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Abstract—The mass adoption of electric vehicles (EVs) has
been accelerated by the need for the energy transition. Never-
theless, the continuous growth of EVs can bring new challenges
to electric power systems, which include voltage and congestion
constraints in low-voltage (LV) and medium-voltage (MV) net-
works. To anticipate these constraints, it is necessary to develop
algorithms to predict EV charging behaviour. Therefore, this
paper proposes a computational implementation based on Ran-
dom Forest for the accurate forecast of EV power consumption.
The process starts with the data collection, followed by pre-
processing, to clean and prepare the data to be used in the
forecast method. Then, feature engineering and feature selection
steps are applied to create and select the inputs (features) for the
forecasting process, and finally, the forecast and validation steps
are implemented. The case study analyzed uses real data from the
charging station inside the University Instituto Superior Técnico
and the results demonstrate the effectiveness of the proposed
forecast method since for one year of training and one month
of forecasting were obtained a Mean of the Absolute Error of
203.23W and a Normalized Root Mean Square Error of 3.44%.

Index Terms—Charging Stations, Electric Vehicles, EV Power
Consumption Forecast, Machine Learning, Random Forest.

I. INTRODUCTION

Both the increasing penetration of renewable energy sources
and the commitment to carbon neutrality have boosted electric
vehicles (EVs) into one of the most reliable and economically
viable solutions to reduce greenhouse gas emissions [1]. EV
adoption in Europe has shown steadily growing, for instance,
in 2021 EV sales achieved an annual growth of 65% over
the previous years [1]. Due to the highly uncertain behaviour
of EV users, EVs mass adoption represents a new and prob-
lematic power demand for the electric power system [2], by
introducing high variation in the normal power demand, and
degradation in the local transformer, among others. Therefore,
EV power consumption forecasting is a key measure in power
system planning, scheduling, and operation [3], which can help
to better manage the scheduling of EV charging stations (CSs)
in an optimal and secure way for the power system [4]. Several
research works have been devoted to developing forecast
strategies to support the optimal management of EV charging
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behaviour [3], [5]. A spatial-temporal model, based on Monte
Carlo simulation, aiming to analyse the impact of large-scale
deployment of EVs on the urban distribution network was
proposed by the author in [5]. Considering the integration
of information related to the power system, transportation
network, EV technical specifications, and market data, it was
possible to obtain the EV charging load forecast. In [6] the
authors propose a methodology to predict the additional EV
charging load in the mid-and-long term. The methodology
proposed includes probabilistic modelling aiming to analyse
EV charging profiles, and consequently predict the EV future
pattern ownership. Results show information related to the
hour of peak EV power consumption for 2025, indicating an
increase of 11.08% of the total electric demand for the case
study. A forecasting strategy for the EV charging load based
on the Random Forest (RF) algorithm has been proposed in
[7]. RF algorithm is used to realize short-term forecast focus
on the charging station. A large amount of historical data
is analyzed and learned to implement RF and to obtain an
effective prediction of the EV charging load. Nevertheless, this
proposal does not implement the RF algorithm considering
other aspects such as pre-processing, feature engineering, or
clustering in a complete framework. The authors in [8] imple-
mented four different forecasting methods: nearest neighbour,
modified pattern sequence forecasting (MPSF), Support Vector
Regression, and RF. Hence, through a comparison of these
methods was possible to analyze the EV charging load data
and find that the most suitable method to forecast the EV
charging demand was the MPSF.

This work adds a contribution to the existing literature by
proposing: 1) A computational implementation based on a
complete framework considering the analysis of raw data and
implementing stages of pre-processing, feature engineering,
feature selection, forecasting based on the RF method, and
validation. 2) An evaluation of the performance of the RF
algorithm to predict the charging behaviour of EVs, using
real EV power consumption data from a case study. 3) A
comparison of the results by using different error metrics.

II. METHODOLOGY

The methodological framework proposed in this paper is
shown in Figure 1. Hence, it is composed of the following
stages: 1. Pre-Processing, 2. Feature Engineering, 3. Feature
Selection, 4. Forecasting Method, and 5. Validation.
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Fig. 1: Methodological framework proposed

A. Pre-Processing
In the pre-processing step, the raw dataset is analyzed, in

which, only data that satisfy the condition Energy ≥ 0 is
considered. In case there are negative values of the energy,
those values are removed. Then, the power consumption is
calculated by dividing the energy by 0.25 (given that the time
resolution of 15 minutes is equivalent to 0.25h). For handling
missing data, two approaches are applied. 1) If there are less
than two hours of missing values, linear interpolation is used
to fill the gap. 2) For more than two hours of missing values,
the gap is not filled because creating artificial values for long
periods of time may have a negative impact on the forecast.
Both approaches are included in the computational implemen-
tation (to use with future datasets), despite, no missing values
existing in the dataset used.
B. Feature Engineering

In this stage, relevant and useful features that will be input
into the forecasting algorithm are generated. Two categories
of features are created, namely date/time features and lag fea-
tures. In the first group, the following variables are generated
from the timestamp of each record: Week of Year (from 1-
52), Day of Year (from 1-365), Season (from 1-4), Month
(from 1-12), Day of Month (from 1-30/31), Day of Week
(from 1-7), Weekend (1 if weekend, 0 if not), Holiday (1
if holiday, 0 if not), Hour (from 1-24) and Minute (15, 30
or 45). In the second group, past values of power are used
to create the following variables: Lag Consumption 1 (power
value 15 minutes before), Lag Consumption 4 (power value
1 hour before), Mean Rolling 4 (mean power of last hour),
Lag Consumption 96 (power value 1 day before) and Mean
Rolling 96 (mean power of last day).

Finally, a clustering process is also performed at this stage,
with the purpose of identifying daily patterns of EV power
consumption in the CS. To do that, the power consumption

is classified into clusters or groups, using K-means method
[9]. The algorithm first chooses random points as centroids
and then iterates adjusting them until full convergence [9]. To
define the optimal number of clusters (K) for this case study,
the elbow method, which is a line plot comparing the number
of clusters and the total within clusters sum of squares was
implemented [10]. The optimal number of clusters corresponds
to the point where the curve starts to bend (the elbow of the
curve). Once the clusters (groups) are created, a new variable
called Clusters is generated assigning the cluster number to
each power consumption data point.

C. Feature Selection
The feature selection intends to determine which variables

have the higher correlation with the forecast variable, namely
EV power consumption, and will be therefore used as input
to the forecasting method. First, it is necessary to transform
some of the date/time features such as Week of Year, Day of
Year, Season, Month, Day of Month, Day of Week, Hour, and
Minute; because they are cyclic variables by nature. Hence,
each of these features is transformed into two components (x
and y) according to:

fx = sin (2πf/max(f)) (1)

fy = cos (2πf/max(f)) (2)

Where f represents the cyclic feature to be transformed, fx
and fy represent the first and second components of the cyclic
feature, and max(f) corresponds to the maximum value of the
cyclic feature [11]. Once the cyclical features are transformed,
a correlation matrix is used to observe the relationship between
the different variables and the forecast variable (Ev power con-
sumption). Afterwards, for feature selection, a wrapper method
based on a specific machine learning algorithm is chosen.
Wrapper methods allow to identify the best-performing set
of features against the evaluation criterion [12]. For RF, the
features are ranked from the higher to the lower score, thus it
is decided to use the features that obtained the higher scores
to perform the forecast. To determine the specific number of
features to use in the forecast, a sensitivity analysis is executed.

D. Forecasting Method
RF was used to forecast the EV power consumption. RF is a

commonly used machine learning algorithm, which combines
the output of multiple decision trees to reach a single result
[13]. It is an extension of the bagging method, as it utilizes
both bagging and feature randomness to create an uncorrelated
forest of decision trees. While decision trees are prone to
problems, such as bias and overfitting, RF forms an ensemble
with multiple decision trees and uses averaging to improve
the predictive accuracy and control over-fitting [13], [14]. At
this point, the number of features to use in the algorithm
and the number of days to forecast are defined. Based on the
time horizon of the forecast, the dataset is divided into two
groups: the training set, which is the data used by the algorithm
to discover and learn patterns between the features and the
forecast variable; and the test set, which is the actual data
used by the algorithm to generate the predictions. Both groups



Fig. 2: Power consumption histogram

are subsequently passed to the RF method and the power
consumption predictions are obtained. The steps involved in
the algorithm are the following:

• Step 1: Randomly select a subset of data points and a
subset of features to construct each decision tree.

• Step 2: Individual decision trees are constructed.
• Step 3: Each individual decision tree will generate a

prediction.
• Step 4: The final prediction is calculated by averaging

the predictions of the individual decision trees.

E. Validation
The final stage involves two steps. 1) The calculation of

two error metrics aiming to evaluate the performance of the
RF method. 2) The generation of the plots of results aims
to compare the real values of power consumption with the
predictions obtained.

III. RESULTS AND DISCUSSION

A. Data Description
The dataset used in this study was provided by Instituto

Superior Técnico (IST), University of Lisbon. It consists of
the timestamp and the energy consumption (Wh) records of
the EV CS located inside the Alameda campus for the period
01/10/2021 to 30/11/2022. The temporal resolution of the data
is 15 minutes, which means that the energy records were
obtained every 15 minutes.

B. Pre-Processing
After cleaning the data, the final dataset is composed of

40,531 rows of data. Figure 2 presents the histogram of the
power consumption in the CS, where it is possible to observe
that the majority of the power consumption is lower than 1 kW,
specifically 36,353 rows of data. However, there are also some
important values of power consumption higher than 15 kW that
are imperceptible in the figure but need to be considered in the
forecast, as explained in Section II-A. The maximum power
consumption registered in the CS for a 15 minutes period is
26.53 kW (imperceptible in Figure 2, because it corresponds
only to one single point). It is important to mention that this
dataset does not offer information related to how many cars
were connected at the same time in a particular period, hence,
the only information available is the power consumed in the
station in those 15 minutes.

C. Feature Engineering
Figure 3, Figure 4, and Figure 5 show the EV power

consumption behaviour with respect to some of the date/time
variables created in the feature engineering stage (II-B). Fig-
ure 3 corresponds to the average power consumption per hour,
which allows observing the daily pattern of the CS. There is
a small power consumption for periods of time before 8h00
and after 20h00 and there is a peak power consumption of
2.2kW at 10h00 and 2kW at 11h00. This kind of behaviour is
normal since the activities at the University start at 8h00 and
people usually put the EV to charge as soon as they arrive at
the University.

Figure 4 presents the average power consumption per day
of the week in the CS. There is no major difference between
weekdays, having an average power consumption of around
0.8 kW from Monday to Friday. The big difference appears
during the weekends, in which the average power consumption
decreases to 25% (0.2 MW) when compared with the power
consumption on Monday. Nevertheless, this difference is to
be expected, due to the fact that during the weekend there are
no normal activities at the University and, consequently, the
usage of the CS is significantly reduced.

Figure 5 presents the average power consumption per month
in the CS. In this case, it was expected to observe a higher
power consumption during the winter season (months 12, 1,
and 2) because, in Winter, EV energy consumption increases
due to the use of the heating system of the vehicles. However,
by analyzing Figure 5 the opposite is observed. There is a
reduction in power consumption during the Winter months
and, this can be explained by the fact that from December to
February there is not much teaching activity in the University,
students only have final exams and vacations during that pe-
riod. Moreover, the month with the lower power consumption
is August (month 8), when the University is on vacation.

Regarding the clustering process performed, Figure 6 was
created aiming to identify daily power consumption profiles in
the CS. Multiple shapes are observed, representing the power
consumption behavior for each day available in the dataset.
The majority of the power consumption is concentrated be-
tween 8h00 and 17h00 (that corresponds to the working hours),
but no repetitive behavior is distinguished between days. As
mentioned in Section II-A, EV power consumption in CS
presents high variability, hence, it is difficult to define the

Fig. 3: Average power consumption per hour



Fig. 4: Average power consumption per day of the week

Fig. 5: Average power consumption per month

number of clusters (groups) visually using Figure 6. Therefore,
Figure 7 was employed to define the optimal numbers of
clusters (K) to use, based on the elbow method. Here again,
it is not possible to clearly see the point corresponding to the
elbow (bend) of the curve, but it should be a value between 12
to 25 clusters. After several trials doing the forecast using all
cluster values in this range, it was determined that the optimal
number of clusters is 20 (blue line in the figure).

D. Feature Selection

Figure 8 presents the correlation coefficient of each feature,
obtained from the correlation matrix. The correlation matrix
provides the relationship between variables on a scale between
-1 and 1, where -1 shows a perfect, linear negative correla-
tion, and 1 shows a perfect, linear positive correlation [15].
A negative correlation coefficient demonstrates a connection
between two variables in the same way as a positive corre-
lation coefficient, the only difference is that in the negative
correlation, the two variables move in the opposite direction,

Fig. 6: Identifying daily patterns in EV power consumption
profiles

Fig. 7: Elbow method for the optimal number of clusters

while in the positive correlation, the two variables move in the
same direction. The features that present the higher correlation
with power consumption are Lag Consumption 1 (0.94), Mean
Rolling 4 (0.85), Lag Consumption 4 (0.69), Clusters (0.29),
Hour x (-0.29), Mean Rolling 96 (0.22) and Lag Consumption
96 (0.20), based on the correlation matrix.

Figure 9 presents the feature importance score obtained for
each feature using the wrapper method based specifically on
RF regression. The features that obtained the higher scores
were Lag Consumption 1 (0.92), Clusters (0.036), Mean
Rolling 4 (0.013), Lag Consumption 4 (0.012), and Lag
Consumption 96 (0.004). To decide the number of features
to use in the RF method (next stage), a sensitivity analysis
was performed to determine the optimal number of features
to maximize the accuracy and reduce the error between power
consumption predictions and real values. Different forecasts
were created for the same time horizon, changing only the
number of features used in the forecast, starting from 1 feature
up to 10 features, always considering the features from the
higher score to the lower score, which means that features
were added one by one from left to right when looking at
Figure 9. After this sensitivity analysis, it was determined
that the optimal number of features corresponds to the best
3 features; for that reason, only Lag Consumption 1, Clusters,
and Mean Rolling 4 should be used to perform EV power
consumption forecast using the RF method with this dataset.

E. Forecasting Method

Once the features and the number of features to use in
the RF method have been determined, the other important

Fig. 8: Feature correlation coefficients



Fig. 9: Feature importance wrapper method

Fig. 10: Real power vs predicted power RF results

parameter to define is the number of days to forecast (time
horizon of the forecast). In this case, the predictions, the plot of
results, and the error calculations are obtained for one month
of forecasting.

Afterward, the RF method is implemented using
the following hyperparameters: n estimators = 200,
min samples leaf = 3, min samples split = 7,
max depth = 30, bootstrap = True and
max leaf nodes = None. Finally, the EV power
consumption predictions for November of 2022 are produced.

The two metrics mentioned in Section II-E are calculated
using the predictions obtained from the RF method and the
real values of power consumption for November of 2022. The
performance achieved for one year of training and one month
of forecast is MAE = 203.23 W and NRMSE = 3.44 %
There is a high accuracy in the predictions since the NRMSE is
only 3.44%. Moreover, when looking at the MAE, the results
show that on average, the distance between the prediction
value and the real value is 203.23 W. Based on this, the
results demonstrate the effectiveness of the computational
implementation. Once the performance of the RF method has
been evaluated in terms of errors, Figure 10 is produced.
Figure 10 compares the forecasting results (in blue) with the
real values of power (in red) for the whole forecast period
defined (one-month). The red parts observed in Figure 10 are
equivalent to the errors that the forecasting model could not
capture, but overall the results demonstrate the effectiveness
of the proposed method.

IV. CONCLUSIONS

A methodological framework for accurate EVs power con-
sumption forecast in charging stations has been proposed in
this paper, applying RF method. The framework proposed
is able to take advantage of real data from CSs to process
through several stages including feature engineering, feature
selection, forecasting method, and validation. The results
verify that through the framework proposed is possible to
forecast EV power consumption and its typical temporal
patterns. For instance, it was observed that the EVs peak
power consumption during a workday occurs between 10h-
11h. Moreover, the results indicate a reduction in EV power
consumption by 25% during the weekend and related to the
EV CSs usage through the months, it was observed the lower
average consumption during August. The forecasting stage by
applying a RF algorithm allowed to validate the performance
of the method, in which it was obtained a Normalized Root
Mean Square Error of 3.44% for a one-month EV power
consumption forecast.
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