. (12) can be rewritten as

∆L ≤ 2
do − dc
∆T

N , (13)

which encloses an important finding: the magnitude of the
peak to shave is set by the charging and occupancy densities as
well as the congestion time. For illustration purposes, consider
Fig. 4 where the left column plots refer to a situation where
peak shave is successful, whereas the right column plots depict
one which is not.

III. GRID PLANNING WITH FLEXIBILITY

Assuming that several flexibility resources exist in the set
of nodes Ns−m delimited by the overloaded asset, s, and the
faulted asset, m, then the maximum peak shaving magnitude
that the DSO may procure to solve the overload in asset s due
to a fault in asset m is given by

Fig. 4. Graphical representation of a situation where peak shave is successful
(left column plots) and one where it is not (right column plots). The top row
plots depict the maximum, uncontrolled and controlled aggregate demands and
a shaded triangle with a width equal to the congestion time and magnitude
given by Eq. (13). It is important to notice that in the successful shaving
situation, the uncontrolled charging demand to be shaved is contained within
the triangle. The bottom plots depict the time evolution of the shifting velocity.
On the successful shaving situation, the maximum shifting velocity does not
reach V∗

lim.

Dm = min


∑

g∈Ns−m
πg<γ

Dg, ∆Lm

 (14)

where πg corresponds to the marginal cost of the negawatt-
hour of flexibility resource g, γ to the marginal cost of kWh of
ENS, and ∆Lm to the load shed in the asset m, to guarantee
security of supply. The term negawatt-hour refers to a unit
of energy that is not used. Figure 5 depicts the nodes of the
set Ns−m for a fault on branch m ≡ d− f and a post-fault
configuration giving rise to an overload on branch s ≡ a− b.

Substation (power delivery point)

Load point

Switching station

Fig. 5. Final stage of the service restoration process for a fault on branch
m ≡ d-f. In the post-fault configuration, the potential flexibility resources,
Dd-f, likely to resolve the overload at branch s ≡ a− b, are identified in
blue circles.

To quantify Dk, the charging and occupancy densities of
the flexible resource must be known during the network



congestion period. Thus, according to Eq. (13), we have that

Dg = 2
do − dc
∆T

N , (15)

and using Eq. (14), the flexibility cost function is expressed
as

F =
1

2

∑
m

λmπ∗
mDm∆Tm (16)

where λm corresponds to the failure rate of the asset m and
π∗
m to the clearing price for the purchased flexibility ∆Lm,

assuming that the identified resources {Dg} that compose Dm

bid each its own price πg . The value of π∗
m will depend upon

the auction mechanism chosen to clear the supply {(Dg , πg)}
against the procured demand ∆Lm (e.g., pay-as-clear, pay-as-
bid or other).

The optimal distribution grid planning problem considering
flexibility is then formulated to include the flexibility cost
function as derived in Eq. (16). The problem is formulated as a
cost minimization problem whose objective can be expressed
as:

min{R
′
+ S + I + F} (17)

where R
′

corresponds to a new reliability function, modified
by considering that part of the expected load shed due to
overloads and other congestions may be mitigated by enabling
flexibility resources.

IV. ILLUSTRATION OF THE PLANNING METHODOLOGY
CONSIDERING CPOS FLEXIBILITY

A small scale 10 kV grid is presented in Figure 6. Consider
the process of planning such grid for a target year H. If a
fault occurs in branch a− b, the fault is isolated and the grid
is reconfigured to its post-fault configuration, as represented
in Fig. 7. Due to expected load growth, branch f − e becomes
overloaded during the post-fault configuration. This branch
corresponds to an underground cable with a rated power of
6.75MW. Additionally, let us consider that the change in
the expected system ENS is solely given by part of the load
downstream of the overloaded branch f − e (see Fig. 7) that
must be shed in order to guarantee security of supply.

CP

CB2

Closed Circuit Breaker

Open Circuit Breaker

CB1

a

b c

d

eCB3

CB4

60 EVs
25 kW

f

Fig. 6. A small scale 10 kV grid. The grid consists of two substations (busbars
a and f ), three inflexible load points (busbars b, c and e), a flexible resource
corresponding to a charging station, managed by a CPO, with N = 60 EV
charger outlets, each with a nominal power of P = 25 kW (busbar d) and 4
circuit breakers (CB1, CB2, CB3 and CB4).

Suppose that branch f − e is congested for one hour (from
11:00 to 12:00). Thus, ∆Ta−b = 1h = 4 time periods (recall
that τ = 15min). Moreover, the maximum overload is set
to 10% of the rated power, i.e., ∆La−b = 675 kW. The

Breakers are opened 

Breaker is closed

CP

CB2CB1

a

b c

d

eCB3

CB4

60 EVs
25 kW

f

Fig. 7. Grid representation in its post-fault configuration for a fault in branch
a− b, in which branch f − e becomes overloaded, due to load growth.

corresponding ENSf−e is depicted on the left plot in Fig. 8
where ENSf−e is approximated by the area of a triangle with
a width equal to the congestion time and a magnitude equal
to ∆La−b. Thus, we have ENSf−e = 337.5 kWh.

To improve system reliability, energy efficiency, and quality
of service, two grid planning strategies are proposed. The first
one corresponds to the traditional grid reinforcement, in which
the branch f − e is reinforced. The second corresponds to the
deferment of grid reinforcement using flexibility resources. In
the following paragraphs, both planning strategies are analyzed
in detail.

Let us start by analyzing the traditional grid reinforcement
strategy. Let the reinforcement of the branch f − e amount
to a total investment cost, IT , of 20 ke. The changes in
the investment cost function, are simply given by the branch
reinforcement investment annuity, such that

∆I =
r(1 + r)H

(1 + r)H − 1
IT , (18)

where r is the discount factor, set to 6.5%, and H corresponds
to the asset’s economic lifetime, set to 30 years. Consequently,
Eq. (18) yields ∆I = 2.78 ke/year.

Moreover, reinforcing such branch mitigates ENSf−e, and
therefore ∆ENSf−e = −ENSf−e. The change in the reliability
cost function is computed through

∆R = λa−b γ∆ENSf−e. (19)

Considering a failure rate of branch a− b to be 0.5
(λa−b = 0.5 year−1, which means 1 fault every 2 years) and
a marginal cost of ENS of γ = 10ekWh−1, the change in
the reliability cost function yields ∆R = −1.69 ke/year.
Furthermore, a branch reinforcement reduces the losses in such
branch. Thus, the change in the losses cost function is assumed
to be ∆S = −1.20 ke/year.

Let us now analyze the deferment of the grid reinforcement
using flexible resources strategy. Recall that load point d is a
flexible resource corresponding to a charging station operated
by a CPO. Thus, such resource could be used to reduce or even
mitigate the overload at branch f − e. The marginal cost of
negawatt-hour of such a flexible resource is πd = 5ekWh−1,
less than the marginal cost of ENS. According to CPO charac-
teristics, during congestion time, the charging and occupancy
densities are set to 45% and 85%, respectively (dc = 0.45,
do = 0.85). Thus, according to Eq. (14), the maximum peak
shaving magnitude yields Da−b = 300 kW.



The right plot of Fig. 8 depicts, in a shaded green triangle,
with a width equal to the congestion time and a magnitude
equal to Da−b, the load that can be shifted using flexibility
resources. Thus, the reduced ENS in branch f − e, ENS

′

f−e

is equal to the difference between the gray and green areas,
i.e., the blue area and therefore ENS

′

f−e = 187.5 kWh. Con-
sequently, we have the following.

∆ENSf−e = ENS
′

f−e − ENSf−e = −150 kWh. (20)

Fig. 8. Graphical representation of the ENS in branch f − e due to load
growth (left plot) and the reduced ENS in branch f − e due to load being
shifted by flexibility (right plot)

The change in the reliability cost function is again computed
using Eq. (19), yielding ∆R = −0.75 ke/year. The changes
in both the energy losses and investment cost functions are
zero since the investment is deferred.

Finally, the changes in the flexibility cost function are
computed using

∆F =
1

2
λa−b π

∗
a−b Da−b ∆Ta−b, (21)

where the clearing price π∗
a−b is equal to πd. Thus, we have

∆F = 0.38 ke/year.
Table I sums up the results and presents the change in

the total cost for both grid planning strategies. It can be
concluded that for the target year H, the use of the flexibility
services strategy is a more cost-effective solution than the
traditional one, which in turn allows for the deferral of the
grid reinforcement investment to a later year than the target
one.

TABLE I
COST ASSESSMENT OF BOTH GRID PLANNING STRATEGIES: TRADITIONAL

GRID REINFORCEMENT AND GRID REINFORCEMENT DEFERMENT USING
FLEXIBILITY RESOURCES

Change in cost
function

Traditional
[ke/year]

Flexibility
[ke/year]

∆R −1.69 −0.75

∆S −1.20 0
∆I 2.78 0

∆F — 0.38

Total −0.11 −0.37

V. CONCLUSION

EVs introduce new opportunities for congestion manage-
ment through their ability to provide flexibility. In this pa-
per, a new model based on particle hopping is proposed to
consider the flexibility of EVs, namely in assessing the load
reduction capabilities of an EV charging station managed by
a CPO. The model is then used to define a new flexibility
cost function, which is embedded into the distribution grid
planning problem, allowing the trade-off between reliability,
energy losses, investment, and flexibility cost functions. The
introduction of CPO flexibility in the planning problem can
lead to hybrid optimal solutions, combining both flexibility
and grid reinforcement strategies. An illustrative example was
presented showing that the use of flexibility could be used to
defer a grid reinforcement investment.
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