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Executive Summary 

The present deliverable 3.3 “EVs use Clustering results report” aims to provide a set of services 
adapted to different needs and user behaviour based on clustering EV profiles. To this end, it was 
applied an AI methodology that consists of the following steps: 

1. Data cleaning and pre-processing removes noisy records with missing or outlier values. 
2. Feature engineering defines new comprehensive features and reduces the features to the 

most essential, non-correlated ones. 
3. Clustering applies an unsupervised learning algorithm to generate the final sets of records 

with common patterns. 
Domain-specific approaches are applied for the first two steps, while the third one involves 10 state-
of-the-art clustering algorithms that cover all main types of approaches, from representative-based 
to graph-based and hierarchical ones.  

This methodology is applied to a dataset with real data from PPC's nationwide network fo EV 
chargers. Through a thorough experimental analysis, all clustering methods were fine-tuned with grid 
search, with K-Means achieving the best performance among all algorithms for K=10. The resulting 
profiles capture quite diverse patterns of behavior, providing useful insights that can be used to 
define demand-response programs in Task 4.5 and optimal aggregation by virtual power plants in 
Task 4.3. 

The deliverable D3.3 has been prepared and edited by PPC with the support of INESC ID.  
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1 Introduction 

1.1 Scope and Objectives 

Task 3.3 “EVs Clustering in Cities Management” aims to outline and describe in detail the usage of AI 
techniques to cluster EV users according to charging needs, places of charging, and parking time. Its 
scope includes all the activities related to clustering such as algorithms, data collecting and 
processing. Concretely, the objectives of this deliverable are as follows: 

• AI techniques and algorithms description and application for users clustering. 

• Data processing from >400 public charging stations and >3,000 charging network users. 

• Presentation of the results of clustering. 
Deliverable 3.3 “EVs use Clustering results report” is the main output of Task 3.3 and with its 
submission the task is completed. 

1.2 Structure 

The current document is divided into six sections. Section 1 provides an overview of this deliverable, 
while Section 2 provides an overview of the related works in the field. In Section 3, we briefly 
describe the clustering algorithms that were used in the analysis of the EV charging data. Section 4 
reports the pre-processing of the real data extracted from PPC’s nationwide network of EV chargers. 
Section 5 elaborates on the methodology that was applied on the clean data. Finally, Section 6 
provides the results and conclusions on this deliverable.  

1.3 Relationship with other deliverables 

Deliverable D3.3 presents the detailed description and application of AI techniques and algorithms 
for users clustering. The results of this deliverable will be used to estimate the needs of different 
clusters of users and, consequently, define the energy needs in each of the clusters and each parking 
lot for task T3.6. Also, the results will be used to define Demand Response programs in T4.5 and 
optimal aggregation by Virtual Power Plants in T4.3. Hence, this deliverable is relevant with the 
deliverables concluding the work in these tasks, namely D3.6 “High-Level Design of V2X 
Management Strategies Coordination”, D4.5 “Demand Response Programs Design for EVs”, D4.3 
“Integration of V2X in Charging Point Operators and Virtual Power Plants Aggregation”. 
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2 Background 

2.1 EV Charging Process 

In the context of EV charging, the terms Electric Vehicle Supply Equipment (EVSE) and Charging 
Station (CS) are often used interchangeably. Yet, there is a slight difference between the two terms. 
While commonly referred to as a “charger” or a “charging point”, an EVSE is technically the 
equipment that provides electricity to an EV. On the other hand, a CS is a physical object that 
includes one or more EVSEs sharing a common user identification interface (similar to a gas pump 
with multiple refuelling hoses for classical cars, with internal combustion engines). A site with one or 
more CSs and the associated parking lots is known as a Charging Pool (CP) and is operated and 
managed by a Charging Point Operator (CPO).  
 
Regarding the charging process, conductive EV charging can be divided into three categories:  

1. Level 1, which involves a slow charging process, using a regular 120-volt wall plug, found in 
all houses and garages,  

2. Level 2, which requires a dedicated 240 volt charger, but it’s 15 times faster than Level 1, and  
3. Level 3, mostly known as DC fast charging, which uses 480+ volts, found in public places. 

An EV receives Alternate Current (AC) from Level 1 and Level 2 chargers, which is then converted to 
Direct Current (DC) internally by the EV (through a slow process), because EV batteries exclusively 
support DC power. In contrast, no conversion is necessary when using a DC fast EVSE. Level 1 and 
Level 2 chargers typically use Type 1 connectors in America (SAE J1772), while for European and 
Asian vehicles, Type 2 connectors are standard. Dimitriadou et al. [1] present an overview of the 
current status of the infrastructure utilized for the realization of both conductive and wireless 
charging of an EV battery, presenting a detailed exposition of the respective standards and charging 
levels, as well as future challenges and opportunities. 
 

2.2 EV Charging Profiles 

Working with a large dataset from metropolitan areas of the Netherlands, Helmus et al. [2] carried 
out a two-step, bottom-up data clustering approach that first employs Gaussian Mixture Model 
(GMM) to cluster charging sessions and then portfolios of charging sessions per user using K-
Medoids (an approach similar to K-means clustering). The study considers starting time, connection 
duration, the distance between two sessions, and hours between sessions as features. From the first 
step, thirteen clusters were found: 7 types of daytime and 6 types of nighttime charging sessions. 
The second step resulted in nine distinct clusters: 3 clusters contained daytime users, 3 nighttime, 
and the other 3 featured unusual users.  
 
Martz et al. [3] claim that they used the most extensive (private) dataset on charging patterns from 
an EV perspective known in the literature, containing approximately 21 000 BMW i3 Battery EVs and 
about 2.6 million charging processes during one year (2019). The authors performed GMM clustering 
on the EV charging behavior, utilizing plug-in time and duration as features, and discovered seven 
distinct clusters: 3 overnight and 4 daytime. The authors conducted a second analysis with K-means 
clustering to identify switching EV users between clusters. They also made known the flexibility 
potential of the EV charging processes, concluding that there was a huge potential: on average, the 
temporal flexibility was 8 hours. The methods are well described, and the decisions are thoroughly 
justified, leading to outstanding illustration and understanding of the characteristics of the clusters 
found, turning this analysis into one of the most complete in the literature.  
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Shahriar and Al-Ali [4] performed cluster analysis with K-means, Hierarchical clustering, and GMM to 
identify similar groups of charging behavior, based on EV arrival and departure times, on real public 
EV charging activity during the COVID-19 pandemic. K-means produced the best results, followed by 
Hierarchical clustering. The authors only discovered three clusters corresponding to the knee of the 
elbow method curve. The study’s drawbacks include only employing a single method for establishing 
the appropriate number of clusters and selecting only two features to group the data: arrival and 
departure times, resulting in generic results.  
 
The K-means technique was also employed by Shen et al. [5] to identify charging behavior clusters. 
The authors supervised the clustering results and adjusted them to achieve the best possible 
outcomes, something fundamental when data is sparse and/or irregular. To obtain typical user 
behavior, the data was grouped by user, leading to the average charging time, the standard deviation 
of charging time, and the standard deviation of connection time as the basis for the clustering. Three 
clusters were discovered. Two groups were identified as stable and predictable users, but the third 
cluster comprised unexpected users.  
 
Similarly, Xiong et al. [6] attempted to find EV user behavior by organizing the data by the user. Thus, 
each user was represented by the following features: average arrival time, average departure time, 
standard deviation of arrival time, standard deviation of departure time as well as the Pearson 
correlation coefficient, between stay duration and energy consumption. With this data, they 
performed clustering with K-means, obtaining four profiles.  
 
Van Kriekinge et al. [7] proposed a methodology to simulate the charging demand for different types 
of drivers. Typical EV driver profiles with similar charging habits are needed to accomplish this goal. 
To obtain user behavior profiles, all charging sessions from a private dataset were replaced by one 
specific theoretical charging session per EV driver represented by the average value of the plug-in 
times, parking times, and charged energy, yielding the mean behavior per driver. The clustering 
proposed in this study works in two stages: cluster the average characteristics per EV user and then 
analyze the frequency of charging, always with the K-means algorithm. The results indicated five 
clusters, with big differences in behavior between the EV drivers. In addition, the Kernel Density 
Estimation (KDE) process allows capturing the details of each cluster, helping in the final simulation 
stage, which demonstrated a strong impact on power and energy demand when adding new EV users 
to the population.  
 
Gerossier et al. [8] employed hierarchical clustering to identify four groups of EV charging behavior. 
The authors received data in time-series format, which they processed to extract individual sessions 
categorized by start-up time (initial plug-in time) and duration of the charging process, following a 
method well-described and presented in the study. Most customers belonged to the first group, 
where charging was typically performed during the evening and morning. 
 
The above works are summarized below, in Table 1, with respect to their main characteristics. 
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Table 1. Summary of the most relevant works on clustering EV charging sessions. 

Study Brief summary Clustering method Dataset Conclusions 

Helmus et al. 

[2] 

Amsterdam, 

Netherlands 

2020 

Provides a 

realistic analysis 

of charging 

behavior and EV 

user types based 

on clustering, 

differing from the 

typical literature 

that is frequently 

oversimplified. 

GMM for clustering 

and Partition Around 

Medoids to find 

portfolios of charging 

sessions per user 

5.82 million 

charging 

transactions 

(January 2017- 

March 2019) from 

the Dutch 

metropolitan area 

13 clusters were found: 7 

types of daytime 

charging sessions (4 

short, 3 medium 

duration) and 6 types of 

overnight charging 

sessions. 

Martz et al. 

[3]  

Germany 

2022 

Investigates the 

possibility of 

identifying 

different clusters 

of EV charging 

processes, 

validating the 

results against 

synthetic load 

profiles and the 

original data. 

GMM and K-means 2.6 million private 

charging processes 

of 21 000 BMW’s i3 

model from 2019 in 

Germany 

High number of charging 

opportunities during day, 

as well as user exchange 

between charging 

clusters, to reduce 

localized energy 

demand. Found 7 

clusters. 

Shahriar and 

Al-Ali [4]  

UAE 2022 

Investigates the 

impacts of COVID-

19 on EV charging 

behavior by 

analyzing the 

charging activity 

during the 

pandemic. 

K-means, Hierarchical 

clustering, and GMM 

ACN dataset, from 

Caltech University 

Campus 

Identified 3 groups of 

charging behavior. The 

best clustering was 

obtained using K-means 

followed by Hierarchical 

clustering. 

Shen et al. [5]  

USA & Canada 

2020 

To manage 

(dis)charging 

behavior of EVs in 

the smart grid, 

proposes a 

communication 

network for 

analysis and 

prediction of user 

behavior. 

HITL-based K-means 

clustering and K-NN 

algorithm for 

prediction 

ACN dataset, from 

Caltech University 

Campus 

Identified 2 clusters of 

stable, predictable users, 

but the third cluster was 

found to be unexpected 

users. 
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Xiong et al. 

[6]  

Los Angeles, 

USA 2018 

Proposes an EV 

user behavior 

technique, using 

unsupervised and 

deep learning 

techniques, 

applied to 

historical EV data 

to make the day-

ahead park. 

K-means for 

clustering, multilayer 

perceptron for 

classification 

 

More than 4 years 

data of the UCLA 

SMERC smart 

charging network 

infrastructure 

Identified 4 clusters, with 

3 relatively predictive 

behaviors, but one 

cluster represented 

random traveling 

schedule and energy 

consumption. 

Kriekinge et 

al. [7] 

Brussels, 

Belgium 2023 

Proposes a 

methodology to 

simulate charging 

demand for 

different EV driver 

types. The 

identification of 

similar profiles is 

performed using 

clustering. 

K-means for 

clustering and KDE to 

better capture details 

for the simulation 

stage 

8 755 private EV 

charging sessions 

(Jul 2018 - Jan 

2022) 

Identified 5 clusters, with 

distinct and different 

characteristics, showing 

good clustering results. 

Gerossier et 

al. [8]  

Texas, USA 

2019 

Models the 

consumption 

profile of EVs 

from raw power 

measurements. 

The charging 

habits model is 

then used for 

forecasting short-

term (1 day 

ahead) and long-

term (2030). 

Hierarchical 

clustering with 

Ward’s method 

46 private EV 

charging data 

recorded every 

minute of the year 

2015 in Texas 

Identified 4 clusters. 

Simulating the projected 

demand in 2030, it 

appears that the growth 

in EVs will have little 

effect on the load curve’s 

shape. 
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3 Clustering algorithms 

This section briefly describes the clustering algorithms that were used in the analysis of the EV 
charging profiles. Based on similarity measure, their goal is to partition the given dataset into 
intrinsic subgroups such that records within the same cluster are as similar as possible, while records 
belonging to different clusters are as dissimilar as possible. Cluster analysis operates with minimal 
prior information, utilizing an unsupervised learning approach that requires no training dataset for 
determining model parameters. This methodology serves as a cornerstone in exploratory data 
analysis, constituting a widely employed statistical technique applied across diverse domains.  
 
Various types of clustering algorithms have been proposed in the literature: representative-based, 
hierarchical, density-based and graph clustering. In our analysis, we consider established algorithms 
from each type.  

 
More specifically, representative-based clustering aims to divide a dataset into a predetermined 
number of clusters k. Each cluster is characterized by a representative record (called centroid), 
commonly chosen as the mean of within-cluster records, assuming that each record is modelled as a 
vector of numeric dimensions. The following algorithms are the main instantiations of this approach: 

• K-means [9] is a greedy technique that conducts hard clustering, meaning that each record is 
assigned to just one cluster, i.e., the resulting clusters are disjoint. In essence, it partitions the 
input data to a predetermined number of clusters by assigning each record to its nearest centroid. 
It is described in more detail in Section 3.1.  
 

• Expectation-Maximization (EM) [10] generalizes K-means by modelling the input data as a 
mixture of normal distributions. Its objective is to iteratively find the maximum likelihood of the 
cluster parameters, i.e,. the mean and covariance matrix. It is a soft clustering algorithm that 
returns the probability of a point belonging to each cluster. EM lies at the core of the GMM 
approach, which is described in Section 3.2. 

 
Hierarchical clustering creates a sequence of nested partitions, which can be visualized as a tree, 
also called dendrogram, indicating the merging process and the intermediate clusters. The highest 
level (root) of the tree places all records in the same cluster, whereas the lowest level (leaves) 
consists of singleton clusters, yielding a separate cluster per input record. If the desired number of 
clusters is known, one can graphically see the level at which k clusters exist. This approach is 
implemented in two fundamentally different ways [11]: 

• Agglomerative clustering operates in a bottom-up manner: it starts with singleton clusters and, at 
each step, it merges (i.e., agglomerates) the most similar (i.e., closest) pair of clusters until the 
desired number of clusters has been found. This requires a definition of cluster similarity. 

• Divisive clustering operates in top-down manner: it starts with the root of the dendogram, i.e., a 
single cluster containing all input records, and at each step, it recursively splits one of the clusters 
until reaching the leaves of the dendogram, i.e., the singleton clusters. In this case, it is required 
to decide, at each stage, which cluster to split and how to perform this operation.  

Given that the application of divisive clustering is quite challenging in terms of time complexity, our 
analysis exclusively considers agglomerative hierarchical clustering, which is analytically described in 
Section 3.3. 
 
Density-based clustering leverages the connectedness of records in the multi-dimensional space 
defined by their numeric features to find nonconvex clusters. In other words, it defines clusters 
based on the local density of records, rather than relying exclusively on their similarities, as in K-
means or EM. The most popular algorithms of this type are Density-Based Spatial Clustering of 
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Applications with Noise (DBSCAN) [12] and Ordering Points To Identify Cluster Structure (OPTICS) 
[13]. This type of algorithms are more suitable for geospatial data, which are excluded from our 
analysis. For this reason, we do not consider any of these algorithms in this deliverable. 
 
Graph clustering transforms the input data into a similarity graph, where the nodes correspond to 
records and the edges connect pairs of records with non-zero similarity. The weight of each edge 
indicates the similarity of its adjacent records. Graph clustering can be viewed as an optimization 
problem over a k-way cut in the similarity graph, with different objectives represented as spectral 
decompositions of various graph matrices, e.g., the adjacency or the Laplacian matrix [14]. The 
similarity graph can then be split into connected components after applying the optimized cut, with 
the resulting components forming the final clusters. In this analysis, we are interested in algorithms 
satisfying three requirements: 

1. They are partitioning, i.e., they generate disjoint clusters. 
2. They are unconstrained, i.e., they require neither the number of final clusters nor their 

diameter or any domain-specific parameter to be pre-determined. 
3. Their sole configuration parameter is a similarity threshold t, which defines the minimum 

edge weight (i.e., all edges with a weight lower than t are discarded, before applying the 
clustering approach). 

These two requirements are satisfied by seven main graph clustering algorithms: Connected 
Components, Center, Merge Center, Ricochet SR, Correlation, Markov and Cut Clustering. We briefly 
describe their functionality in Sections 3.4-3.10. 
 

3.1 K-means Clustering 

The goal of algorithm K-means [9] is to find a clustering that minimizes the Sum of Squared Errors 
(SSE) score, which measures the accuracy or goodness of the clustering, defined as: 

SSE(C)= ∑ ∑ ||𝑥𝑗𝑥𝑗∈𝐶𝑖

𝑘
𝑖=1 − 𝜇𝑖||2                                                                                                      (3.1) 

where 𝑥𝑗 ∈ 𝑅𝑑 is a record from a given dataset 𝐷𝑛×𝑑 and μ𝑖 ∈ 𝑅𝑑 is the centroid of the clusters 𝐶𝑖. 

The records are then iteratively assigned to new centroids based on how close they are. In each 
iteration, the centroids are updated based on the mean of the assigned records. The process repeats 
until the centroids stop changing, as this is determined by a threshold. K-means is typically run 
multiple times, with the run with the lowest SSE value being selected to report the final clustering. 
This happens because the method begins with a random selection of the initial centroids. The elbow 
method is typically used to determine the optimal number of clusters. 

3.2 GMM Clustering 

Given 𝑛 recors 𝑥𝑗 in a 𝑑 −dimensional space, let X = (𝑋1, 𝑋2, … , 𝑋𝑑) be the vector random variable 

across the  𝑑 −attributes, with 𝑥𝑗 being a data sample from X. The EM algorithm [10] assumes that 

each cluster 𝐶𝑖 is characterized by a multivariate normal distribution: 

 
(3.2) 

where the centroid of the cluster 𝐶𝑖 𝑖𝑠 μ𝑖 ∈ 𝑅𝑑 and the covariance ∑ ∈ ℝ𝑑×𝑑
𝑖  are both unknown 

parameters and f(x|𝜇𝑖,∑  )𝑖  is the probability density at 𝑥 attributable to cluster 𝐶𝑖. 
 
A Gaussian Mixture Model over all 𝑘 clusters defines the probability density function of X, given as: 
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(3.3) 

where the prior probabilities P(𝐶𝑖) satisfy ∑ 𝑃(𝐶𝑖) 𝑘
𝑖=1 = 1. Thus, the Gaussian Mixture Model is 

characterized by the mean 𝜇𝑖, the covariance ∑  𝑖  , and the mixture parameters for each of the 𝑘 
clusters, written compactly as: 

 
(3.4) 

In this context, the goal of EM is to find the maximum likelihood estimates for the parameters 𝜃. 
 
During the Expectation Step, EM computes the cluster posterior probabilities through the Bayes 
theorem based on the current estimates for 𝜃: 

 

(3.5) 

 
since each cluster is modeled as a multivariate normal distribution [15]. Therefore, P(𝐶𝑖|𝑥𝑗) can be 

considered the weight contribution of 𝑥𝑗 to cluster 𝐶𝑖 .  

Next, in the Maximization Step, EM recalculates 𝜃 using the weights 𝑤𝑖𝑗 . 

3.3 Agglomerative Hierarchical Clustering 

This algorithm starts with each of the n given records in a separate cluster. Then, the two closest 
clusters are repeatedly merged until all points are members of the same cluster. Given a set of 
clusters 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑚) first, the closest pair of clusters 𝐶𝑖 and 𝐶𝑗 are found and merged into a 

new cluster, 𝐶𝑖𝑗 . Next, the set of clusters is updated, removing 𝐶𝑖 and 𝐶𝑗 and adding 𝐶𝑖𝑗. This process 

is repeated until 𝐶contains exactly 𝑘 clusters. 
Finding the closest pair of clusters is a key step in this procedure, which can leverage a variety of 
distance measures [16]. The main approaches in the literature are the following: 

• Single link, where the distance between two clusters is defined as the minimum distance 
between a record in 𝐶𝑖 and a record in 𝐶𝑗. First developed by Florek et al. [17] and then 

independently by McQuitty (1957) and Sneath (1957) [18]; 

• Complete link, where the distance between two clusters is defined as the maximum distance 
between a record in 𝐶𝑖 and a record in 𝐶𝑗. Developed by Sørenson in 1948 [19];  

• Average link, where the distance between two clusters is defined as the average pairwise 
distance between record in 𝐶𝑖and 𝐶𝑗. Developed by Sokal and Michener (1958) [20] to avoid 

the extremes introduced by either single or complete link;   

• Mean distance, where the distance between two clusters is defined as the distance between 
the centroids of the two clusters. The earliest known use of this strategy is that of Sokal and 
Michener (1958) [20]. 

• Ward’s Method, introduced by Joe H. Ward, Jr. in 1963 [21], where the distance between 
two clusters is defined as the increase in the sum of squared errors when the two clusters 
are merged.  

The differences between these approaches are illustrates in Figure 1. 
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Figure 1. Different distance measures for Agglomerative Hierarchical clustering (Adapted from [22]). 

Typically, the last option is applied in practice, which constitutes a weighted version of the mean 
distance as it weights the distance between centroids by half of the harmonic mean of the cluster 
sizes. Through Ward’s method, Agglomerative Hierarchical Clustering minimizes the overall within-
cluster variance.  

3.4 Connected Components Clustering 

This is the simplest graph clustering algorithm, as it simply computes the transitive closure of the 
pruned similarity graph, after discarding the edges with weight lower than the given threshold. An 
example of how this algorithm works is shown in Figure 2: 

 
Figure 2. Applying connected component clustering. 

3.5 Center Clustering 

Center Clustering algorithm [23] partitions the similarity graph into clusters that have a centre, such 
that all records in each cluster are similar to the centre of the cluster. It operates as follows: 

All edges (i.e., record pairs) are sorted in decreasing edge weight (similarity).  
It iterates once over the sorted edges, starting from the top of sorted list.  
For each edge (ei, ej), ei is set as the center of the cluster if it is encountered for the first time. 
Every record that appears in the subsequent pairs (ei, en) or (en, ei) is placed in the cluster of ei.  

Typically, this approach yields more clusters than Connected Components Clustering, because it 
assigns to a cluster only those records that are similar to the centre of the cluster. This is illustrated in 
Figure 3, which applies this algorithm to the same similarity graph as in Figure 2. 
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Figure 3. Applying center clustering. 

3.6 Merge Center Clustering 

Merge Centre Clustering algorithm [24] extends Center Clustering by merging two clusters ci and cj 
whenever a record similar to the center node of cj is also similar to the center of cj. This is 
accomplished efficiently, through a single iteration over the similarity graph edges, in the following 
way:  

Similar to Center clustering, all edges are initially sorted in decreasing weight.  
For every edge (ei, ej), ei is set as the cluster center if it is encountered for the first time.  
All subsequent edges (ei, en) are placed in the cluster of ei, if en is not associated with another 
cluster. Otherwise, the clusters of ei and en are merged. 

Inevitably, this approach yields less clusters than Center Clustering, but more clusters than 
Connected Components Clustering. This is illustrated in Figure 4, which applies to the same similarity 
graph as in Figure 2 and Figure 3. 
 

 
Figure 4. Applying Merge-Center Clustering. 

3.7 Ricochet SR Clustering 

Wijaya and Bressan [25] recently proposed a family of unconstrained algorithms called ‘Ricochet’. 
Ricochet Clustering is a family of algorithms whose strategy resembles the rippling of stones thrown 
in a pond. Their functionality combines ideas from classic K-Means and Star Clustering by alternating 
between two phases: first, they select seeds (star centers) for the clusters and then they refine the 
clusters iteratively. In this analysis, we consider Sequential Rippling (SR), the most efficient algorithm 
of this family that generates disjoint clusters. It operates as follows: 

For every node, the average edge weight in its neighborhood is computed. 
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All nodes are sorted in decreasing average edge score.  
Starting from the top of the list, the next node ni is used as a seed for creating a new cluster, 
adding all neighboring nodes in it, as long as ni is not placed already in another cluster. 

All neighboring nodes are re-assigned to the new cluster, if they are closer to ni than  
to the seed of their current cluster.  
No cluster is created for ni if there are no node re-assignments.  
Seeds left with an empty cluster after re-assignment are moved to the cluster of their 
most similar neighboring node. 

Terminate when all nodes have been assigned to a cluster. 

3.8 Correlation Clustering 

Correlation Clustering is a NP-hard problem [26]. This algorithm is crafted for signed undirected 
graphs, where every edge is labelled with + or −, depending on whether the adjacent nodes are 
similar or dissimilar. Its goal is to partition every signed graph in clusters that agree as much as 
possible with the edge labels. To this end, it solves a optimization problem where the goal is to find a 
partition that maximizes the number of + edges within clusters and the number of − edges between 
clusters (this is equivalent to minimizing the number of − edges inside clusters and the number of + 
edges between clusters). Given that this optimization task is an NP-hard problem, we consider an 
approximation solution with polynomial time complexity. 

3.9 Markov Clustering 

Markov Clustering, proposed by Stijn van Dongen [27], is an algorithm based on the simulation of 
stochastic flow in graphs. Its core assumption is that many edges within a region indicate a strong 
flow that gives rise to a separate cluster. In contrast, few edges and thus weak flow exists between 
such regions/clusters. To detect such regions, random walks over the entire graph are used to 
strengthen the flow where it is already strong, while weakening it where it is already weak. The 
random walks are terminated as soon as this structure emerges, forming regions with strong internal 
flow that are separated by boundaries with hardly any flow.  
 
The time complexity of this approach is high. To enhance its scalability, we consider an optimized 
implementation, which maps the graph to a Markov matrix and recomputes the transition 
probabilities between nodes through the alternate application of two algebraic operations on 
matrices: expansion, which models the spreading of the flow through the normal matrix 
multiplication of a random walk matrix,  and inflation, which models the contraction of the flow a 
Hadamard power followed by a diagonal scaling of another random walk matrix. 

3.10 Cut Clustering 

Cut clustering, proposed by Flake, Tarjan, and Tsioutsiouliklis [28], is an algorithm which partitions 
the similarity graph by discarding edges whose sum of weights is minimized, thus corresponding to 
edges between clusters. In the resulting pruned graph, the intra-cluster weights are maximized, 
indicating strong connections between the nodes of each cluster, while the inter-cluster weights are 
minimized. This approach is implemented by leveraging algorithms solving the maximum flow 
problem. To this end, an artificial sink node s is added to the similarity graph, as shown in Figure 5, 
which uses the same similarity graph as the ones presented in Figure 2, Figure 3 and Figure 4. 



 

EV4EU – D3.3 EVs use Clustering results report 
Page 20 of 41 

 

 

Figure 5. The artificial sink node added to the similarity graph by Cut Clustering. 

 
In this extended similarity graph, the goal is to find the minimum cut between each node and s. The 
minimum cuts are iteratively detected, yielding a minimum cut tree. After removing the edges of the 
tree along with the sink s, the resulting connected components are the clusters of the original 
similarity graph. 
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4 Preliminary data analysis 

The data used in this analysis was provided by PPC. With a total of 22,412 charging sessions, this 
dataset is one of the most complete ones available in the charging event format. The data was 
collected between July 2021 and May 2022 from public EVSEs in Greece, mainly located in high-
traffic and quick-stay areas such as highways, gas stations, supermarkets, and stores. There are a 
total of 312 EVSEs with registered sessions in the dataset, of which only eight are of Level 3: six EVSEs 
with 50 kW, one with 60 kW, and one with 120 kW. All other chargers have 22 kW maximum power. 
 
Figure 6 presents the monthly and weekly progression of session numbers, from which one sees an 
increase until the end of November 2021, reaching a maximum around this time. However, there was 
a sharp decline in December 2021 and January 2022, coinciding with Greece’s highest peak of COVID 
19 cases due to the Omicron variant. The session numbers remain consistent throughout the rest of 
2022, exhibiting an increasing trend. 

 
Figure 6. Monthy (left) and weekly (right) charging activity in the dataset. 

 
The original data involves the following fields: 

1. Start datetime 
2. End datetime 
3. Volume (kWh delivered) 
4. Charge_Point_Address 
5. Charge_Point_ZIP 
6. Charge_Point_City 
7. Charger ID 
8. Max power EVSE 
9. Authentication ID 
10. Sojourn time 

 
Below, we describe the process that we applied in order to improve the quality and content of the 
raw data and to bring it into a format suitable for clustering. From our analysis, we exclude the site 
specific fields, namely Charge_Point_Address, Charge_Point_ZIP and Charge_Point_City. 

4.1 Dealing with noisy and missing data 

Some records have missing information, such as the plug-in/plug-out times or the energy consumed. 
These empty values prevent the correct implementation of clustering methods. There are two main 
ways of addressing this kind of noise: (i) Interpolation, where nearby entries are used to replace 
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these absent values; (ii) Removal, where records with missing entries are excluded from the analysis, 
resulting in a dataset with real, accurate and unaltered data. We have opted for the latter approach, 
to avoid records with artificial values in some of their fields. 
 
When removing the records with missing values, we noticed that this primarily applies to the field 
Max Power EVSE, whose omission makes it impossible to determine the average charging and idle 
time (see below for more details).  
 
Moreover, we removed noise from records with an average charging time higher than the sojourn 
time, which indicates that the EV was effectively charging during the entire parking period and that 
the adjustment factor was too harsh for these particular sessions. In these records, Average Charging 
Time (see Section 4.3) was set equal to Sojourn Time, leading to a zero idle time. 

4.2 Outlier detection and removal 

Another form of noise comes from outliers, i.e., records with inaccurate information, such as an 
abnormal energy supply, or EV drivers with an excessive number of sessions. Outliers should be 
detected and removed using, for instance, techniques like Interquartile Range, Elliptic Envelope, 
Isolation Forest, or by defining thresholds for data removal. Due to the low number of fields per 
record, we opted for the last approach, which allows for leveraging our domain knowledge to 
achieve higher accuracy. 
 
More specifically, to remove outliers, we defined thresholds for specific fields:  

• The charging and sojourn time cannot exceed 24 hours (there are just 31 records with a 
parking stay longer than this limit). 

• Only sessions with more than 1 minute of sojourn time are considered. 

• The maximum energy delivered cannot exceed 100 kWh considering the 2022 EV sales in 
Europe.  

Finally, all records with negative values for at least one field were also removed. 
 
Together with the previous step, noise removal, this step yields the clean dataset which comprises: 

• 21,801 records/charging sessions  

• 3,184 different users  

• 313 different charging points. 

4.3 Feature engineering 

The goal of this step is to define features not previously included in the dataset that help to analyze 
and obtain more meaningful clusters. More specifically, two time periods in EV charging are 
important:  

• the time (t) the EV was parked and plugged into the EVSE (Sojourn Time), and  

• the fraction thereof that is effectively spent on charging (Charging Time).  
With these two indicators, the Idle Time can be determined, as a measure of flexibility of the 
charging process. More formally, these new features can be defined as: 

Sojourn Time = t𝑝𝑙𝑢𝑔−𝑜𝑢𝑡 − t𝑝𝑙𝑢𝑔−𝑖𝑛 
Charging Time = t𝑒𝑛𝑑𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 − t𝑠𝑡𝑎𝑟𝑡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 
Idle Time =  Sojourn Time −  Charging Time 

 

(4.1) 
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The dataset already provides the sojourn time, but does not provide the session’s end of charging, 
and consequently the above definition of Charging Time cannot be employed. Instead, it offers 
information on the maximum power capacity of the EVSEs. As a result, it is possible to obtain an 
estimated value of the charging time for each session through the following formula: 
 

Average Charging Timesessioni =
𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑖

(𝑚𝑎𝑥𝑃𝑜𝑤𝑒𝑟𝐸𝑉𝑆𝐸)𝑖 × 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟
 

 
(4.2) 

An adjustment factor (set equal to 0.8 in our analysis) guarantees a realistic charging time, since this 
process is not carried out at a constant power rate; it depends on external factors such as 
temperature, high loads on the grid, and the state-of-charge (as the battery becomes fully charged, 
the charging rate decreases). Thus, this factor ensures a 20% safety margin for the maximum power 
value. 
 
Note that to infer the idle time from the sojourn and charging time, their DateTime values were 
transformed into float format as follows (using the DateTime method of Pandas library2): the value 
was converted to seconds and then divided by 3,600 to get the hour of the day in decimal form. For 
example, 10h17 (10 hours and 17 minutes) becomes 10.28h (10.28 hours). This numeric form allows 
for applying outlier removal approaches, clustering methods, and graphical representations.  

4.3.1 Data Adjustment 

The above changes reduced the originally 22,412 records to 21,801. The final fields per record, all in 
float format and free of missing values, are the following:  

1. Start datetime 
2. End datetime 
3. Volume (kWh delivered) 
4. Charger ID 
5. Max power EVSE 
6. Authentication ID 
7. Sojourn time 
8. Average charging time 
9. Idle time 

Note that fields 1 and 2 originally contained both the day and the corresponding hour, but were 
converted to just hours of the day when the DateTime variables were converted into float values. As 
a result, the time frame under consideration became 00h00 to 23h59, losing the spatial proximity of 
early and late plug-in times. Given that there is an instant around 04h00, when charging activity is at 
its lowest, we restored the spatial proximity in the dataset records by relocating all charging sessions 
with plug-in times less than this minimum to the right side to continue the timeframe after 23h59. 
The final clean and pre-processed dataset is illustrated in Figure 7.  

 
 
 
2 https://pandas.pydata.org  

https://pandas.pydata.org/
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Figure 7. Final adjusted distribution regarding Sojourn Time and Plug-in Time. 

 
Finally, another indispensable step is data normalization. Clustering algorithms are sensitive to the 
scale of the data, because they involve distances, densities, or both; if the considered features have 
different scales, some fields inevitably dominate others. Normalizing the data ensures that each 
entry contributes equally to the distance calculation between data points, helping to improve the 
accuracy of the clustering algorithms and generate good-quality clusters. Consequently, each dataset 
field (column) should range from 0 to 1, allowing an overall normalization of the data. To achieve this, 
we applied the MinMaxScaler method from the scikit-learn3 Python library. 

4.4 Feature selection 

To improve the quality of clustering, we need to retain the absolutely necessary features, ensuring 
that there are no correlations between them. To this end, we computed the correlation matrix, 
which is shown in Figure 8. Note that every cell indicates the Pearson correlation between the values 
of the corresponding fields; high positive or high negative values indicate that they two fields follow 
the same patterns, i.e., when the value in one field increase, the value of the other increases or 
decreases, respectively, to a similar extent. Note also that we have excluded the Authentication and 
Charger Id, as they both take random numbers or even non-numeric signatures as values. 
 

 
Figure 8. Correlation matrix of the fields in the cleaned dataset. 

 
 
 
3 https://scikit-learn.org  

https://scikit-learn.org/
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By analyzing the covariance matrix between the remaining features, interesting patterns arise. The 
highly correlated “Start datetime” and “End datetime” are redundant, so only one is required. The 
former provides more intelligible information, and thus it was eventually chosen. The same 
reasoning applies to “Volume” (i.e., kWh delivered) and “Average Charging Time”. Among the two, 
we chose Volume. The Sojourn Time strongly correlates with “Idle Time”, which is thus redundant, as 
expected. Therefore, we retain the following three complementary, non-redundant features that 
align with the current objective: 

1. Start datetime 
2. Volume (kWh delivered) 
3. Sojourn time 
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5 Methodology 

The overview of the methodological approach we applied in this analysis is illustrated in Figure 9. 
 

 
Figure 9. Overview of our methodological approach. 

 
Stage 1 focuses on Preprocessing, which is described in Section 4. Next, Stage 2 applies the clustering 
algorithms described Sections 3.1-3.10 to the resulting clean data to identify groups of similar 
charging patterns and EV user behavior. For each algorithm, the most crucial step is to fine-tune its 
configuration parameters. For all algorithms, this is carried out with grid search over a reasonable set 
of configuration values. This process is analytically described in Section 5.1. Due to the lack of 
ground-truth, i.e., the cluster that is ideally associated with each record, the evaluation of the 
resulting clusters is based on three measures that leverage the intra- and inter-cluster characteristics, 
i.e., on commonalities between records of the same cluster and between records across different 
clusters. These evaluation measures are presented in Section 5.2. 

5.1 Configuration Parameter Fine-tuning 

The clustering algorithms we are considering in this analysis are distinguished into two main 
categories, according to the configuration parameter that needs to be fine-tuned: 

• Those depending on the number of clusters K.  

• Those depending on the threshold t pruning the low-weighted edges of the similarity graph.  

The former category includes K-Means Clustering, GMM and Agglomerative Hierarchical Clustering. 
To configure the required number of clusters, we apply the elbow method: we try all values from 2 
to 18 with a step of 1. For each K, we compute inertia, also known as within-cluster sum-of-squares, 
which amounts to the sum of the squared distances of all records from their closest centroid. A two-
dimensional plot is formed with K on the horizontal axis and inertia on the vertical one. Typically, the 
resulting curve starts from the upper left corner and ends at the lower right one, as in Figure 10(a). 
The best value for K is determined as the one corresponding the “elbow” or “knee” of this curve, 
where the rate of reduction is significantly reduced for the first time. 
 
The latter category of methods includes all graph clustering techniques which are presented in 
Sections 3.4-3.10. Their similarity threshold takes all values from 0 to 1 with a step of 0.1. For each of 
these values, we compute the number of resulting clusters. Apparently, thresholds yielding a single 
cluster are disregarded from further analysis. For the remaining threshold values, we compute the 
entropy of the distribution of cluster sizes. This approach favours thresholds generating few clusters 
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of balanced size over thresholds generating a large number of clusters with a high diversity in their 
sizes. Finally, we select as the optimal similarity threshold for each graph clustering algorithm the 
one maximizing the entropy of cluster sizes. 

5.2 Clustering Validation Techniques 

As in any clustering task, there is no ground truth available. As a result, the quantitative evaluation of 
the clustering algorithms relies on three internal validation metrics, which consider the intra- and 
inter-cluster characteristics: the Silhouette coefficient[29], the Davies-Bouldin index[30], and the 
Calinski-Harabasz index[31]. We formally define them below. 

5.2.1 Silhouette Coefficient 

For each record 𝑥𝑖 , the silhouette coefficient is formally defined as: 
 

 

(5.1) 

where 𝜇𝑜𝑢𝑡
𝑚𝑖𝑛(𝑥𝑖) is the mean of the distances from 𝑥𝑖 to records in the closest cluster, and 𝜇𝑖𝑛(𝑥𝑖) is 

the mean distance from 𝑥𝑖 to records in its own cluster. 
 
The total Silhouette coefficient is defined as the mean 𝑠𝑖  value across all records: 
 

SC =
1

𝑛
∑ 𝑠𝑖

𝑛
𝑖=1  

 
(5.2) 

SC takes values from -1 to +1, with higher values indicating more precise clustering, i.e., most records 
are well matched to their own clusters and poorly matched to neighboring ones.  

5.2.2 Davies-Bouldin Index 

The Davies-Bouldin measure for a pair of clusters 𝐶𝑖 and 𝐶𝑗 is formally defined as:  

 

𝐷𝐵𝑖𝑗=
𝜎𝜇𝑖

+𝜎𝜇𝑗

𝛿(𝜇𝑖,𝜇𝑗)
 (5.3) 

 

where 𝜇𝑖  denotes the centroid of cluster 𝐶𝑖, 𝜎𝜇𝑖 =√𝑣𝑎𝑟(𝐶𝑖) represents the dispersion of the records 

around the respective centroid (i.e., the square root of the total variance) and 𝛿(𝜇𝑖 , 𝜇𝑗) is the 

distance between the centroids. 
 
The Davies-Bouldin index is thus defined as: 
 

𝐷𝐵 =
1

𝑘
∗  ∑ max

𝑖≠𝑗
{𝐷𝐵𝑖𝑗}

𝑘

𝑖=1

 (5.4) 

 
This means that for each cluster 𝐶𝑖, only the cluster 𝐶𝑗 with the largest 𝐷𝐵𝑖𝑗 measure is considered. 

Therefore, smaller 𝐷𝐵  values, closer to zero, mean better performance, as clusters are well 
separated and each one is well represented by its centroid. 
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5.2.3 Calinski-Harabasz Index 

Given the dataset D={𝑥𝑖} 𝑛
𝑖=1

 , the Calinski-Harabasz index is formally defined as: 

 

𝐶𝐻(𝑘) = 
𝑡𝑟(𝑆𝐵)

𝑡𝑟(𝑆𝑤)
 ∗  

𝑛−𝑘

𝑘−1
  (5.5) 

 
where 𝑡𝑟(𝑆𝐵) denote the trace of the within-cluster scatter matrix, and 𝑡𝑟(𝑆𝑤) stands for the trace 
of the between-cluster scatter matrix. Those matrices are defined by the equations below, 
respectively, where μ is the dataset’s mean and 𝜇𝑖  is the mean for cluster 𝐶𝑖.  
 

𝑆𝐵 = ∑ 𝑛𝑖(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)𝑇

𝑘

𝑖=1

 

 

𝑆𝑊 = ∑ ∑ (𝑥𝑗 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑖)𝑇

𝑥𝑗∈𝐶𝑖

𝑘

𝑖

 

(5.6) 

 
A good number of clusters k should result in a high 𝐶𝐻(𝑘). The intuition is to determine the value of 
𝑘 for which 𝐶𝐻(𝑘) is higher than 𝐶𝐻(𝑘 − 1) and there is a slight improvement or a decrease in the 
𝐶𝐻(𝑘 + 1) value. This way, the Calinski-Harabasz index can be also used to choose the number of 
clusters that maximize 𝐶𝐻(𝑘), an alternative to the elbow method we described in Section 5.1. 
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6 Results 

We now describe the results produced by the clustering algorithms discussed in Sections 3.1-3.10. 
For K-Means, GMM and Agglomerative Hierarchical Clustering, we used Python 3.10 and the scikit-
learn4 library in particular. For the graph clustering algorithms, we used FAISS5 in order to quickly 
compute all pairwise similarities and pyJedAI6 for the implementation of all algorithms described in 
Sections 3.4-3.10. However, the similarity graph is a complete one with 21,801 × 21,800 / 2 = 237,6 
million edges, with the ensuing space requirements exceeding the available memory (64 GB). To 
address this issue, we used the corresponding Java implementation, which is available through JedAI7. 
 
Below, we delve into the results of each clustering algorithm. 

6.1 K-means Clustering   

The number of clusters, k, was chosen based on the elbow method and the values obtained for the 
Silhouette, Davies-Bouldin, and Calinski-Harabasz scores, also considering the resulting profiles. 
Figure 10 illustrates the plots of the different scores as a function of k, which increases from 2 to 18 
with a step of 1. The elbow method does not effectively display an elbow, making it insufficient for 
determining the ideal k. Nevertheless, the knee of the curve suggests that the ideal value for k 
fluctuates between 5 and 8. Within this range, by performing a more in-depth analysis, the best 
results are thus found for k=6, with better Silhouette and lower Davies-Bouldin scores, as shown in 
Figure 10(b) and Figure 10(c), respectively. Note that we have excluded the Calinski-Harabasz score, 
because it behaves similarly to inertia in Figure 10(a). Both plots, though, indicate a turning point at 
k=10, with interesting scores compared with the remaining k’s. 

 
Figure 10. Different scores as a function of k for the K-means clustering. 

 
To select between k=6 and k=10, we performed a qualitative analysis that indicated more useful 
results in the latter case. More specifically, k=6 yields quite generic profiles that comprise relatively 
different behaviors within the same clusters, whereas k=10 generates clusters that are better defined 
and identifiable. This is illustrated in Figure 11, which presents the distribution of the adjusted EV 
charging profiles for k=10 based on the selected fields, i.e., “Start datetime”, “Sojourn Time”, and 
“Volume” (kWh delivered). There is, however, greater separation between the sessions as five 

 
 
 
4 https://scikit-learn.org  
5 https://faiss.ai/index.html  
6 https://pyjedai.readthedocs.io/en/latest/intro.html  
7 https://github.com/scify/JedAIToolkit  

https://scikit-learn.org/
https://faiss.ai/index.html
https://pyjedai.readthedocs.io/en/latest/intro.html
https://github.com/scify/JedAIToolkit
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clusters were found with plug-in times in the morning (clusters 1, 3, 4, 7, and 10) and only three with 
plug-in times in the evening (clusters 6, 8 and 9). There are also two clusters during the middle/late 
afternoon (clusters 2 and 5). Therefore, one can conclude that the sessions during the day differ 
significantly from each other, translating into a high number of daily. Additionally, the reduced 
number of clusters in the evening suggests that the sessions during this period exhibit more similar 
behavior than those during the day. 
 

 
Figure 11. 3D distribution of the K-means EV Charging profiles for k=10. 

 
Another interesting point is that the most different sessions (higher sojourn times and, thus, higher 
flexibility potential) fall into distinct clusters: cluster 8 contains the sessions that only end the next 
day, regardless of the plug-in time, while cluster 4 comprises the sessions that start in the morning 
and only end in the afternoon of the same day. Table 2 lists the mean quantitative characteristics of 
the resulting ten profiles. 
 

Table 2. Mean quantitative characteristics of the K-means EV Charging profiles for k=10. 

Cluster 
ID 

No. of 
Sessions 

Plug-in 
Time 

Plug-out 
Time 

Energy 
[kWh] 

Sojourn 
Time 

Charging 
Time 

Idle 
Time 

Profile* 

1 704 11h39 16h33 49,497 4h54 2h23 0h31 Morning to 
afternoon high 
energy, long-
term stay 

2 4,297 18h25 19h07 3,957 0h42 0h42 0h29 Early evening 
low energy, 
short-term stay 

3 1,500 11h49 14h20 26,807 2h31 1h17 1h15 Early afternoon 
medium energy, 
medium-term 
stay 

4 1,384 10h35 15h51 12,187 5h16 0h41 4h34 Morning to 
afternoon 
medium energy, 
long-term 

5 2,520 17h05 19h18 14,759 2h13 0h45 1h28 Afternoon to 
evening 
medium energy, 
medium-term 
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6 1,154 19h58 22h43 35,992 2h45 
 

1h35 1h10 Evening to night 
high energy, 
medium-term s 

7 4,529 13h42 14h40 53,141 0h58 0h17 0h41 Early afternoon 
low energy, 
short-term s 

8 419 20h43 09h51 33,445 13h08 1h54 11h14 Evening to next 
morning 
medium energy, 
long-term 

9 1,888 21h45 23h06 9,788 
 

1h21 0h29 0h52 Night low 
energy, 
shortterm stay 

10 3,406 09h43 10h54 6,835 1h10 0h21 0h49 Morning low 
energy, 
shortterm stay 

*Note: “Low energy”: below 10 kWh; “Medium energy”: between 10 kWh and 30 kWh; “High energy”: over 30 kWh. “Short-
term”: sojourn time below 2h; “Medium-term”: between 2h and 4h; “Long-term”: over 4h. 
 

According to Table 2, one verifies that clusters 2 and 7 are the most typical profiles, as they comprise 
the highest number of sessions, meaning that the short and low-energy sessions are the most 
frequent, and the later the drivers plug in, the more energy they consume. Morning and afternoon 
profiles generally involve lower energy delivery. Cluster 8 is better defined, since it exclusively 
contains sessions that end the next day. Consequently, the mean flexibility potential (idle time) of 
this profile is even greater, with more than eleven hours of parking stay without charging. To get a 
better perspective on this behavior, Figure 12 illustrates the distribution of the corresponding 
sessions. 
 

 
Figure 12. Deep examination of K-means GR-Data cluster 8, regarding the Plug-in and Plug-out time (i.e., 

Start and End datetime). 

6.2 GMM Clustering 

According to the scikit-learn, the GMM method includes four choices for the covariance type: 
1. full covariance, where each component has its own overall covariance matrix, 
2. tied covariance, where all components share the same overall covariance matrix, 
3. diagonal covariance, where each component has its own diagonal covariance matrix, and  
4. spherical covariance, where each component has its own unique variance. 

Consequently, in addition to the number of clusters, it was also necessary to understand which type 
of covariance provides the best profiles and scores. Thus, a preliminary cluster analysis proved that 
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tied covariance originates meaningful profiles, achieving the best Silhouette, Davies-Bouldin, and 
Calinski-Harabasz scores, regardless of the number of clusters. 
 
Figure 13 shows the performance of GMM with tied covariance with respect to the three evaluation 
measures. The obtained scores do not indicate a clear choice for the optimal k, with the best options 
being one of 6, 8 and 10. Further qualitative analyses revealed that k=8 is the best choice, yielding a 
good balance between scores and meaningfulness. Figure 14 presents the distribution of the 
adjusted EV charging profiles regarding the Plug-in Time, Sojourn Time, and kWh. 

 
Figure 13. Different scores of GMM Clustering with tied covariance as a function of k. 

 

 
Figure 14. 3D distribution of the GMM EV Charging profiles with k=8 and tied covariance. 

 
Figure 14 reveals a clear division concerning the energy delivered: profiles up to 20 kWh (clusters 5, 6, 
and 7), up to 40 kWh (clusters 1 and 2), and finally above 40 kWh (cluster 4). In fact, contrary to K-
means, GMM groups all the highest energy sessions in cluster 4, without differentiating the plug-in 
time. Although fewer in number, the clusters differentiate the sessions with higher sojourn time, 
namely clusters 3 and 8. Cluster 3 contains the sessions with the highest sojourn times, most of 
which do not finish until the following day. However, it also includes some sessions with a plug-in 
time of around 07h00 that end on the same day, unlike K-means cluster 8 (see Figure 11). 
 
 

Table 3 lists the quantitative mean characteristics of the eight profiles, demonstrating that cluster 4, 
which has the highest energy delivered and relatively fast charging, contains few sessions and is the 
second least usual. Cluster 3 is the least common, corresponding to highly flexible night-time 
charging sessions. 
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Table 3. Mean quantitative characteristics of the GMM EV Charging profiles for k=8. 

Cluster 
ID 

No. of 
Sessions 

Plug-in 
Time 

Plug-out 
Time 

Energy 
[kWh] 

Sojourn 
Time 

Charging 
Time 

Idle 
Time 

Profile* 

1 1,241 20h01 23h01 33,414 2h59 1h35 1h24 Evening to midnight 
high energy, 
medium-term stay 

2 1,521 11h57 14h58 31,430 3h01 1h32 1h29 Morning to 
afternoon high 
energy, medium-
term stay 

3 392 20h02 09h33 29,090 13h32 1h39 11h52 Evening to next 
morning medium 
energy, long-term 

4 491 14h13 17h21 55,446 3h08 2h04 1h04 Afternoon high 
energy, medium-
term stay 

5 6,093 10h38 12h06 7,771 1h28 0h25 1h04 Morning low energy, 
shortterm stay 

6 3,661 14h35 15h50 6,746 1h15 0h22 1h04 Afternoon low 
energy, short-term 
stay 

7 7,724 19h04 20h16 7,397 1h12 0h23 0h48 Evening low energy, 
shortterm stay 

8 678 10h56 18h01 15,367 7h05 0h52 6h13 Morning to evening 
medium energy, 
long-term 

*Note: “Low energy”: below 10 kWh; “Medium energy”: between 10 kWh and 30 kWh; “High energy”: over 30 kWh. “Short-
term”: sojourn time below 2h; “Medium-term”: between 2h and 4h; “Long-term”: over 4h. 
 

As seen for K-means, the short duration and low energy profiles are the most frequent (clusters 5, 6, 
and 7). Clusters 3 and 8 offer significant flexibility potential due to their high idle times resulting from 
fast charging. This suggests that using such high charging power does not make sense since EV 
drivers tend to park longer than the car is effectively charging. Reducing the charging rate (maximum 
EVSE power) during those sessions would result in fewer power peaks on the grid. 
 

6.3 Agglomerative Hierarchical Clustering 

The configuration of this algorithm requires selecting one of the distance measures in Section 3.3. 
Preliminary experiments revealed that none of the four measures consistently outperforms all others 
in terms of the three evaluation measures for effectiveness. A further qualitative analysis, though, 
indicated that Ward’s method achieves the best balance between meaningful profiles and the 
evaluation measures. 
 
Using Ward’s distance, Figure 15 illustrates the plots of the different scores as a function of k. 
According to the scores, it is clear that k=7 gives the highest Silhouette score and the lowest Davies-
Bouldin score compared with the k’s immediately below or above. The Calinski-Harabasz score does 
not contribute to determining the number of clusters since it displays a hyperbolic behavior for k > 6. 
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Figure 15. Different scores as a function of k for the Agglomerative Hierarchical Clustering, with Ward’s 

method as distance measure. 

 
Figure 16 presents the distribution of the resulting EV charging profiles for k=7 regarding the Plug-in 
Time, Sojourn Time, and kWh fields, from which one sees that the profiles exhibit more overlap and 
less clear definition than those found with the K-means or GMM clustering. Despite several 
overlapped points with neighboring clusters and the absence of GMM cluster 8, the obtained profiles 
visually resemble the results of the GMM clustering. As a result, clusters 5 and 6 contain sessions 
with differing behaviors due to the grouping of short and long morning sessions. Furthermore, 
cluster 1 includes some sessions that end the following day, affecting the profile characterization. 
Overall, the clusters are poorly defined, resulting in less accurate and reliable identification of typical 
profiles. 
 

 
Figure 16. 3D distribution of the EV Charging profiles resulting from the Agglomerative Hierarchical 

Clustering with Ward’s method as distance measure and k=7. 

 
Table 4 lists the mean quantitative characteristics of the seven profiles. The results confirm that 
Hierarchical clustering produces significantly different results when compared with K-means and 
GMM. The clustering method did not differentiate short-term sessions, which were grouped with 
sessions of longer duration, as seen in clusters 5 and 6, for example. Cluster 4, typical of nighttime 
charging that only ends the next day, includes a reduced number of sessions, with a large part of 
these next morning sessions incorporated into clusters 1 and 2. Nevertheless, the average 
characteristic values of each profile are still relevant. We increased the number of clusters to solve 
these shortcomings, but higher k yielded new, meaningless clusters in terms of EV charging profiles. 
Thus, k=7 is effectively the best number of clusters for this method, but compared to the best 
configurations of K-means and GMM, it yields inferior results. 
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Table 4. Mean quantitative characteristics of the Agglomerative Hierarchical Clustering EV Charging profiles 

for k=7. 

Cluster 
ID 

No. of 
Sessions 

Plug-in 
Time 

Plug-out 
Time 

Energy 
[kWh] 

Sojourn 
Time 

Charging 
Time 

Idle 
Time 

Profile* 

1 6,515 19h25 20h38 6,750 1h13 0h21 0h51 Evening low energy, 
shortterm stay 

2 913 15h09 19h15 50,102 4h06 2h11 1h55 Afternoon to evening 
high energy, long-
term stay 

3 6,172 14h20 15h39 6,711 1h19 0h21 0h58 Afternoon low energy, 
short-term stay 

4 298 20h14 9h48 33,137 13h34 1h53 11h41 Evening to next-
morning high energy, 
long-term stay 

5 4,787 09h57 12h00 8,007 2h03 0h26 1h37 Morning low energy, 
medium-term stay 

6 1,604 11h18 14h45 28,635 3h26 1h26 2h00 Morning to afternoon 
medium energy, 
medium-term 

7 1,512 19h56 22h15 27,923 2h20 1h18 1h02 Evening to midnight 
medium energy, 
medium-term 

*Note: “Low energy”: below 10 kWh; “Medium energy”: between 10 kWh and 30 kWh; “High energy”: over 30 kWh. “Short-
term”: sojourn time below 2h; “Medium-term”: between 2h and 4h; “Long-term”: over 4h. 

6.4 Graph Clustering Results 

To apply the seven graph clustering algorithms described in Sections 3.4-3.10, we first need to fine-
tune their similarity threshold. Using grid search in [0, 1] with a step of 0.01, we measure the number 
of clusters each algorithm generates as well as the corresponding entropy of the cluster sizes. The 
goal is to configure each algorithm to generate clusters satisfying two requirements: 

1. Their number is low, so that they can be easily interpreted.  
2. Their size is balanced, avoiding situations where a single cluster involves the vast majority of 

records, a situation that may yield high scores for all three evaluation measures, but provides 
no insights into the behavioral patterns of EV users. 

The results with respect to these requirements are presented below, in Figure 17 and in Figure 18, 
respectively. Note that we had to exclude Cut and Markov Clustering from our analysis, due to their 
excessively high space and time complexity, respectively. The former requires more main memory 
than the available one (64 GB), while the latter did not terminate within 24 hours, regardless of the 
similarity threshold. 
 
Starting with Figure 17, we observe that all algorithms exhibit insignificant variation in the number of 
clusters for all thresholds up to 0.90. The reason is that after normalization, the three features 
selected in Section 4.4 yield very high similarities between most pairs of records. As a result, most 
thresholds below 0.90 prune a negligible number of edges from the similarity graph. In fact, 
Connected Components clustering places all records in the same, single cluster for thresholds up to 
0.95, while Correlation Clustering generates a single clustering regardless of the similarity threshold. 
In contrast, the more elaborate processing of Center and Ricochet SR Clustering enables them to 
generate a very high number of clusters, regardless of the similarity threshold (note the log scale of 
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the vertical axis in Figure 17). The two algorithms converge to ~100 clusters for the highest similarity 
thresholds, whereas Connected Components and Merge-Center Clustering converge to ~10 clusters. 
 

 
Figure 17. Number of clusters per similarity threshold and clustering algorithm. 

 
To assess the usefulness of the resulting clusters, we estimate the entropy of their sizes across all 
similarity thresholds. Note that cases with a single cluster correspond to zero entropy. We observe 
that Connected Components and Merge-Center clustering exhibit the highest entropy with the 
highest similarity threshold (0.99), for which they also yield the maximum number of clusters. 
However, the actual value of entropy is practically zero, which indicates that one of the clusters 
dominates all others, comprising almost all records. Thus, the usefulness of the corresponding 
clusters is limited.  
 

 
Figure 18. Entropy of cluster sizes per similarity threshold and clustering algorithm. 

 
For Center and Ricochet SR Clustering, there are insignificant variations in entropy across all 
thresholds, except the largest ones, where both algorithms exhibit a steep decrease. The reason is 
that in every case, the maximum value of entropy is log|C|, where |C| denotes the corresponding 
number of clusters. As a result, their entropy is bounded to much lower values for the largest 
similarity thresholds. Entropy is maximized for t=0.98 and t=0.87 for Center and Ricochet SR 
Clustering, respectively. 
 
These results are summarized in Table 5. Note that for all algorithms are represented by two 
different configurations, except Connected Components. For Center and Ricochet SR Clustering, we 
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considered both the threshold maximizing the entropy of cluster size and the threshold minimizing 
the resulting clusters. For Merge-Center Clustering, we report the similarity threshold that maximizes 
both the entropy and the number of clusters (0.99), and the threshold that maximizes the evaluation 
measures (0.94).   
 

Table 5. Summary of graph clustering performance. The best performance is highlighted in bold. 

Method 
Connected 

Components 
Center1 Center2 

Merge-
Center1 

Merge-
Center2 

Ricochert 
SR1 

Ricochert 
SR2 

Number of clusters 7 345 88 11 2 896 152 

Maximum cluster size 21,794 1,448 1,375 21,781 21,799 3,508 3,715 
Portion of entities in 
largest cluster 99.97% 6.64% 6.31% 99.91% 99.99% 16.09% 17.04% 

Similarity threshold 0.99 0.98 0.99 0.99 0.94 0.88 0.99 

Entropy 0.003 3.999 3.502 0.009 0.001 4.633 3.248 

Silhouette Coefficient -0.127 -0.571 -0.1479 -0.184 0.325 -0.575 -0.235 

Davies-Bouldin Index 0.681 12.064 4.584 0.829 0.634 16.282 7.258 

Calinski-Harabasz Index 1.96 189.81 696.86 3.23 4.26 75.26 442.31 

 
The outcomes of graph clustering algorithms can be distinguished into two types: 

1. A large number of clusters, whose sizes are balanced, but their performance with respect to 
the three evaluation measures is quite low: the Silhouette Coefficient is negative, the Davies-
Bouldin Index is very high and the Calinski-Harabasz Index is significantly lower than that of 
K-Means, GMM and Hierarchical Clustering. This performance, which indicates strong 
dissimilarities between the records inside each cluster, applies to all configurations of Center 
and Ricochet SR Clustering. Regardless of the evaluation measures, the excessively large 
number of generated clusters has the additional disadvantage of hampering the qualitative 
analysis of these clusters. 

2. A few clusters with highly imbalanced sizes, yielding low entropy scores close to 0. This 
pattern applies to Connected Component and Merge-Center Clustering, with their evaluation 
measures exhibiting very high scores. In fact, the Davies-Bouldin Index is consistently lower 
than that of K-Means, GMM and Hierarchical clustering to a significant extent, thus indicating 
more homogeneous clusters.  Moreover, the Silhouette Coefficient of Merge-Center 
Clustering with t=0.94 is practically identical with the highest scores achieved so far, i.e., 
those of K-Means and Hierarchical Clustering. Only the Calinski-Harabasz Index is significantly 
lower than all other algorithms, including the other graph clustering techniques. In theory, 
these results are quite positive, but in practice they lack any usefulness. The reason is that in 
all three cases, a single cluster is essentially created, as the largest one contains more than 
99% of all records. 

These results indicate that the performance of graph clustering algorithms is inferior to K-Means, 
GMM and Hierarchical clustering, providing no useful insights into EV charging patterns.  
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6.5 Summary of Results 

Unlike the graph clustering algorithms, K-means and GMM delivered consistent and effective results 
for identifying meaningful EV charging profiles with practical applications. The K-means method 
produced the highest overall scores, while GMM yielded more specific and extreme profiles, which 
can be particularly interesting for analyzing the most diverse sessions. Hierarchical clustering it 
achieved high values in all evaluation scores, but these did not translate into better qualitative 
profiles, as they are more generic, overlapped, and less visually defined clusters. Table 6 summarizes 
these metrics and parameters selected for the best performing clustering algorithms, with the best 
evaluation scores highlighted in bold. 
 

Table 6. Summary of the performance of  representative-based and hierarchical clustering algorithms. 

 K-means GMM Hierarchical 

Best number of clusters 10 8 7 

Parameters - Tied Covariance Ward’s Method 

Elbow Method 𝑘 = {7,8,9,10} - - 

Silhouette Coefficient 0.326 0.309 0.322 

Davies-Bouldin Index 0.983 1.061 1.036 

Calinski-Harabasz Idex 10,715.45 9,259.41 11,777.57 
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7 Conclusions 

The EV charging profiles provide information about the times of day when more or fewer charging 
sessions occur, whether the sessions are of high or low energy and with high or low flexibility 
potential. To identify these patterns, we applied the following methodology: 

1. First, pre-processing cleaned the original data from missing and outlier values.  

2. Feature engineering defined new features and selected the most essential ones. The 
resulting dataset comprises 21,801 records involving 3,184 different users and 313 different 
charging points, with each record corresponding to a different charging session, as described 
by three complementary, non-redundant features: start datetime, volume (kWh delivered) 
and sojourn time. Note that these records predominantly contain quick-stay sessions, due to 
the EVSE locations in publicly available infrastructures. 

3. Finally, a wide variety of clustering algorithms was applied, covering all major types, from 
representative-based to hierarchical and graph clustering.  

Among the tested techniques, the graph clustering algorithms exhibit rather low performance, due 
to the low number of features, which after normalization yield very high similarities between most 
records. As a result, the similarity thresholds we considered in [0,1] with a step of 0.01 yield a single 
cluster or very few, quite imbalanced ones in combination with most graph clustering algorithms. 
More fine-grained similarity thresholds (e.g., in [0.9990,  0.9999] with a step of 0.0001) will probably 
produce better results. However, this means that graph clustering is excessively sensitive to the 
similarity threshold, rendering its fine-tuning an non-trivial task.  

In these similarity settings, configuring the number of final clusters is more straightforward than fine-
tuning the similarity threshold. As a result, the representative-based and hierarchical clustering 
algorithms outperform the graph one to a significant extent. Among them, K-means performed 
better than GMM and Hierarchical Clustering, with its best performance corresponding to K=10. This 
outcome was achieved after an extensive study on the number of clusters that provided the optimal 
balance between the three considered evaluation measures (Silhouette, Davies-Bouldin, and Calinski-
Harabasz index) and the usefulness of the resulting profiles. The configurations of the best scores 
often led to meaningless typical profiles, requiring a more in-depth analysis. Selecting the ideal 
covariance type for GMM clustering and distance measure for Hierarchical clustering was also crucial; 
tied covariance and Ward’s Method were consistently the most appropriate options, respectively.  

On the downside, K-means and GMM are sensitive to the random initialization of their algorithms (as 
expressed through the seed that is responsible for these initializations in the scikit-learn library, 
defined through the parameter random state). As a result, the seed affects the results and their 
reproducibility. To address this issue, we conducted multiple analyses to determine the optimal 
random state for each study. 

The results of this deliverable intend to help Utilities, Distribution System Operators (DSOs), and 
CPOs to perform a successful and intelligent integration of EVs into the energy system, providing 
them with valuable information about the charging behavior of EVs and users. They can also be 
helpful in future activities related to power systems planning and in the coordination of EVs with 
Renewable Energy Sources (RES). 
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