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Abstract

As the world embraces cleaner energy, electric vehicles (EVs) are becoming in-
creasingly prevalent, gradually replacing conventional combustion engine vehicles
on our roads. While some EV smart charging technologies are commercially avail-
able, they are not widely used in public EVs chargers. Deploying smart charging
functionalities on a large scale could reduce grid impact, accelerate the roll-out of
charging infrastructure, and proactively integrate EVs clusters in grids and flex-
ibility markets, making them a key asset in the green transition. However, the
novel nature of the technology and the underdeveloped framework for EV-based
flexibility services present significant unknowns, leading charging point operators
(CPOs) to question the viability of its value chain. Research in smart charging
technologies aims to develop EV chargers that can control power dispatch based
on grid conditions and introduce a framework to marketise such controllability in
flexibility markets.

This thesis investigates the potential of smart EV clusters to operate autonomously
as controllable loads, providing flexibility services to grid operators (GOs) while
ensuring an optimal charging experience for EV users. The analysis is conducted
in two parts: first, the design of an analytical framework to streamline the plan-
ning and sizing of smart EV clusters in preparation for future flexibility market
opportunities; second, the development of an autonomous distributed control ar-
chitecture capable of coordinating multiple clusters to deliver flexibility services
under the control of aggregators and GOs, while still maintaining a user-centred
charging experience.

The first part of the thesis investigates the flexibility potential of smart EV
clusters and the factors that influence it. It opens with an overview of the deploy-
ment status of smart EV infrastructures, identifying key technological, economic,
and policy barriers to their integration as providers of flexibility services. The
combination of these barriers creates uncertainties about the flexibility potential
and profitability of smart EV clusters, slowing their deployment. To address this
uncertainty, the thesis presents an analytical framework designed to quantify the
suitability of clusters for behind-the-meter (BTM) and in-front-of-the-meter (FTM)
flexibility services. This tool is valuable for CPOs and aggregators in estimating
potential revenues from offering flexibility services to users and grid operators. The
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study also examines how different cluster characteristics and user behaviour impact
the suitability of the cluster for providing flexibility. By identifying barriers and
proposing solutions, the first part of the thesis advances the discussion on smart
EV infrastructure deployment, while offering insights on cluster dimensioning and
suitability for different flexibility services based on forecasted operating conditions.

The second part of the thesis centers around the development of the autonomous
distributed control architecture for EV clusters. It covers the design concept and
implementation, development stages, computational analysis, and experimental
validation of the system. A computational analysis evaluates the performance of
the architecture in delivering flexibility services through smart charging function-
alities, addressing the coordination of charging sessions within a single cluster for
BTM services and the coordination of multiple EV clusters for FTM services. The
findings provide computational evidence that distributed control is a promising
alternative to centralized control for delivering flexibility services. Following the
development of the chargers prototypes, an experimental campaign was conducted
to validate the technical feasibility of this architecture. The experiments, which re-
produced the simulated smart charging functionalities on a smaller scale, assessed
the performance of the system in terms of accuracy and communication delay. The
results confirmed the feasibility of the distributed control architecture, while also
highlighting potential limitations of current EV models in supporting certain smart
charging functionalities.

In conclusion, this thesis offers new perspectives on the key factors involved
in designing smart EV clusters. It addresses both the physical attributes of the
clusters—–such as connection capacity, charger capacities, location, and type of
cluster–—and the impact of different charging strategies on their effectiveness.
The study breaks new ground in the field of EV controllability by presenting and
demonstrating the efficacy of a novel control architecture for smart EV chargers
and by highlighting the potential and limitations of EVs as controllable loads.



Resumé

Efterhånden som verden tager renere energikilder i brug, bliver elbiler stadig mere
udbredte og erstatter gradvist konventionelle forbrændingsmotorer på vejene. Selvom
nogle intelligente opladningsteknologier til elbiler allerede er kommercielt tilgæn-
geligt, bliver de ikke anvendt i stor udstrækning i offentlige ladestandere til elbiler.
Implementering af smarte ladefunktioner i stor skala kan reducere belastningen på
elnettet, fremskynde udbygningen af opladningsinfrastrukturen og proaktivt inte-
grere klynger af elbilsladere i el- og fleksibilitetsmarkederne, og derved gøre dem
til et nøglekomponent i den grønne omstilling. Dog indebærer teknologiernes nye
karakter og den underudviklede ramme for fleksibilitetsydelser baseret på elbi-
ler betydelige usikkerheder, hvilket får ladeoperatører til at stille spørgsmål ved
værdikædens levedygtighed. Forskning inden for smartladningsteknologier har til
formål at udvikle elbilsladere, der kan styre effekten baseret på netforhold, samt
at introducere en ramme til at markedsføre denne styring i fleksibilitetsmarkeder.

Denne afhandling undersøger potentialet for intelligente elbilsklynger til at fun-
gere autonomt som styrbare belastninger, og derved leverer fleksibilitetsydelser til
gavn for ladeoperatører og samtidig undgå kompromier med brugernes opladnings-
oplevelse. Analysen er i to dele: Først designes en analytisk ramme, der skal forenkle
planlægning og dimensionering af intelligente elbilsklynger i forhold til fremtidige
muligheder på fleksibilitetsmarkedet. Dernæst udvikles en autonom, distribueret
kontrolarkitektur, der er i stand til at koordinere flere klynger for at levere fleksi-
bilitetsydelser under kontrol af aggregatorer og netoperatører, samtidig med at der
opretholdes en brugervenlig opladningsoplevelse.

Første del af afhandlingen undersøger fleksibilitetspotentialet i intelligente el-
bilsklynger og de faktorer, der påvirker det. Denne del begynder med et overblik
over implementeringsstatus for intelligente elbilsinfrastrukturer, hvor de vigtigste
teknologiske, økonomiske og politiske barrierer for deres integration som leveran-
dører af fleksibilitetsydelser identificeres. Kombinationen af disse faktorer skaber
usikkerhed omkring fleksibilitetspotentialet og rentabiliteten for intelligente elbils-
klynger, hvilket hæmmer deres udbredelse. For at imødegå denne usikkerhed præ-
senterer afhandlingen en analytisk ramme designet til at kvantificere klyngernes
egnethed til fleksibilitetsydelser inden for både tjenester bag el-måleren og tjene-
ster foran måleren. Dette værktøj er værdifuldt for ladeoperatører og aggregatorer
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til at estimere potentielle indtægter fra udbud af fleksibilitetsydelser til brugere og
netoperatører. Undersøgelsen analyserer også, hvordan forskellige klyngekarakteri-
stiker og brugeradfærd påvirker klyngernes egnethed til fleksibilitetsydelser. Ved
at identificere barrierer og foreslå løsninger bidrager første del af afhandlingen til
diskussionen om implementeringen af intelligente elbilsinfrastrukturer og tilbyder
indsigt i dimensioneringen af klynger og deres egnethed til forskellige fleksibilitet-
sydelser baseret på forventede driftsforhold.

Anden del af afhandlingen fokuserer på udviklingen af en distribueret autonom
kontrolarkitektur for elbilsklynger. Denne del omhandler designkonceptet, imple-
menteringen, udviklingsstadierne, beregningsanalysen og den eksperimentelle vali-
dering af systemet. En beregningsanalyse evaluerer arkitekturens præstation i leve-
ringen af fleksibilitetsydelser med smarte opladningsfunktioner. Analysen adresse-
rer både koordineringen af opladningssessioner inden for en enkelt klynge til tjene-
ster bag måleren og koordineringen af flere elbilsklynger til tjenester foran måleren.
Resultaterne giver analytisk bevis for, at distribueret kontrol er et lovende alter-
nativ til centraliseret kontrol for levering af fleksibilitetsydelser. Efter udviklingen
af prototype-ladere blev der gennemført en eksperimentel test kampagne for at
validere de tekniske styrker af arkitekturen. Eksperimenterne, som reproducerede
de simulerede smarte opladningsfunktioner i mindre skala, vurderede systemets
præstation i forhold til nøjagtighed og kommunikationsforsinkelse. Resultaterne
bekræftede den distribuerede kontrolarkitekturs styrker, men fremhævede også po-
tentielle begrænsninger i de nuværende elbilsmodeller i understøttelsen af visse
smarte opladningsfunktioner.

Afslutningsvis giver denne afhandling nye perspektiver på de vigtigste omdrej-
ningspunkter, der er involveret i designet af intelligente elbilsklynger. Den adresse-
rer både de fysiske parametre ved klyngerne, såsom forbindelseskapacitet, ladeka-
paciteter, placering og klyngetype, samt virkningen af forskellige opladningsstrate-
gier på lade effektivitet. Studiet baner ny vej inden for elbilernes styrbarhed ved
at præsentere og demonstrere effektiviteten af en ny kontrolarkitektur til smarte
elbilopladere og ved at fremhæve potentialet og begrænsningerne af elbiler som
styrbare belastninger.
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Summary Report





CHAPTER 1
Introduction

1.1 Context and motivation
To reduce CO2 emissions, governments are promoting a shift away from fossil
fuels in favour of sustainable technologies in both electricity production and trans-
portation [1]. For electricity production, this involves promoting renewable en-
ergy sources (RES), while in the transportation sector, it means accelerating the
adoption of electric vehicles (EVs) for both private and public transport [2]. The
penetration of RES into the power system is crucial for reducing carbon emissions
but introduces challenges related to their intermittent and unpredictable energy
production [3]. Traditionally, stability and security of supply have been main-
tained through energy markets, including flexibility markets, where controllable
energy suppliers and consumers offer flexibility to grid operators [4]. In these
markets, flexibility is provided through standardised products known as flexibility
services. However, as the traditional controllable power plants are replaced by less
predictable RES, the grid faces increasingly volatile power production, creating
a greater need for energy buffers that can absorb excess energy production and
reduce consumption during shortages [5].

Smart charging offers a solution to these challenges by turning EV chargers into
flexible grid assets [6]. Without smart management, large-scale EV charging could
destabilise the grid [7], [8], but smart charging can provide substantial storage
capacity, becoming an integral part of future smart grids [6]. Charging infrastruc-
tures are implemented as EV charging clusters owned and managed by charging
point operators (CPOs) and aggregators [9], where multiple outlets share a com-
mon grid connection, referred in this thesis as point of chargers connection (PCC).
These clusters typically modulate the power consumption of the connected EVs to
avoid overloading their grid connection [10], but they lack advanced functionali-
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ties. State-of-the-art smart EV clusters employ control strategies to offer flexibility
services by adjusting charging power according to strategic power set-points and
scheduling charging sessions based on user demand [11], [12]. The provision of
these services to the grid operators will be remunerated in flexibility markets and
be financially convenient for the EV users, as well as the CPOs and aggregators.
Flexibility services from aggregated EV clusters can be monetised in flexibility mar-
kets, benefiting CPOs and aggregators and potentially lowering charging prices for
users participating in these services.

Despite its potential, smart charging faces several obstacles, including technical,
economic, and regulatory challenges [13]. These barriers create a feedback loop
that discourages EV adoption among drivers and limits investment in smart EV
charging infrastructure [14]. Overcoming these challenges requires coordination
among multiple stakeholders, such as charger manufacturers, carmakers, CPOs,
grid operators (GOs), and flexibility market operators, to standardise technologies
and create compatible infrastructures. Government and policymakers must oversee
and incentivise these efforts.

One major challenge in deploying smart EV charging clusters is the uncertainty
about their flexibility potential and profitability. CPOs need to upgrade existing
infrastructures, including hardware and software, to provide flexibility services and
plan new clusters that align with future developments. They face the dual challenge
of minimising costs while maximising potential revenues, a task made more difficult
by the current uncertainty in flexibility markets. Decisions regarding the placement
and sizing of EV clusters are crucial for optimising revenue and attracting EV
users [15]. Developing robust and reliable control strategies and communication
architectures is essential alongside cluster design [16], [17]. These strategies must
leverage internet of things (IoT) and cloud computing for data management and
offer a user-friendly experience to encourage EV owners to participate in flexibility
services by offering lower charging prices.

Given this context, ongoing research should focus on developing and testing
smart charging strategies, including control. Computational analysis should be
conducted on various scales, from large-scale studies of user behaviour to guide
the strategic placement of EV clusters in cities and ensure grid compatibility [18],
to smaller-scale analyses aimed at optimising charging strategies and enhancing
cluster flexibility based on specific connection patterns.

1.2 Research Objectives
The present thesis explores the quantification flexibility potential of EV clusters
and proposes a novel distributed control architecture for EV chargers to harness
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this potential. The control architecture was developed and installed in an office
parking lot at the Risø campus of the Technical University of Denmark as part
of the research project ”Autonomously Controlled Distributed Chargers” (ACDC).
The goal of the research project was to demonstrate the feasibility of the design
and evaluate its prospective capabilities.

The developed control architecture consists of a two-layer system: the first layer
consists of a cloud computing platform, referred to as cloud aggregator (CA), which
coordinates the power set-points of each managed EV cluster controlled and treated
as a whole unit. This coordination is based on user presence, grid conditions,
and flexibility services scheduled from CPOs/aggregators. The second layer is an
autonomous control unit, called virtual aggregator (VA), installed in each charger,
which independently manages the charging sessions of connected EVs according to
the set-points from the CA and conditions at the PCC. Additionally, the control
architecture implements a priority system based on user inputs from a mobile app
to prioritise the most urgent charging sessions. The thesis objectives are grouped
into two distinct research perspectives.

The first perspective focuses on analysing EV clusters as distributed energy
storage systems and mapping their flexibility potential in relation to their differ-
ent characteristics. This requires designing a straightforward and comprehensive
analytical framework and well-defined key performance indicators. The developed
method aims to support policymakers, CPOs, and aggregators by enabling them
to leverage charger metering data to optimise the sizing of new EV clusters and
determine when to consider upgrading existing ones to provide flexibility services.
The method is designed to aid the development of EV clusters tailored to future
flexibility market opportunities and balancing trade-offs between BTM and FTM
flexibility services. The key questions explored involve determining the character-
istics shaping flexibility potential and assessing how significantly they impact it.
The factors analysed relate to the electrical layout of the cluster (such as number
of chargers, connection capacity, power capacity of the chargers), the control archi-
tecture, the type and location of the parking lot and consequently, user behaviour.

The second perspective focuses on developing and validating the distributed
control architecture, assessing its performance in coordinating various EV clus-
ters and their charging sessions to provide flexibility services. The local control
layer of the control architecture must ensure autonomous smart charging func-
tionalities, such as power-scheduling, power-sharing and prioritisation of charging
sessions among the EVs within the clusters. Meanwhile, the global control layer
must aggregate the power demand of the controlled EV clusters to provide vari-
ous flexibility services, such as peak shaving, RES power matching and frequency
regulation. The thesis aims to measure the effectiveness of this architecture and
evaluate its performance through computational simulations and experimental val-
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idation.
In conclusion, based on the findings from these two research perspectives, the

thesis provides insights on design choices for improving the cost-effectiveness of
smart EV clusters, including considerations for electrical layout, control architec-
ture, and strategy design. Lastly, the thesis addresses current limitations in the
controllability of existing EV models and outlines directions for future research.

1.3 Thesis outline
The thesis is divided into two parts. Part I is a comprehensive summary report
outlining the thematic framework for the scientific publications and highlighting
their main contributions and findings. This section consists of six chapters: an
introduction, four technical chapters, and a conclusion. Part II includes the six
scientific publications integrated into the thesis. This section provides an overview
of the content covered in Part I.

Chapter 2 focuses on the integration of EV clusters as controllable loads for pro-
viding grid services. The first section contains an overview of the techno-economic
and policy frameworks for integrating smart EV chargers into the grid as flexibility
services providers. It then presents the content of Paper [P1], identifying the
main barriers to the deployment of smart charging technologies and proposing ac-
tion points to address these challenges. One key barrier discussed is the uncertainty
surrounding the flexibility potential of EV clusters. The third section introduces
an analytical framework developed to quantify this flexibility potential, as detailed
in Paper [P2]. Starting with a thorough review of the current state-of-the-art
methodologies on the topic, it introduces new criteria for assessing cluster flexibil-
ity. The criteria are demonstrated through computational analysis using metering
data from chargers. A sensitivity analysis is employed to evaluate how various
cluster characteristics–—such as connection capacity, aggregated battery capacity
of EVs, power capabilities of EVs and chargers, and the number of daily charg-
ing sessions—–affect flexibility. The final section concludes with insights into the
design of EV clusters and suggestions for further methodological improvements.

Chapter 3 introduces the autonomous distributed control architecture that has
been developed, which is the focus of the remainder of the thesis. It starts by
reviewing the state-of-the-art in control algorithms for EV chargers and the com-
mercially available control architectures for both public and private applications.
The second section describes in general terms the concept of the architecture, pro-
viding an overall overview of the functionalities it offers. The chapter then de-
scribes the design of Version 1 of the architecture and the characteristics of the
simulation model for the computational analysis. The next section describes the
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design of Version 2 of the architecture and its physical implementation employed
in the experimental campaign. The final section summarises the advantages and
disadvantages of the two versions of the architecture.

Chapter 4 examines the performance of the control architecture in a compu-
tational environment. The first section, based on Paper [P3], focuses on the
simulation of a single cluster, evaluating the effectiveness of the VAs in coordinat-
ing the charging sessions under limited connection capacity while also assessing user
charging fulfilment. The next section, based on Paper [P4], investigates the abil-
ity of the architecture to coordinate multiple EV clusters. In the simulation, four
clusters are part of a virtual power plant (VPP) powered by a wind turbine and are
connected to different transformers. The goal of the control is to simultaneously
achieve wind power matching and peak shaving to avoid transformer overloading.
The chapter concludes by summarising the findings and offering suggestions for
improvements, leading to the updated version of the architecture.

Chapter 5 details the experimental campaign conducted to validate the tech-
nical feasibility of the design and methodology. The first section describes the
experimental setup employed for the different test cases. The next sections dis-
cuss the results of different functionalities tested, which are power-sharing, power-
scheduling, RES power matching, and peak shaving, as covered in Paper [P5]
and Paper [P6]. The following section, summarising the study in Paper [P7],
analyses the effectiveness of the system performing priority-based frequency reg-
ulation, which combines frequency regulation with the prioritisation of charging
sessions based on user-provided urgency data via app. The chapter concludes with
a summary of the results and key findings, and discusses potential improvements
in the control design.

Chapter 6 provides a summary of the key contributions and findings of the
thesis and suggests potential directions for future research.
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CHAPTER 2
The potential of smart

charging

This chapter focuses on the integration of EV clusters as controllable loads for pro-
viding grid services. Section 2.1 provides an overview of the status of smart EVSE
integration in the power system and discusses different barriers towards their full
implementation for flexibility services. Section 2.2 then introduces the developed
method for quantifying the flexibility potential of EV clusters, starting from the
motivation and state-of-the-art methodologies and introducing the flexibility cri-
teria. Subsequently, Section 2.3 introduces the model and assumption used for
demonstrating the use of the analytical framework. Next, Section 2.4 discusses the
results of the simulation and sensitivity analysis. At last, 2.5 concludes the chapter
with a summary of the main findings and provides ideas for future work.

2.1 The status of EVSE integration
The management of EV charging has the potential to transform the power grid
and serve as a foundational element for future smart cities. Depending on the
technology employed, EVs can function both as flexible loads, by shifting charging
times and modulating charging power, and as flexible sources, by feeding power
back into the grid. Through the internet of things (IoT), aggregators and charging
point operators (CPOs) can control the charging demands of large fleets of EVs
across various clusters, providing flexibility services to grid operators (GOs). Flex-
ibility services are power adjustments made by either the supply or demand side
to maximise the security and stability of the energy supply. EV flexibility services
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can be classified as behind-the-meter (BTM) or in-front-of-the-meter (FTM), with
FTM further divided into local or system-wide services, depending on the specific
application [19].

BTM flexibility mainly benefits EV users or charging site owners by reducing
grid connection costs, minimising charging expenses, or maximising self-consumption
of distributed energy resources (DERs), as discussed in [20]–[23]. Local EV flexi-
bility, which benefits the power distribution network, encompasses various aspects,
such as using smart charging to minimise grid losses [24], perform peak shaving
and congestion management [25], [26], mitigate voltage imbalances [27], and reduce
transformer loss-of-life [28]. System-wide flexibility services, aimed at benefiting
the wholesale market or transmission system, include frequency control [29], [30]
and using EV flexibility to facilitate the integration of variable renewable energy
sources [31]. Table 2.1 summarises EV flexibility services and their standards.

Flexibility services are typically traded through flexibility markets, where smart
charging could enable electric vehicle supply equipment (EVSE) to participate and
generate revenue by providing such services. The EV market actors and stakehold-
ers are briefly described in this section. However, this thesis refers to [32] for a
more comprehensive outline. As the end-users of charging technologies, EV owners
require reliable and efficient functionalities to ensure a seamless charging experi-
ence. Additionally, they need to be appropriately compensated for participating in
flexibility services [33]. CPOs own EV clusters and are responsible for their mon-
itoring, operation, and maintenance. Aggregators collect flexibility from multiple
sources, such as several CPOs, to participate in electricity markets as a balancing
responsible party (BRP) [9]. Aggregation is essential to meet market standards,
such as minimum bid requirements for participation. GOs, including distribu-
tion system operators (DSOs) and transmission system operators (TSOs), are the
primary buyers of these services in the markets. They compensate electricity sup-
pliers and consumers for their capacity to adjust production and consumption to
maintain grid stability and security. This market structure creates value for all
participants, supporting the transition towards sustainable energy production and
transportation.

2.1.1 Overcoming barriers for adopting EVs as flexibility providers
Several technological, economic, and regulatory barriers hinder the adoption of
electric vehicles (EVs) as providers of flexibility services in the power grid. Over-
coming these challenges requires coordinated efforts among stakeholders to harness
the potential of EVs in flexibility markets fully [19].

From a technological standpoint, the current EV infrastructure, including charg-
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Table 2.1: Classification of potential EV flexibility services for FTM applications
(Own illustration based on the work in [32]).

Frequency services
Services Description
1. Fast frequency reserve
2. Frequency containment
reserve
3. Frequency restoration
reserve
4. Replacement reserve
5. Synthetic inertia

1. Power injection starts within 2 seconds and lasts for several minutes; assists
in reducing the Rate of change of frequency.
2. Power injection begins within 30 seconds and is fully activated within 2-5
minutes; it aids in containing deviations from the nominal frequency.
3. Activated within 5-15 minutes and sustained until frequency is restored;
assists in bringing the system frequency back to its nominal value.
4. Power delivered within 15 minutes to 1 hour; ensures sufficient active power
reserves following a disruption and replaces the Frequency restoration reserve.
5. Immediate response (<1 second) to frequency changes; emulates the be-
haviour of traditional rotating generators.

Grid stability
Services Description
1. Emergency power
2. Energy arbitrage
3. RES power smoothing
4. Black start capability
5. Anti-islanding
6. Low voltage ride
through
7. Fault ride through
8. Valley filling
9. Peak shaving

1. Activated during emergencies to provide critical infrastructure with power;
typically involves non-scheduled power plants that can start up quickly.
2. Involves charging when prices are low (off-peak) and discharging when prices
are high (peak).
3. Aims to reduce the variability of power output from renewable energy
sources, which helps to mitigate issues like power flickering.
4. Helps the power grid to restart after a total or partial blackout by supplying
power until the interconnected system is established again.
5. Prevents local generators from continuing to supply power during a wider
network outage, ensuring the safety of repair crews and preventing the spread
of faults.
6. Requires power generation systems to maintain operation despite dips in
grid voltage; contributing to overall grid stability.
7. Requires power generation systems to maintain operation during grid faults
or abnormal operating conditions, such as short circuits.
8. Involves charging energy storage systems during off-peak periods (when
demand is low) and discharging them during peak times; helps to alleviate
load peaks.
9. Entails reducing or curtailing demand during peak times to relieve stress
on the grid.

Congestion management
Services Description
1. Time of use
2. Type of use
3. Dynamic pricing
4. Extreme day pricing
5. Peak time rebate
6. RES power matching
7. Phase balancing
8. DER power matching

1. Involves varying electricity prices based on the time of the day to encourage
consumers to shift their electricity use to periods of lower demand.
2. Featured different rates depending on the type of electricity usage, with
additional fees based on grid carbon intensity.
3. Encompasses adjusting electricity prices in real-time according to supply
and demand; requires advanced metering infrastructure and sophisticated rate
design.
4. Refers to significantly increased electricity prices on days with expected
extremes, often in response to weather events; it aims to incentivise consumers
to shift their usage away from these peak periods.
5. Offers discounts or rebates to customers who reduce their electricity usage
during peak demand periods.
6. Involves scheduling the operation of Renewable Energy Sources (RES) to
align with demand profiles, helping to mitigate the issues caused by the inter-
mittency of RES.
7. Aims to distribute electrical loads evenly across all phases in a three-phase
power system to improve efficiency and reduce losses.
8. Matches supply with demand in systems with DERs, often through demand
response programs or adjustments to DER output.
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ers and communication networks, presents significant obstacles. Most EV chargers
deployed today are not equipped with smart functionalities and cannot perform
advanced tasks like dynamic load management and scheduling [34]. For existing
smart chargers, a major technological challenge across the entire range of involved
devices (from chargers to EVs) is the lack of standardisation in communication
protocols [35] and inconsistencies in EV response accuracy and behaviour. Addi-
tionally, the limited deployment of smart meters and the absence of standardised
protocols impede effective data sharing and grid management. Smart meters, which
must be certified and installed by DSOs, provide essential real-time data to man-
age grid conditions but require precise specifications for parameters like sampling
rates to balance speed and cost. The European Clean Energy Act mandates that
smart meters include remote reading with two-way communication and a maxi-
mum 15-minute sampling rate [36], but the lack of standardised implementation
across Europe remains a barrier. Developing robust information and communica-
tion techology (ICT) systems is crucial for effective metering, control, and commu-
nication among stakeholders, which are necessary for a functional flexibility market
framework.

From an economic standpoint, the lack of a robust economic framework for
flexibility services is a significant barrier to adopting EVs as flexibility providers.
System-wide ancillary services markets, such as frequency and balancing markets,
are already active but offer limited services and require high minimum bids of power
or energy. At the distribution level, however, flexibility markets are still in their
infancy [37]. In Europe, several research initiatives, including Piclo, Enera, Flex,
GOPACS, NODES [38], and Ecogrid 2.0 [39], are leading efforts to establish local
flexibility markets. These markets will facilitate trading between GOs, aggregators,
and CPOs [40]. To facilitate this development, regulators should promote the
creation of additional local flexibility markets based on nodal pricing systems [41].
Furthermore, DSOs should take on the role of defining the flexibility requirements
for aggregators, CPOs or prosumers.

Regulatory challenges also play a crucial role in limiting the deployment of EVs
as flexibility providers. The transition towards smart grids requires DSOs to move
beyond the traditional ”fit-and-forget” approach, focusing primarily on minimis-
ing capital expenditures (CAPEX) by reinforcing the grid when needed. Instead,
they should shift to a total expenditure (TOTEX) framework that balances both
operational expenditures (OPEX) and CAPEX to optimise overall costs [42]. Reg-
ulatory reforms are necessary to encourage proactive management of expenditures
by DSOs and to capitalise on load flexibility opportunities [43]. Additionally, the
adoption of vehicle-to-grid (V2G) technologies encounters regulatory obstacles due
to its novelty, including cumbersome administrative procedures that discourage
user adoption [35]. These hurdles stem from the lack of comprehensive standards
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for connection requirements, classification, and interconnection of V2G systems. To
address these issues, regulators, system operators, and manufacturers need to col-
laborate on standardising these requirements to streamline administrative processes
and ensure safety. Effective grid management also necessitates enhanced coordi-
nation between DSOs, TSOs, and EV users. Whether grid code-based, contract-
based, or market-based, flexible provision strategies rely on a coordinated approach
among these stakeholders. The interaction between DSOs and TSOs becomes par-
ticularly critical as the penetration of renewable energy sourcess (RESs) and DERs
increases, often resulting in conflicting demands between distribution and trans-
mission networks. In such cases, prioritising the needs of the transmission network
over the distribution network is frequently required to preserve grid stability.

2.2 Quantifying the flexibility potential of EV clusters
The underdeveloped flexibility framework for smart charging technologies, de-
scribed in 2.1.1, generates uncertainty about the ability of EV clusters to pro-
vide flexibility services profitably [44]. This uncertainty discourages CPOs from
adopting smart charging technologies, leading them to rely on traditional charg-
ing methods instead. However, the growing adoption of meter-integrated smart
chargers enables new data-driven approaches for planning the electrical layout and
designing smart charging strategies for future EV clusters. By utilising historical
data from clusters, CPOs can predict the flexibility potential and profitability of
these clusters based on their characteristics.

The flexibility potential of EV clusters is influenced by several key factors, in-
cluding location (workplace, curbside, residential, etc.) and type (fast charging,
slow charging) [15]. For example, residential and workplace clusters generally pro-
vide the highest flexibility due to longer connection times [45], whereas highway
fast-charging clusters tend to offer minimal flexibility because of their shorter con-
nection durations [46]. By leveraging metering data, CPOs can tailor the hardware
configurations of clusters—–such as connection capacity, charger power capacity,
and the number of chargers–—to optimise return on investment. This optimisation
helps reduce CAPEX by avoiding oversized grid connections and reduces OPEX
by providing flexibility services.

The rest of this chapter outlines the analytical framework developed in Paper
[P2] to evaluate the flexibility potential of EV clusters and examine the factors
influencing it. The method is designed to aid CPOs and aggregators in making
informed design decisions for new EV clusters, enhancing their ability to provide
flexibility services while improving profitability.
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2.2.1 Available methods in literature
Quantifying the flexibility potential of electric vehicles (EVs) is a complex and un-
derexplored area, with most studies focusing on specific dimensions such as time,
power, or energy. Time-based flexibility is investigated by works like [47]–[49],
which focus on public and office charging, while [50] looks at non-residential charg-
ing, defining flexibility as the ratio of idle to total connection time. Other studies,
such as [51]–[53], explore power or energy-based flexibility, examining public and
workplace charging in locations like Helsinki and Germany. Additionally, [45] fo-
cuses on flexibility in residential apartment complexes, using idle capacity as the
primary metric.

Recent work has adopted a more multidimensional approach to flexibility quan-
tification. For example, [54] introduces a distributed coordination strategy using
indexes that measure SoC deviation, target violation, and battery degradation.
Similarly, [55] proposes metrics like load shift, peak reduction, and load curve
flatness to assess the impact of charging strategies. In a systematic review, [56]
evaluates flexibility across four dimensions—temporal, durational, quantitative,
and locational—highlighting that flexibility remains underutilised and unevenly
applied.

The research in [57] emphasises that flexibility quantification depends on the
stakeholder involved, with a Norwegian case study examining power and energy
KPIs like peak power reduction and self-consumption. Finally, [58], [59] use ex-
tensive mathematical models to quantify aggregated flexibility across EV fleets,
though the complexity and data requirements of these models limit their practical
application.

Overall, most studies focus on single dimensions, which provide limited per-
spectives. While recent work attempts more comprehensive evaluations, these ap-
proaches are often theoretical and challenging to implement in real-world scenarios.
Additionally, existing methods generally overlook the trade-offs between BTM and
FTM flexibility goals.

2.2.2 Flexibility evaluation criteria
This subsection outlines the criteria developed in Paper [P2] to evaluate the
flexibility potential of EV charging clusters. The criteria aim to assess both the
qualitative and quantitative aspects of flexibility, focusing on the ability of the
cluster to provide flexibility services without compromising user needs. We refer to
Paper [P2] for a more comprehensive description of the mathematical derivation
of the criteria and examples of how they relate to different flexibility services.
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To quantify the flexibility potential of an EV charging cluster, it is important
to define its boundaries in terms of power, time and energy capabilities. The
connection capacity of the cluster sets the upper power limit of the aggregated
power consumption, while the minimum charging power of the EVs/chargers sets
the lower limit. The minimum charging power depends on the charging technology
deployed: for example, bidirectional chargers would allow negative power values,
while unidirectional chargers (which are the focus of this study) allow a minimum
of 0 kW. The maximum power capacity of the EVs/charger is another important
boundary to consider, again dependent on the charging technology. Building up
from the boundaries mentioned above, we define the maximum energy potential
Epot, as the energy that the charging cluster could potentially charge to EVs with
infinite energy storage within the boundaries of the power capacity of the chargers,
connection pattern and connection capacity of the cluster (i.e., all EVs charge at
full power for the entire duration of their connection time).

In the study, we define four qualitative criteria and one quantitative criterion
for the comprehensive assessment of the flexibility potential of clusters. The qual-
itative criteria, called flexibility indexes, are the Energy Flexibility Index (EFI),
Minimum Power Flexibility Index (MPFI), Average Power Flexibility Index (APFI)
and Time Flexibility Index (TFI). In contrast, the quantitative criterion is the
Hourly Energy Flexibility (HEF). The qualitative criteria are tailored to take into
account short-term power adjustments (addressed by the MPFI and APFI), long-
term power adjustments/scheduling (addressed by the EFI) and available idle time
useful for scheduling purposes (addressed by TFI). Each index assigns a score be-
tween 0, representing no flexibility potential, and 1, representing infinite flexibility
potential within their respective domains. Within this framework, flexibility poten-
tial is defined as the capability of delaying power consumption over time without
influencing the charging fulfilment of the cluster.

From the energy perspective, the EFI is defined as:

EF I = 1 − Ech

Epot
. (2.1)

In the formula, Ech is the aggregated energy demand, defined as the total en-
ergy delivered to all the EVs connected during the time period under analysis. The
EFI is relevant to understand the suitability of the charging cluster to delay energy
in time.

The MPFI is defined as:

MPF I = 1 − Pmax,avg

CC
, (2.2)
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where Pmax,avg is the average daily maximum that the aggregated power of the
charging cluster reaches over a given period, and CC is the connection capacity.
The MPFI estimates the remaining power flexibility during peak utilisation of the
charging cluster.

On the other hand, the APFI is:

APF I = 1 − Pmean,ch

CC
, (2.3)

where Pmean,ch is the average charging power dispatched by the charging cluster,
considering only the time periods during which at least one EV is charging. The
MPFI and APFI are important for understanding the ability of the charging cluster
to make short-term power adjustments under peak demand conditions and average
operating conditions, respectively. A significant difference between the MPFI and
APFI indicates a highly variable utilisation rate throughout the day.

Lastly, in the time domain, the TFI is defined as:

TF I = tidle,avg

ttot,avg
. (2.4)

While tidle,avg represents the average idle time of the EVs connected to the charging
cluster when fully charged, ttot,avg depicts the average total connection time of the
EVs. The TFI estimates how much the charging sessions can be shifted in time
without influencing the charging fulfilment.

For defining the HEF, we use two other boundaries, which correspond to the
aggregated demand resulting from two charging strategies with opposite objectives:
one, Pmax Strategy, which charges EVs as quickly as possible, and the second, Pmin

Strategy, which delays the charging time as much as the connection time allows. It
is important to emphasize that the two strategies depend on the specific charging
technology and the EVs utilised; therefore, the strategies designed in this study
should be replaced with those tailored to the characteristics of the analysed cluster.
In our study, Pmax Strategy maximises the aggregated power consumption within
the limit of the connection capacity; such strategy corresponds to the most common
commercialized strategy [16], [17], [60]. On the other hand, we designed the Pmin

Strategy to dispatch a constant power value for each EV, corresponding to the
power needed to reach the energy requested within the EV connection time. By
comparing the energy accumulated over time between these two strategies, we can
quantify the hourly flexibility, which represents the amount of energy that can be
deferred each hour without compromising charging fulfilment. The HEF is defined
as:

HEF = ∆E =
∫ t+1

t

∆P (t)dt, (2.5)
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where t and t+1 denote the interval between the beginning and the end of each hour
of the day, and ∆P (t) is the difference in power consumption between the charging
strategies at time t. Understanding the profile of HEF is crucial for identifying
when and how much energy flexibility is available.

2.3 Computational framework for method
demonstration

2.3.1 Description of the model
The method for quantifying the fexibility of EV clusters is demonstrated through
a simplified model of a hospital charging cluster located in Copenhagen, Denmark,
using real charging session data provided by the CPO Spirii for the year 2022.
The inputs given to the model are user behaviour data from the charging sessions,
consisting of connection and disconnection times and energy demand. The model
is tailored to the electrical layout of the existing cluster, having in the base case
scenario ten chargers with a power capacity of 22 kW and a connection capacity of
82 kW. Using these inputs, the model calculates the aggregated demand of the Pmax

Strategy and the Pmin Strategy. In both cases, the outputs are the end-time of each
charging session, the idle time for each EV, total power consumption and the total
energy charged for the entire charging cluster. These outputs are then processed
to calculate the flexibility index scores and the HEF. A simplified flowchart of the
model is illustrated in Fig. 2.1. More details on the model used for the simulation
can be found in Paper [P2].

2.3.2 Assumptions of the model
During the design of the simulation model to demonstrate the flexibility quantifica-
tion method, several assumptions were made to simplify the analysis and address
the lack of more detailed EV charging data. It is important to note that this
study aims to demonstrate the flexibility quantification method and its practical
application rather than provide an exhaustive analysis of the charging cluster in
question. Larger datasets and more realistic models are recommended for a more
comprehensive performance evaluation. Specifically, larger datasets may improve
result accuracy, reveal additional patterns, and reduce the risk of biased outcomes
due to the limited statistical sample size.

The first concerns the creation of user inputs: Since the original cluster lacked
smart charging capabilities, it did not request any user inputs. Instead, the study
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Figure 2.1: Flowchart of the model, illustrating the inputs (in green), the inter-
mediate calculations of the model (in blue), and the outputs (in red).

used data from charger meters, which recorded the arrival time, departure time,
and total energy charged during each session. This data is repurposed as user
inputs. This assumption is considered a necessary part of the methodology since
the analysis needs to be done on past data from clusters, and the metering data
gives the most accurate description of user behaviour.

Another assumption is that the onboard chargers of the EVs have maximum
efficiency regardless of the extent of power modulation. However, existing literature
shows that power modulation reduces the charging efficiency of the EVs, increasing
energy losses and slowing down the charging process [61]. This assumption would
likely impact the Pmin Strategy, possibly increasing the energy needed for charging
fulfilment. Nonetheless, for the scope of the analysis, the influence on the results is
considered acceptable and does not influence the overall reliability of the evaluation
method.

Additionally, the study assumed that all EVs had constant and equal charg-
ing power, regardless of their state-of-charge (SOC) or model, despite real-world
variations. This simplification was necessary due to the lack of specific data, al-
though accounting for these variations could improve the accuracy of the model.
While this level of approximation is considered acceptable for the current analysis,
incorporating second-based metering data of power consumption from the charger
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meters would be an ideal solution.

2.4 Results of the demonstration
This section presents the results of applying the proposed flexibility criteria to
the modelled EV cluster. Subsection 2.4.1 evaluates the flexibility potential of the
EV cluster under original conditions. This analysis draws conclusions regarding
the optimal dimensioning of its electrical layout and proposes a suitable charging
strategy. Finally, the method is deployed with a sensitivity analysis to offer insight
into the flexibility potential of the cluster under varying conditions. Specifically, the
study examines the effects of connection capacity in Subsection 2.4.2, EV battery
capacity in Subsection 2.4.3, charger capacity in Subsection 2.4.4, and the number
of charging events in Subsection 2.4.5.

2.4.1 The flexibility potential of the cluster
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Figure 2.2: Analysis of the flexibility potential of the EV charging cluster on
August 31, 2022, using two different charging strategies: Pmax Strategy (in green)
and Pmin Strategy (in yellow). The figure includes the aggregated power time series
in the top-left, the number of EVs connected (black dotted line) and charging (green
and yellow line) in the bottom-left, the accumulated energy demand in the top-
right, and the HEF in the bottom-right.
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The evaluation of the cluster using original input data from August 31, 2022,
reveals that the cluster has significant flexibility potential. The flexibility indexes
show that the cluster experiences high demand during peak hours, indicated by
a low MPFI of 0 (no flexibility during peak times). However, the APFI of 0.67
highlights considerable power flexibility during the rest of the day. Additionally,
the high EFI of 0.88 and TFI of 0.91 suggest substantial potential for delaying
energy consumption. Overall, the cluster appears to be largely over-dimensioned
for current usage, suggesting excessive CAPEX. However, as EV adoption increases,
this capacity may become more appropriate. In the short term, operational savings
could be achieved by implementing smart charging strategies for BTM or FTM
services according to local resources.

Fig. 2.2 displays the results of the quantitative analysis using the Pmax Strategy
(in green) and the Pmin Strategy (in yellow). The figure showcases the time-histories
of the aggregated power, the number of EVs charging (green and yellow lines) and
connected (black dotted line), the total accumulated energy, and the HEF. The
analysis shows two peak utilisation periods for the cluster, with the main peak
occurring at 5:30 and a minor one at 17:00, corresponding to working shifts of the
hospital personnel. While both strategies charge the same total energy (124 kWh),
the Pmin Strategy significantly flattens the aggregated power curve, reducing the
peak consumption from 82 kW to 25 kW and shifting the morning peak demand to
7:30 instead of 5:30. Additionally, the HEF is directly proportional to the amount
of EVs charging, with flexibility peaks of 45 kWh at 6:00 and 10 kWh at 17:00.
These findings highlight the significant impact of user behaviour, influenced by the
type and location of the cluster, on both the timing and the amount of flexibility
that can be harnessed.

2.4.2 Impact of connection capacity
The first sensitivity analysis explores how different grid connection capacities affect
the flexibility of the EV cluster. The connection capacities tested are 30%, 50%,
and 80% of the original 82 kW capacity. The results reveal that reducing the
connection capacity decreases scores in all flexibility indexes. However, the most
affected indexes are the power indexes, while the EFI shows less variation and the
TFI shows only marginal variation. Fig. 2.3 displays the flexibility index scores
and HEF for each scenario, while Table 2.2 summarises the results.

The HEF also decreases with decreasing connection capacity, with its major
peak ranging from 37 kWh to 31 kWh and its average from roughly 11.5 kWh to
11 kWh. In the Pmax Strategy scenario with the lowest connection capacity, the
HEF further indicates a degradation of the energy fulfilment. Specifically, at least
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Connection Capacity: 80%

Connection Capacity: 50%

Connection Capacity: 30%

Figure 2.3: Impact of the grid connection capacity on the charging cluster perfor-
mance. The colours green, blue, and red represent scenarios in which the connection
capacity is 80%, 50%, and 30% of the original grid connection (82 kW), respectively.
On the left, flexibility indexes are evaluated, while the HEF is depicted on the right.

Table 2.2: Flexibility criteria results for various connection capacities. The con-
nection capacity, expressed as a percentage, is based on the original grid connection
of 82 kW.

Grid connection capacity [%] 30 50 80

MPFI 0.00 0.00 0.17
APFI 0.36 0.60 0.75
EFI 0.69 0.78 0.83
TFI 0.79 0.83 0.84
Maximum HEF [kWh] 31.37 36.83 37.45
Average HEF [kWh] 10.95 11.40 11.51

one EVs disconnects without being fully charged, highlighting the need for schedul-
ing strategies in connection with limited connection capacities. This result is not
evident from analysing the TFI alone, which instead shows an average idle time
of all EVs being 79%. However, since the idle time can vary significantly between
individual EVs, a single value does not accurately represent all cases. In future
work, we plan to modify the TFI to better reflect the time flexibility of EVs with
the lowest idle time.

Overall, this sensitivity analysis shows that reducing the connection capacity
diminishes the ability of the cluster to provide power-based flexibility, while having
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only a marginal impact on energy-based and time-based flexibility. This reduction
limits the potential for effective energy management throughout the day. A sig-
nificant challenge arises when the connection capacity is constrained too much, as
it hinders the ability to meet demand during peak utilization periods. This issue
can be mitigated by implementing priority-based charging schedules, ensuring that
charging sessions are efficiently managed even during times of high demand.

2.4.3 Impact of battery capacity
The second sensitivity analysis evaluates how varying battery capacities affect the
flexibility potential of the cluster. Three scenarios were analyzed: the original
battery capacity, and increases of 15 kWh and 30 kWh for all EVs in the cluster.
Fig. 2.3 displays the flexibility index scores and HEF for each scenario, while Ta-
ble 2.2 summarises the results.
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Added capacity per car: 30 kWh

Added capacity per car: 15 kWh

Added capacity per car: 0 kWh

Figure 2.4: Impact of the battery size on the charging cluster performance. The
colours green, blue, and red represent scenarios with an additional battery capacity
of 30, 15, and the base case. The flexibility indexes are assessed on the left, whereas
the HEF is assessed on the right.

The results reveal that increasing the battery capacity decreases scores in all
flexibility indexes. The analysis shows that as battery capacities increase, the EFI
and TFI decrease significantly, with the EFI dropping from 0.83 to 0.45 and the
TFI from 0.84 to 0.45 as battery size increases. This decline is attributed to the
higher energy demand from larger batteries, which limits the idle time of EVs and
the overall capability to delay charging. On the other hand, the MPFI shows lower
variation, and the APFI only has marginal variation, indicating that although the
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Table 2.3: Flexibility criteria results for various battery capacities. The table
shows the additional capacity beyond the initial energy capacity, which is assumed
to be equal to the energy requests of the EVs.

Additional battery capacity [kWh] 0 15 30

MPFI 0.34 0.07 0.00
APFI 0.80 0.72 0.69
EFI 0.83 0.63 0.45
TFI 0.84 0.63 0.45
Maximum HEF [kWh] 37.4 76.5 94.5
Average HEF [kWh] 11.5 23.1 26.7

aggregated power consumption has a higher peak, it is not significantly affected
overall. Fig. 2.3 displays the flexibility indexes scores and HEF for each scenario,
while Table 2.2 summarises the results.

One key finding is that, although the EFI and TFI decrease for higher battery
capacities, the HEF shows a substantial increase, with its peak in HEF ranging
from 37.4 kWh to 94.5 kWh, and it average from 11.5 kWh to 26.7 kWh. The reason
lies in the definition of the qualitative and quantitative criteria: indeed, although
the amount of energy that can be delayed in time increases due to increased storage
capacity (measured by the HEF), the cluster has less capacity to delay it due to
longer due to reduction in idle time. These results highlight the complementarity
between the qualitative and quantitative flexibility criteria developed in this study.
Another important finding from the HEF is that as battery capacities increase, the
peaks of HEF shift to later times. For example, the major HEF peak shifts from
5:00 in the base scenario to 8:00 in the scenario with the largest battery capacity.

Overall, this sensitivity analysis shows that, in the absence of a charging strat-
egy, increasing battery capacities reduces the idle times of individual EVs and
increases overall the urgency of meeting energy demands, limiting the ability of the
cluster to delay energy demand for long periods. However, implementing a smart
charging strategy that incorporates charging prioritization enhances the potential
to defer energy consumption on an hourly basis. The cluster can still provide
energy flexibility over longer durations by alternating charging sessions.

2.4.4 Impact of charging power
The third analysis examines how different charging power capacities–—6 kW, 11
kW, and 22 kW—–affect the flexibility potential of the cluster. Fig. 2.5 and Ta-
ble 2.4 summarise the analysis results. The results show that increasing charging
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Charging Power: 22 kW

Charging Power: 11 kW

Charging Power: 6 kW

Figure 2.5: Impact of the charging power on the charging cluster performance.
The colours green, blue, and red represent scenarios where the charging power is
set to 22 kW, 11 kW, and 6 kW, respectively. Flexibility indexes are evaluated on
the left, while HEF is depicted on the right.

Table 2.4: Flexibility criteria results for different charging power capabilities.

Charging power [kW] 6 11 22

MPFI 0.57 0.34 0.00
APFI 0.86 0.80 0.68
EFI 0.74 0.83 0.88
TFI 0.74 0.84 0.91
Maximum HEF [kWh] 35.2 37.5 44.7
Average HEF [kWh] 9.6 11.5 14.0

power reduces power-based indexes, particularly the MPFI, which falls to zero in
the highest power scenario. However, the EFI and TFI improve with greater charg-
ing power, showing inverse proportionality with the power-based indexes. This
result indicates that, although faster charging decreases the capability for power-
based flexibility services due to more volatile power consumption, it facilitates the
energy-based flexibility services due to more room for scheduling energy consump-
tion in time. The HEF also indicates an overall increase in energy flexibility, with
its maximum peak ranging from 35 kWh to 45 kWh. Faster chargers shift these
HEF peaks to earlier times, with both peaks moving one hour earlier. Overall, this
sensitivity analysis demonstrates that increasing the charging power capacities is
an effective solution to reducing the charging time of EVs. This approach enhances
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the capability to delay shorter charging sessions, thereby improving the capacity of
the cluster to provide energy-based and time-based flexibility services when paired
with a tailored smart charging strategy.
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 Number of charging sessions: 5

 Number of charging sessions: 10

 Number of charging sessions: 15

Figure 2.6: Impact of the number of charging sessions on the charging cluster
performance. The colours green, blue, and red represent scenarios where 5, 10, and
15 charging sessions are considered, respectively. On the left, flexibility indexes are
evaluated, while the HEF is shown on the right.

Table 2.5: Flexibility criteria results for different numbers of charging sessions.
The analysis is based on simulations from different days, each varying in the total
number of recorded charging events.

Number of charging events 5 10 15

MPFI 0.34 0.20 0.60
APFI 0.80 0.77 0.82
EFI 0.83 0.80 0.87
TFI 0.84 0.81 0.87
Maximum HEF [kWh] 37.5 58.9 32.2
Average HEF [kWh] 11.5 22.8 14.4

2.4.5 Impact of number of charging events
The final sensitivity analysis focuses on the impact of the number of daily charg-
ing sessions on flexibility potential. As described in Fig. 2.6 and Table 2.5, three
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scenarios were tested: five charging sessions, ten sessions, and fifteen sessions.
Interestingly, the number of charging events does not appear to be the primary
factor influencing flexibility. Instead, the total energy requested by the EVs and
their connection patterns have a more significant impact. For example, the inter-
mediate scenario records the lowest flexibility index values, despite having fewer
sessions than the third scenario. This discrepancy is explained by the higher to-
tal energy demand in the intermediate scenario, which resulted in lower flexibility
scores. The HEF further confirms the major influence of the energy demand. This
suggests that flexibility potential is more closely related to the total energy re-
quested by EVs and the timing of their connection rather than the sheer number
of charging events. Overall, this sensitivity analysis suggests that the number of
charging sessions alone does not significantly influence the flexibility potential of
the cluster. Instead, the energy requests and the connection patterns play a crucial
role in the amount, timing and duration of flexibility.

2.5 Summary
This section provides a summary of the findings provided from the studies in Paper
[P1] and Paper [P2].

Regarding the study in Paper [P1], the key findings consist of recommenda-
tions for an action plan for overcoming the technological, economic and regulatory
barriers found in the literature. The action plan on these three domains is sum-
marised in table 2.6: From a technical point of view, a recurrent theme is the effort
to standardise smart charging technologies and ensure interoperability among their
related devices (EVs, EVSEs and smart meters). On the economic front, we high-
light the need to take action towards a clear definition of the economic framework
for providing flexibility services. This action would empower investors in smart EV
infrastructures. The regulatory framework should redefine the roles of the GOs and
their responsibilities and interactions and incentivise standardisation of flexibility
markets framework and smart charging technologies.

Regarding the design of the flexibility quantification tool, the findings from
Paper [P2] suggest that the presented analytical framework is a promising, com-
prehensive and user-friendly tool to analyse the flexibility potential of an EV cluster
for BTM and FTM flexibility services. Given a model of a cluster and large his-
torical data from the chargers, it is possible to deploy the flexibility indexes to
gain insight into the average idle time of the EVs, the peak and average power
consumption of the cluster in relation to its connection capacity, and the rate of
energy charged against the potential that the cluster could provide. Furthermore,
the quantitative analysis, consisting of the HEF, proved to be complementary to
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Table 2.6: Future steps needed to push the development of robust EV infrastruc-
tures for distribution grid services in each of the fields analysed

Technical Economic framework Regulatory framework
Further R&D on smart charg-
ing capabilities.

Keep or introduce temporary
incentives for cars, shared mo-
bility and Mobility-as-a-service

Enhance active management
requirement to DSOs

Standardise and ensure inter-
operability between different
EVs and EVSE.

Research on business mod-
els for aggregators and charge
point operators

Standardize cost-benefit analy-
sis for smart meters

Develop and test ICT and stan-
dards (especially V2G)

Develop and test new Network
tariff structures

Ensure a clear classification
and standardisation of V2G
connection requirements for
V2G prosumers

User interactivity and inter-
connectivity

Strategical location for differ-
ent types of chargers to ensure
trust in EV infrastructure in-
vestors

Create incentives for smart
chargers purchase

Continue the demonstration
project campaigns to gather
data.

Establish local flexibility plat-
forms with increasingly com-
petitive approaches.

Define DSO-TSO priorities and
the interaction between every
stakeholder

Increase grid observability Continuous revision and im-
provement of economic frame-
work of flexibility based on the
lessons learned

Set ambitious targets (CO2 re-
duction, targets for different
transport types)

the qualitative analysis of the cluster to provide the timing and quantity of energy
that can be delayed to later hours, as well as unfulfilled charging demand. While
performing the sensitivity analysis, one improvement proved necessary regarding
the TFI: in detail, showing a single value for indicating the average idle time is not
comprehensive of the large variability that can occur in the idle time of different
EVs. Future studies will consider modifying the TFI to include the idle time of all
the EVs.

The application of the method to the simulated hospital cluster revealed sev-
eral important insights. The base case simulation showed that the EV cluster is
significantly over-dimensioned in relation to the user behaviour recorded in 2022.
As a result, the cluster is well-suited for a wide range of flexibility services, BTM
and FTM, as indicated by the high score across all the flexibility indexes. The
sensitivity analysis further revealed that user energy requests and connection pat-
terns are the most critical factors to consider when dimensioning an EV cluster and
selecting the appropriate strategy. These factors were identified as the strongest
predictors of flexibility amount and timing, respectively. For example, the clus-
ter could provide flexibility primarily at the beginning of personnel work shifts,
with reduced potential during the rest of the day due to the absence of new con-
nections. Regarding connection capacity, the findings suggest that clusters with
undersized connection capacities and no priority-based scheduling strategies risk
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decreasing user satisfaction, particularly as EV adoption increases. Additionally,
increasing the power capacity of chargers can enhance the ability of the cluster to
distribute energy consumption more effectively over time through smart charging
strategies. Lastly, the sensitivity analysis on daily connection capacity suggested
that the number of EVs alone does not significantly impact flexibility potential.
The sensitivity analysis confirmed the higher influence of connection patterns and
energy requests.



CHAPTER 3
The concept of

autonomous chargers

This chapter focuses on the description of the novel distributed architecture and the
concept of autonomous smart chargers developed during the Autonomously Con-
trolled Distributed Chargers (ACDC) project. Section 3.1 provides an overview
of the existing control architectures for electric vehicle supply equipment (EVSE)
and introduces the motivation for research in new architecture strategy. Section 3.2
introduces, in general terms, the control and communication structure of the archi-
tecture. Section 3.3 describes the design of the first version of the control architec-
ture and the model deployed for the computational analysis. Section 3.4 introduces
the improved version of the architecture currently deployed at the workplace EV
cluster in Risø campus.

3.1 Background
Current research in smart EV charging primarily focuses on developing strategies to
optimise charging schedules, integrate renewable energy sources (RES), and adapt
to grid conditions, balancing user convenience and grid stability. The literature
offers various approaches for implementing smart charging, such as data-driven and
predictive models, decentralised frameworks, optimisation techniques, and fuzzy
logic-based scheduling algorithms.

However, much of the research remains theoretical and simulation-based, with
limited emphasis on practical implementation within EV clusters. For example,
the study in [62] uses predictive models for heterogeneous EV fleets, while Nour



30 3 The concept of autonomous chargers

et al. [63] propose an algorithm aligning EV charging with fluctuating electricity
prices. Decentralised approaches are explored by [64] and [65], focusing on load dis-
tribution and real-time grid management, respectively. Reinforcement learning for
fleet optimisation is investigated in [66], and utility-maximising algorithms based
on urban mobility are proposed in [67]. Additionally, Hussain et al. [68] analyse
flexibility in smart grids, and Khalkhali and Hosseinian [69] propose a multi-class
charging strategy to improve grid flexibility in residential parking lots.

While these studies enrich the theoretical framework of smart charging, they do
not focus on real-world implementation. Some studies offer solutions suitable for
practical application, such as the integration of renewable energy in EV clusters
[70], fuzzy logic scheduling for dynamic charging [71], and cloud-based smart charg-
ing systems [72]. Others investigate grid balancing and peer-to-peer coordination
mechanisms for charging stations [73], [74].

Despite these contributions, the majority of smart charging strategies lack ex-
perimental validation, as most research relies on simulations. Experimental work
in this field is still limited, with only a few studies bridging the gap between simula-
tion and practice. Examples include experimental validations of fleet management
algorithms [75] and frequency regulation [76], [77].

Ultimately, developing effective smart charging strategies requires coupling the-
oretical models with experimental validation to gather empirical evidence and ad-
dress the real-world challenges posed by EV behaviour. Such a combination is cru-
cial for assessing the performance and reliability of these strategies, as simulations
alone cannot fully capture the complexities of EV controllability and operation.

3.1.1 Existing control architectures for EV clusters
Control architectures for EV charging infrastructure can generally be categorised
into three types: centralised, decentralised, and distributed [78]. Centralised con-
trol has been the most common in smart charging applications due to its simplicity
and technological maturity. This system relies on a single central control unit that
collects data from the grid and remotely manages power demands for each device.
While centralised control offers operational transparency, it faces significant chal-
lenges with scalability, vulnerability to cyber-attacks, and privacy concerns [79]. A
crucial scalability limitation lies in the need for increasingly powerful server infras-
tructures to manage both the computational requirements and the large volumes of
data generated by individual EV chargers. Furthermore, the costs of leading cloud
computing platforms increase exponentially with the volume of data processed and
the computational power required by the deployed machines [80], [81].

Decentralised control architectures, on the other hand, are frequently used in
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stand-alone charging infrastructures. In these systems, local control units operate
independently, relying solely on local measurements and actuators to achieve their
control objectives. While decentralised control brings benefits like enhanced scal-
ability, robustness, and simplified communication with users, it lacks the global
coordination needed for optimal overall performance [82]–[84]. As a consequence,
the controlling capabilities of the architecture remain limited.

Distributed control architectures combine elements of both centralised and de-
centralised systems. This approach involves a central controller, typically hosted
on a cloud server and local controllers on each controlled device. The central con-
troller manages the charging clusters globally by processing grid information and
sending set-points to the local controllers. The local controllers provide another
control layer, distributing new set-points among devices using local communica-
tion. This hybrid approach leverages the advantages of centralized systems (e.g.,
precision) and decentralised systems (e.g., scalability and robustness) to provide a
more comprehensive control solution [85], [86]. In terms of scalability, distributed
control reduces communication nodes and lowers the required frequency of com-
munication. Even if communication with the central controller is disrupted or a
charger malfunctions, the system remains operational, and the local controllers
maintain local smart charging functionalities, further enhancing its resilience. At
last, the local communication between controllers is potentially faster and more
reliable, further improving the reliability of the system [87].

The advantages and limitations of centralised, decentralised, and distributed
control approaches are further analysed in [86]. Table 3.1 consolidates the findings
on the pros and cons of each control method, based on several studies [84], [88],
[89].

3.2 The general concept of the architecture
Fig. 3.1 presents the global communication architecture for a generic node in the
distribution grid supplied by a transformer. The global controller, called cloud
aggregator (CA), operates from a cloud server equipped with computational power
for data processing and communication and memory for storage. For simplicity, the
figure focuses on a single node containing two EV clusters, though in reality, the
CA can manage multiple clusters across various nodes. The flowchart details the
communication pathways and the devices involved. Each transformer feeds different
EV clusters, which can also incorporate power consumption from the buildings and
power generation from distributed energy resources (DERs), connected to the same
point of chargers connection (PCC).
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Table 3.1: Advantages and drawbacks of chargers control approaches.
Control approach Advantages Drawbacks

Centralized

Mature architecture. Vulnerable to cloud aggregator malfunction
being spread on all chargers.

System wide observation. Need of a backup server system.
Easier implementations of optimization
algorithms.

Heavy communication and computation
when scaled-up.
Subject to cyber-attacks and possible data
privacy violation.

Decentralized

Diverts data privacy challenges. Lack of grid observability.
Low communications and computation
capabilities when scaled-up. Immature control architecture.

Low sensitivity to errors and cyber-attacks,
thus high system robustness. Risk of avalanche effects.

High deployment scalability. Difficult to reach optimal solutions
from optimization algorithms.

Low communication delays.

Distributed

High scalability and autonomy. Novel control architecture, thus not mature.
System wide observation. Prone to cyber-attacks.
Low sensitivity to errors, thus high
system robustness. High complexity on charger design.

Diverts data privacy challenges.
Possibility of plug and play protocols.
Low communication delays.

The CA is monitored and controlled by the aggregator to provide services in
flexibility markets or to comply with agreements with transmission system oper-
ators (TSOs) and distribution system operators (DSOs). Based on the flexibility
service bid by the aggregator, the CA processes inputs from various smart meters
that monitor factors like RES power production and transformers loading to reg-
ulate the power consumption of each EV cluster. Additionally, the CA provides
real-time information to users via a mobile app, including charger availability and
energy prices. Upon arriving at the EV cluster, users can input their charging
preferences, enabling the system to coordinate the charging sessions effectively.

The final output of the CA for each EV cluster consists of power set-points,
which are sent to the local controllers of each cluster, called virtual aggregator
(VA), alongside user requests. The VA is the autonomous intelligence embedded
within each charger, managing power consumption in alignment with the set-points
from the CA, measurements from the PCC and user inputs. User input is essential
for the VA to prioritise charging sessions and allocate power accordingly. In the final
step of the control loop, the VAs coordinate the power consumption of chargers
based on user priorities to align with the set-points provided by the CA. This
coordination is achieved through several smart charging functionalities: power-
sharing, power-scheduling, prioritisation, and an anti-overshooting function.

The power-sharing functionality is a commercially available feature that mod-
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Figure 3.1: Global system architecture and communication paths between differ-
ent actors.

ulates power consumption across charging sessions to prevent exceeding the power
reference or connection capacity assigned to the cluster. The power-scheduling
functionality, which is not yet commercially available, involves pausing and re-
suming EV charging sessions according to strategic patterns to avoid overshooting
power limits. Prioritisation tailors both power-sharing and power-scheduling to
the charging urgency set by users, ensuring that sessions are managed according to
their priority. The anti-overshooting functionality temporarily reduces the power
consumption of the charging EVs when a new session starts to create a power win-
dow, allowing the EV to reach its target power set-point without exceeding the
connection capacity or power reference of the cluster. These functionalities work
together to ensure optimal and safe coordination of charging sessions within the
cluster. Additionally, the VAs and the PCC send feedback data back to the CA to
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complete the loop, ensuring continuous monitoring and adjustment of the system.
Thanks to the collaboration of DTU with the companies Nissan and Circle

Consult, the architecture has been refined and enhanced throughout the ACDC
project. Although the core concept of the project remained unchanged, minor
adjustments were made to the control and communication structure between the
CA and the VAs and to the electrical layout of the chargers. This section details
the two primary versions of the architecture developed throughout the project.

3.3 Version 1 of the architecture
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Figure 3.2: Flowchart illustrating the design of Version 1, focusing on the local
communication and the layout of the chargers

Fig. 3.2 illustrates the detailed layout of the control architecture, focusing on
the communication and electrical design of the chargers. Version 1 builds up from
the study in Paper [P9], which lays the ground for the control architecture. The
architecture is developed in a computational environment and tested with the test
cases described in Chapter 4.

In Version 1, the CA receives the aggregated power measurement from the PCC
of the cluster (P meas

P CC ). This allows the CA to monitor the power consumption of
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each cluster and coordinate their operation by assigning different power set-points
(P ref

CA ). Specifically, if a cluster is unable to meet its assigned power set-point due
to insufficient connected EVs or an overloaded transformer, other clusters with
sufficient EVs can increase their consumption to compensate. Additionally, the CA
is responsible for receiving user inputs and relaying them to the VAs, enabling each
VA to calculate its priority relative to others.

For the local control, the architecture employs two types of VAs in each cluster:
a V Aleader for one charger and a V Afollower for each additional charger. The
V Aleader receives P ref

CA and P meas
P CC , calculates the error P error

P CC , and then transmits
the P error

P CC to all the V Afollower via cable or Bluetooth. Based on the received
P error

P CC , all VAs determine their power set-point (P ref
V A ) for each EV and schedule

the charging sessions according to the priority (ρ) of the connected vehicles. The
local communication setup ensures that smart charging functions like power-sharing
and power-scheduling remain operational even if there are connectivity issues with
the CA.

The chargers are limited to activating one plug at a time. Each plug can deliver
a maximum current of 16 A, supplying 11 kW for three-phase EVs and 3.7 kW for
single-phase EVs. Each VA is responsible for scheduling the charging of the two
connected EVs based on their ρ.

The priority system relies on two criteria for scheduling the charging sessions.
The first is the SOC reported by the user at the start of the session, and the second
is the amount of energy charged during the session. The priority ρ is a value in
the range from 0 to 1 and decreases proportionally as the SOC and charged energy
increase. When two EVs on the same charger have equal ρ, the system activates
the switch to supply power to the idle EV, with each charging window allowing for
roughly 5 kWh. The VAs continuously monitor the ρ of each EV, and in case of
limited P ref

CA , if all sessions have reached their minimum power capacity of 6 A, the
charger with the lowest ρ will halt its session to prioritise others.

3.3.1 The model - Version 1
Version 1 is simulated using Matlab Simulink, with each simulation spanning 24
hours and a time resolution of 0.1 s. The communication structure follows the lay-
out shown in Fig. 3.2, where data transmission in the global communication layer
(shown with blue arrows) has a delay of 0.5 s. In contrast, the local communi-
cation (shown with green arrows) experiences a 0.1 s delay. For a more technical
description of the model the reader is referred to Paper [P3].

The EV model in the simulation incorporates two key simplifications. First,
the AC-DC converter efficiency decreases linearly, starting from 90% at 16 A (11
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kW for three-phase EVs and 3.68 kW for single-phase EVs) to 80% at 6 A (4.15 kW
for three-phase and 1.38 kW for single-phase EVs). Second, the maximum charging
power of the EV remains constant throughout the entire charging session, regard-
less of the SOC. These simplifications are deemed necessary due to the lack of de-
tailed behavioural data from the EVs; however, they may introduce some marginal
inaccuracies in the results.

3.4 Version 2 of the architecture
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Figure 3.3: Flowchart illustrating the design of Version 2, focusing on the local
communication and the layout of the chargers

Version 2 represents the final iteration of the architecture, improved based on
the insights gained from computational analysis. This version was utilised during
the experimental campaign and is now implemented at the Risø campus EV clus-
ter. Fig. 3.3 outlines the control and communication of the architecture and the
electrical layout of the chargers.

Unlike the previous version, Version 2 eliminates direct feedback of cluster con-
sumption from the PCC P meas

P CC to the CA. Instead, the CA receives only the priority
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values from each VA, which provide insights into the availability of EVs and their
charging urgency. Based on external requests, the charging mode of the cluster,
and the priorities of all VAs within a cluster, the CA sends each cluster P ref

CA .
A key change in this version is the removal of the hierarchical VA structure

(leader-follower). Instead, each VA operates independently, receiving both P ref
CA

and P meas
P CC . This allows each VA to calculate its power set-point P ref

V A based on the
power error P error

P CC and priority.
The chargers in this version are capable of charging two EVs simultaneously,

with each plug providing a maximum current of 32 A, equivalent to 22 kW for three-
phase EVs and 7.4 kW for single-phase EVs. However, the total current capacity
of the charger remains 32 A, which limits the power per plug when both plugs are
active.

To determine the priority, users input their energy request Ereq and departure
time tdep. Two values are used to calculate priority: the internal priority ρint

and the relative priority ρr. ρint is shared among the chargers through the CA,
providing the VAs with a scheduling order for the EVs. It ranges from 0 to 0.99
and is used to signal the charging state of the plug (e.g., starting the charge, idle,
charging, no EV connected, or errors). ρr is calculated by each VA using the ρint

from all the VAs. It is not shared among the VAs and serves as a control parameter
for the PI controller within each individual VA. The reader is referred to Paper
[P6] for a more comprehensive description of the priority system, including its
mathematical formulation.

3.4.1 Implementation of the architecture - Version 2
This subsection details the architecture implementation as explained in Fig. 3.4,
including the hardware and software utilised.

The VAs and the CA are hosted on ”Beaglebone® black industrial” microcon-
trollers, which are equipped with an ARM Cortex-A8 1 GHz processor, 521 MB of
RAM and 4GB of embedded flash memory. The microcontrollers are connected via
Ethernet and deploy a Debian OS operating system. The control strategy is actu-
ated on stand microcontrollers located outside the chargers, while the chargers are
only responsible for the actuation of the final set-points. The chargers are linked
to the Internet through a 4G connection, while all the other devices are connected
to the university WiFi network, which is secured by a firewall. A public server
database (Database 1 in the figure) mediates the communication through the fire-
wall between the chargers and the microcontrollers. This server acts as a central
hub and is the intermediate node of most control-related data communication.
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The charging system incorporates an Android mobile app for providing user
requests and monitoring the charging sessions. A web interface on the university
server (Visualization Webpage) allows to monitor in real time the status of the
cluster.

The data management of the chargers is hosted on Amazon Web Services, which
is responsible for the communication between the app, the chargers and the final
power set-points from the VAs.

The chargers convert the received power set-points to a current set-point, which
is transmitted to the actuators. The charger follows the IEC 61851-1:2019 [90]
type 2 charging protocol, using a 32 A 5-wire connection. Each charger has a total
three-phase power capacity of 22 kW, distributed across two plugs, which are both
capable of providing up to 22 kW of three-phase power. A smart meter (DEIF
Multi-instrument MIC-2 MKII) at the PCC measures and publishes on the data
broker energidata.dk (Database 2), different parameters on a second basis, useful
for data storage and post-processing. All the data from smart meters of external
devices, such as transformers, RES and DEIF is handled with the framework of
the Energy System Integration Lab – SYSLAB (Syslab node).

3.5 Summary of the development
This section summarises the differences between the two versions of the control
architecture and explains their advantages and disadvantages.

In the second version of the architecture, a significant change involves removing
the direct feedback of P meas

P CC of each cluster to the CA. While this feedback allows
the CA to receive real-time consumption data and optimise power distribution
across the clusters, it is computationally intensive due to the high-frequency data
transmission required from each cluster. In the updated version, this real-time
feedback has been replaced by priority updates sent from the VAs to the CA, which
are necessary for the system regardless. In Version 2, the ρint from each VA contains
sufficient information for the CA to determine the number of connected EVs and
their charging urgency. This approach reduces the need for high-frequency data
transmission (previously every second) by utilising an existing data stream, which
operates at a much lower frequency, such as once every five minutes. Although
less optimal in terms of real-time power distribution, this solution alleviates the
computational load while still providing the necessary information to manage the
clusters effectively.

In Version 2, the hierarchical structure among the VAs is also eliminated. This
hierarchical structure of Version 1 ensures that only one communication line for the
P ref

CA is needed per cluster. However, during the prototyping of the first chargers
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with this setup, local communication via cable or Bluetooth proved to be technically
challenging, particularly for large EV clusters. As WiFi became the only viable
communication method, Version 2 is designed so that each charger receives the P ref

CA

directly, eliminating the need for VA-to-VA communication. While this change
improves the technical feasibility of the system, it increases the computational
burden on the cloud infrastructure.

The chargers are equipped with two type 2 plugs in both versions, but the elec-
trical layout differs significantly. In Version 1, each charger could only activate one
plug at a time and provide a maximum current of 16 A, which limits the scheduling
options for EV charging. In Version 2, however, the chargers can charge two EVs
simultaneously. Moreover, each plug can provide up to 32 A, although the total
current for the charger remains capped at 32 A. This design change also came about
during the charger prototyping process, where it was found that the 32 A solution
was a standard solution in commercially available chargers. This upgrade improves
overall charging efficiency and minimises reactive power consumption caused by the
power modulation of the EVs.



40 3 The concept of autonomous chargers

S
ys

la
bn

od
e

D
at

ab
as

e1

C
A

�8
�#

�5
�å

�á

�%
�* �5�

å�
á

D
at

ab
as

e2

�2 �
¼

�º
�å

�Ø
�Ù

�2 �
É

�¼
�¼

�à
�Ø

�Ô
�æ

�' �
å�

Ø
�ä�á�5

�å
�á

�P �×
�Ø

�ã

�' �
Ö

�Û
�Ô

�å
�Ú

�Ø
�×

�á�5
�å

�á

�2 �
¼

�Á�á�
5�å

�á
�à

�Ø
�Ô

�æ

�5
�P

�=
�P

�A
�5�

å�
á

A
pp

�2 �
Ï�º

�á�5
�å

�á
�å

�Ø
�Ù

�' �
Ö

�Û
�Ô

�å
�Ú

�Ø
�×

�á�5
�å

�á

�2 �
¼

�Á�á�
5�å

�á
�à

�Ø
�Ô

�æ

�5
�P

�=
�P

�A
�5�

å�
á

�2 �
É

�¼
�¼

�à
�Ø

�Ô
�æ

�é �
Ü

�á
�ç�á�5
�å

�á

�>�
é �Ü

�á
�ç�á�5
�á�

å
�á�

é �Ü
�á

�ç�á�á
�?

�2 �
¼

�º
�å

�Ø
�Ù

�2 �
¼

�º
�å

�Ø
�Ù

�2 �
Ï�º

�á�5
�å

�á
�å

�Ø
�Ù

�2 �
Ï�º

�á�5
�å

�á
�å

�Ø
�Ù

�2 �
É

�¼
�¼

�à
�Ø

�Ô
�æ

�B
�2 �

Ë
�¾

�Ì
�2 �

ç�
å�

Ô�á
�æ

�Ù
�â

�å
�à

�Ø
�å

�2 �
É

�¼
�¼

�à
�Ø

�Ô
�æ

D
E

IF

E
xt

ra

�2 �
¼

�Á�á�
5�å

�á
�à

�Ø
�Ô

�æ
P

ow
er

m
ea

su
re

da
te

ac
hc

on
ne

ct
or

�' �
Ö

�Û
�Ô

�å
�Ú

�Ø
�×

�á�5
�å

�á
To

ta
le

ne
rg

yc
ha

rg
ed

pe
rs

es
si

on
�P �×

�Ø
�ã

D
ep

ar
tu

re
tim

e
pe

rs
es

si
on

�' �
å�

Ø
�ä�á�5

�å
�á

E
ne

rg
yr

eq
ue

st
ed

pe
rs

es
si

on
�5

�P
�=

�P
�A

�5
�å

�á
S

ta
te

of
th

e
co

nn
ec

to
r

�2 �
¼

�º
�å

�Ø
�Ù

P
ow

er
re

fe
re

nc
eC

lo
ud

A
gg

re
ga

to
r(C

A
)

�2 �
Ï�º

�á�5
�å

�á
�å

�Ø
�Ù

P
ow

er
re

fe
re

nc
eV

irt
ua

lA
gg

re
ga

to
r(V

A
)

�é �
5�å

�á
P

rio
rit

y
of

ea
ch

co
nn

ec
to

r
�>�

é �5
�á�

å
�á�

é �á
�?

A
rr

ay
of

th
e

al
lp

rio
rit

ie
s

�2 �
É

�¼
�¼

�à
�Ø

�Ô
�æ

P
ow

er
m

ea
su

re
da

tt
he

P
C

C
�B

G
rid

 fr
eq

ue
nc

y
�2 �

É
�Ï

P
V

 p
ow

er
�2 �

ç�
å�

Ô
�Ù

�â
Tr

an
sf

or
m

er
 p

ow
er

V
is

ua
liz

at
io

n
C

on
tr

ol
D

at
a

st
or

ag
e

�2 �
É

�¼
�¼

�à
�Ø

�Ô
�æ

�2 �
É

�¼
�¼

�à
�Ø

�Ô
�æV

is
ua

liz
at

io
nw

eb
pa

ge
D

at
a 

to
 vi

su
al

iz
e

D
at

a 
to

lo
g

D
at

a 
to

lo
g

Figure 3.4: Overview of the implementation of the architecture, including data
communication among the different nodes of the architecture



CHAPTER 4
Computational analysis

This chapter describes the computational investigation of the distributed system
capabilities, focusing initially on the functionalities of the VA within a single EV
cluster in Section 4.1. It then examines the coordination of the power consumption
of multiple clusters through the CA as a part of a virtual power plant (VPP) in
Section 4.2. Finally, Section 4.3 provides a summary of the results and discusses
the key findings that led to the version upgrade of the architecture.

4.1 Single EV cluster
In this test case, the technical feasibility of the system has been investigated via
simulation, focusing mainly on the performance of the VA control. The model has
eight chargers and represents the workplace EV cluster at the Risø research campus
of the Technical University of Denmark. In the simulation, the CA does not provide
any control apart from providing a PCC protection functionality, which lowers the
power reference of 6 kW any time an EV starts charging to avoid overshooting
the PCC limit. On the other hand, the VAs provide power-scheduling and power-
sharing in the cluster according to the charging urgency set by the user inputs.
The study compares an unconstrained scenario (Scenario 1), where the aggregated
power of the cluster has no upper boundary and a constrained scenario (Scenario
2), where the system has a connection capacity at the point of chargers connection
(PCC) of 43 kW. Although power-sharing functionalities are deployed only in the
constrained scenario to prevent overloading of the PCC, both scenarios deploy
power-scheduling within the chargers, as only one plug per charger can be activated
at a given time.

Nissan EV telematics supplies key inputs for the simulation, such as the ar-
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rival time, departure time, and initial SOC of the EVs virtually connecting to the
chargers. Additionally, the simulation incorporates battery capacity based on the
types of EVs commonly used at the workplace. More details on the inputs of the
simulation can be found in Paper [P1].

4.1.1 Performance overview of the cluster
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Figure 4.1: General performance of the simulated cluster: Score of the cluster
on the flexibility indexes (left); time-history of the aggregated power consumption
(top-right); and time-history number of EVs connected and charging (bottom-
right).

This section provides an overview of the results of the simulation; Fig 4.1 pro-
vides an overview of the score of the system on the flexibility indexes in the two
scenarios, together with the time histories of aggregated power consumption and
the number of charging and connected EVs. The flexibility indexes for Scenario
1 and Scenario 2 are calculated considering a connection capacity of 66 kW and
43 kW respectively. Since the connection capacity is reached by the aggregated
power consumption in both cases, the MPFI is 0. Compared with Scenario 1, in
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Scenario 2, the radar graph shows a steep reduction in the APFI and the EFI
occurring when reducing the connection capacity. At the same time, the TFI does
not change significantly. These results align with the results from 2.4.2 and sug-
gest that there are only marginal effects on idle time and charging fulfilment. The
time-history of the aggregated power shows that the power reference from the CA,
in blue in the graph, is constant overall, showing only the effects of the PCC pro-
tection functionality. While in Scenario 1 the aggregated power consumption (in
black) has a peak demand of 66 kW, in Scenario 2 the aggregated power (in red) is
correctly following the P ref

CA without showing overshoots. The bottom graph shows
that, while the number of EVs connected peaks at 12:00 and stays almost constant
until 17:00, the amount of active plugs reaches its maximum only from 9:00 to
10:45 and lowers gradually after. Overall, these results outline the efficacy of the
distributed control architecture in operating the clusters with reduced connection
capacity.

Fig. 4.2 illustrates the scheduling action of the chargers; the y-axis indicates the
plug number, and the x-axis shows the time in hours. For each charging session,
the dotted and solid lines indicate, respectively, connection and charging time.
Charging sessions from the same charger have the same dedicated colour for a clear
distinction of the alternation of charging sessions performed by the switch within
the chargers. Additionally, the table provides an overview of the idle time and
final state-of-charge (SOC) for all the EVs in both scenarios. Together, Fig. 4.2
showcases the effective action of the control system, as there are no significant
differences in the two scenarios either in terms of final SOC or in terms of idle
time. In detail, the maximum difference in final SOC between the two scenarios
is six percentage points (EV2). Also the idle time shows only marginal variation.
While all the EVs have a final SOC equal or higher than 92%, EV11 has a final
SOC of 78%. EV11 is, however, a one-phase EV with a large battery capacity
(62 kWh) and charges 25 kW in both scenarios, showing that the reduction of the
connection capacity did not affect its final SOC.

The major drawback of the power-sharing is seen in the charging efficiency of the
EVs: Indeed, Scenario 2 shows a power consumption of 414 kWh of which 368 kWh
were stored in the batteries (88% efficiency), the Scenario 1 shows a consumption
of 413 kWh of which 373 kWh were stored in the batteries (90% efficiency). With
the latest knowledge in efficiency losses in the onboard chargers, we know that
the losses due to power-sharing could be even more significant, and therefore, the
effects of power-sharing need to be reconsidered [91]. These losses can be minimised
by prioritising power-scheduling over power-sharing functionalities.
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Figure 4.2: Illustration of the power-scheduling action of the local control: the top
graph displays the connection and charging times for all EVs, represented by dotted
and solid lines, respectively. The bottom table compares the resulting idle times
and final SOCs across both scenarios. The EVs connected to the same chargers are
represented with the same colour.

4.2 Aggregation of multiple EV clusters
This second study focuses on examining the interaction between the VA controller
and the CA controller. The simulation test case involves four EV clusters connected
to two different transformers integrated with wind turbines as part of a small
Virtual Power Plant (VPP). Fig. 4.3 illustrates the layout of the VPP, showing
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the location of the clusters, the wind turbines and the transformers. Similarly
to the single cluster analysis, the study compares two scenarios: Scenario 1, an
unconstrained scenario where the CA does not provide coordination among clusters
and power modulation is not applied; and Scenario 2, where the CA coordinates
the consumption of each cluster, and the VAs coordinates charging sessions within
the clusters through priority-based sharing and scheduling of the power. The aim
of the study is to assess the performance of the distributed control architecture
in performing RES power matching, RES power smoothing, and peak shaving to
avoid transformer overloading, all while ensuring efficient EV charging across the
clusters.

Kastelbakken (KAS)

Rytterknægten (RYT)

10.6/0.4 kV

10.6/0.4 kV

Aggregated loads

Aggregated loads

EV clusters 1, 2
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Other aggregated loads

Other transformers

Kalby wind farm

Other power plants

Figure 4.3: Simplified grid layout for the system

In Scenario 2, the CA sends dynamic power references (P ref,1
CA , P ref,2

CA , P ref,3
CA ,

P ref,4
CA ) to the clusters according to two objectives: maximising wind power con-

sumption and managing transformer congestion. When the transformer loadings
are below a specified threshold, the sum of the power references for the four clusters∑n=4

n=1 P ref,n
CA is set to align with wind power output, distributing the load among

the clusters based on the number of chargers. If the loading of one of the transform-
ers exceeds 75%, the CA activates a droop control mechanism for the clusters fed
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EV cluster Number of Chargers Scenario 1 Scenario 2
1 (8 EVs) 4 Chargers 44 kW 21 kW
2 (32 EVs) 16 Chargers 176 kW 86 kW
3 (16 EVs) 8 Chargers 88 kW 43 kW
4 (12 EVs) 6 Chargers 66 kW 32 kW

Table 4.1: Characteristics of each cluster in both scenarios: number of EVs,
number of chargers, maximum power consumption in Scenario 1 and connection
capacities in Scenario 2 for each cluster.

by such transformer, gradually reducing their aggregated power reference until it
reaches zero at 80% transformer loading, preventing further congestion. For exam-
ple, if the Kastelbakken transformer is overloaded, the CA reduces the aggregated
power reference of Cluster 1 and Cluster 2 (P ref,1

CA + P ref,2
CA ). For each cluster, the

related P ref,n
CA acts as an upper boundary for the smart charging power and can

range from the value of the connection capacity of the cluster to 0 kWh. When
the P ref,n

CA becomes too low and not all the connected EVs can charge at least with
their minimum power, the EVs with the lowest priorities gradually disconnect.

The grid layout used in the simulation is based on a portion of the power system
on the island of Bornholm, Denmark. The Kalby wind farm and two transformers,
Kastelbakken and Rytterknægten, are part of this grid. Both transformers have a
rated apparent power of 500 kVA and operate at 10.6/0.4 kV. The simulation in-
puts include one-second resolution data for wind power production and transformer
loading, as shown in Fig. 4.4. The transformers experience two daily peaks, with
loading exceeding 80% even without the presence of the clusters. The behaviour of
the 68 EVs connecting to the clusters was modelled using data from the previous
study, which consisted of behaviour from 16 EVs provided by Nissan EVs Telem-
atics. The inputs for this simulation include the arrival time, SOC at connection
time and disconnection time. Additional characteristics, such as battery capacities
and phase configuration, were generated using the same criteria from the earlier
study. Table 4.1 provides a detailed description of the EV clusters in both scenar-
ios, including the number of EVs, number of chargers, and connection capacities
for each cluster.

4.2.1 Performance of the system
Figure 4.5 provides the time history of the dynamic power references P ref,n

CA (in
blue) and the power consumption P meas

P CC,n (in red) for the four clusters. From 0
to 6 am, the transformers work within their 75% threshold, and the wind power
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Figure 4.4: Top graph: Scaled wind power output of Kalby wind farm. Bottom
graph: transformer loading for Kastelbakken (in blue) and Rytterknægten (in or-
ange)

production is larger than the aggregated connection capacity of the clusters. There-
fore, the power reference equals the connection capacity for all the clusters. Later
in the day, the wind power production decreases and the CA lower the power ref-
erences P ref,n

CA for all the clusters. The different clusters coordinate to follow the
wind power production until the transformers become overloaded. Then the power
references P ref,n

CA are further reduced, and eventually, the clusters gradually halt
the charging sessions. Towards the end of the day, because of the EVs leaving the
clusters, the allowed power cannot be utilised, leaving the VPP available to other
loads in the grid.

Fig. 4.6 shows, in the top and center graphs, the impact of the power con-
sumption of the clusters on transformer loading. Both graphs display the original
loading data (in blue), the loading from Scenario 1 (in orange), and the additional
loading from Scenario 2 (in green). In Scenario 1, where there is no power cur-
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Figure 4.5: Time-histories of the aggregated power consumption of the four EV
clusters. Cluster 1 and Cluster 2 are connected to the transformer Kastelbakken
(KAS), while Cluster 3 and Cluster 4 are connected to Rytterknægten (RYT)
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Figure 4.6: Overall virtual power plant outputs. Top graph: Kastelbakken feeder
loading. Middle graph: Rytterknægten feeder loading. Bottom graph: VPP power
flow.

tailment, the clusters negatively affect transformer loading, exacerbating overloads
with peaks exceeding 80% and creating pronounced valleys. However, in Scenario
2, the power curtailment from the CA effectively reduces these peak loads, redis-
tributing power consumption to less congested hours. This results in transformer
loading remaining below the 80% threshold and a more stable overall transformer
loading profile throughout the day. The peak shaving effect is especially evident
in the Kastelbakken transformer between 10:00 and 13:00. Moreover, the bot-
tom graph in Fig. 4.6 shows the total wind power production in blue, the total
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power consumption of the four EV clusters in red, and the periods when either
transformer is overloaded, represented by the green areas. The graph shows that,
during the first half of the simulation, the wind power production is higher than
the aggregated connection capacity of the clusters, which is 182 kW. However, from
12:00 the wind power production falls within the aggregated connection capacity of
the system, and the system accurately follows the power production. After 16:00
the EVs start disconnecting or getting fully charged, causing a deviation between
power consumption and production. From 17:00 to 20:00 the system reduces the
power consumption to protect the transformers. Overall, the results illustrated
in Fig. 4.5 and Fig. 4.6 demonstrate that the double-layer control action of the
CA and VAs can effectively coordinate power consumption across clusters to align
with wind power production based on the number of connected EVs. Furthermore,
when the transformer approaches its overloading threshold, the CA can reduce the
power reference of the affected clusters, potentially leading to full load shedding.
The VAs will then automatically disconnect EVs as needed to ensure compliance
with the set-points provided by the CA.

Additionally, Table 4.2 showcases some performance indicators of the VPP in
the constrained scenario. The table shows that during the simulation, the wind
turbines produce a total of 4.36 MWh, the cluster consumes 1.34 MWh and there-
fore the VPP exports 3.07 MWh. Due to the disproportion between production and
consumption, the VPP imports only 92 kWh. The final two indicators in the table
are the average root mean square (RMS) of wind power production and the average
RMS of the VPP output, both calculated using their respective fitting curves over
a 24-hour period. The RMS of wind power production provides a qualitative esti-
mate of its fluctuations, while the RMS of the VPP output allows for a comparable
assessment of the oscillations in the power exported by the VPP. The difference
between the two values is only marginal, suggesting that the energy stored in the
clusters had little effect on mitigating wind power variability. This limited im-
pact is attributed to the disproportion between the wind power production and the
power consumption of the clusters. Specifically, during most of the simulation, the
wind power production either exceeded the aggregated connection capacity of the
four clusters, or the clusters were unable to match the power production due to a
lack of available EVs or because they were engaged in managing the loading of the
transformers.

Fig. 4.7 presents two scatter plots outlining the charging fulfilment of the EVs
based on the initial SOC. The left plot shows the distribution of energy charged
across all EVs, while the right plot displays the final SOC distribution. Two linear
fitting curve illustrate the general trend of the distribution for three-phase EVs and
single-phase EVs. The left plot reveals that the system prioritises charging EVs
with a lower initial SOC regardless of whether single-phase or three-phase, while
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Index Value
Total energy produced [MWh] 4.36

Total energy used [MWh] 1.34
Energy imported [MWh] 0.092
Energy exported [MWh] 3.07

Average RMSE wind power production 33.22
Average RMSE VPP 33.05

Table 4.2: Performance indicators for the virtual power plant

0 10 20 30 40

Energy charged [kWh]

0

10

20

30

40

50

60

70

80

90

100

In
iti

al
 S

O
C

 [%
]

Energy charged vs. Initial SOC

single-phase EVs
single-phase Fit
three-phase EVs
three-phase Fit

0 10 20 30 40 50 60 70 80 90 100

Final SOC [%]

0

10

20

30

40

50

60

70

80

90

100

In
iti

al
 S

O
C

 [%
]

Final SOC vs. Initial SOC for all EVs

single-phase EVs
three-phase EVs
No charge line

Figure 4.7: Graphical representation of the overall charging fulfilment of the 68
EVs. Left graph: distribution of the energy charged based on the initial SOC. Two
linear fitting curves illustrate the general trend of the distribution. Right graph:
distribution of the final SOC relative to the initial SOC.

delaying those with a higher initial SOC. Specifically, EVs with lower initial SOC
receive more energy, while those with higher SOC charge less. It is also evident that
single-phase EVs charge less energy overall compared to three-phase EVs. However,
the right plot shows that, despite receiving less energy on average, single-phase EVs
reach a higher final SOC than their three-phase counterparts. This discrepancy
is due to the single-phase EVs having generally smaller battery capacities in the
simulations. The results demonstrate effective prioritisation, as EVs connecting
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with an initial SOC below 45% charge at least 10.7 kWh (for single-phase) and
15 kWh (for three-phase). Only two EVs (both single-phase) are not charged at all,
but they started with high initial SOCs of 68% and 92%. These results outline the
suitability of the distributed architecture to achieve correct priority-based power
scheduling and power sharing, even during the coordination of different clusters for
FTM flexibility services.

4.3 Summary of the findings
This section summarises the findings from the two computational analyses de-
scribed in the previous sections.

The study in Paper [P3], summarised in Section 4.1, investigated the feasibility
of power-scheduling and power-sharing functionalities according to priority using
local communication in a distributed architecture. Overall, the local control of the
VAs proved suitable for the effective coordination of the charging sessions within a
cluster, guaranteeing normal operation of the cluster under a reduced connection
capacity without incurring overshoots and with only marginal differences in the
charging fulfilment and idle time of the EVs.

The study in Paper [P4] and summarised in Section 4.2, investigated the co-
ordination between the global and local control for providing FTM services. The
results demonstrate that the distributed architecture ensures a high level of con-
trollability across clusters. The simulation outputs show that the global control
layer of the system effectively coordinates the power consumption of the four clus-
ters to simultaneously perform RES power matching and peak shaving to prevent
transformer overloading. Meanwhile, the local control in each cluster accurately
follows the power set-point provided by the global control layer, managing the
different charging sessions through power-sharing and power-scheduling function-
alities based on priorities. Overall, the distributed control architecture proved to
be a technically feasible solution for both FTM and BTM flexibility services, while
reducing communication and computational demands compared to a centralised
control system.

As expected, due to AC-DC conversion efficiency of the on-board chargers,
more energy was necessary to achieve the same energy accumulated within the
batteries, suggesting that power-scheduling should be preferred over power-sharing,
and that individual power-sharing should be limited in controlling architectures.
Additionally, having chargers with higher power capacity would further improve the
charging efficiency. These changes would overall result in shorter charging sessions.

During the study some important aspect needing further improvement were
found: Firstly, the SOC-based prioritisation system is not feasible in real life be-
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cause the chargers cannot read the SOC from the EVs with the current protocols.
Manually adding details of battery capacity or current SOC might not be user-
friendly and discourage users from providing their inputs. Moreover, using the
SOC to prioritise the charging sessions results in prioritising cars with low SOC,
which is unrelated to the current energy needs of users. Secondly, scheduling the
charging session only among the different plugs of each charger is not an optimal
power-scheduling strategy. Although the parking lot still has idle time as a buffer
for the cars to charge, the idle time is not evenly distributed over the chargers,
generating a loss of charging opportunity. If an EV with very low SOC is con-
nected to one plug of the charger, the other plug will be locked from charging for
a long time. These considerations led to improvements in the control architecture,
resulting in Version 2.
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CHAPTER 5
Experimental validation

of the system

This chapter focuses on the experimental testing of the distributed architecture.
The developed system architecture relies on prototype chargers produced by the
company Circle Consult, a stakeholder of the ACDC project. Section 5.1 presents
the experimental setup and the devices utilised for performing the test. These tests
are run on Version 2 of the system, which is the improved design of the architecture,
solving the limitations found during the computational analysis. The tests con-
ducted include power-sharing (Section 5.2), power-scheduling (Section 5.3), RES
power matching (Section 5.4), and peak shaving (Section 5.5). The final set of tests
covers frequency regulation, both with equal and different priorities (Section 5.6).
The results for power-sharing, peak shaving, and RES power matching are derived
from Paper [P5], power-scheduling from Paper [P6], and frequency regulation
from Paper [P7]. Each paper provides a more detailed technical description of
the control algorithms and their respective results. Finally, Section 5.7 summarises
the results and provides some discussion points for future work.

5.1 Experimental setup and test cases
For the purpose of the experiments, the system is integrated into a microgrid at the
Energy System Integration Lab – SYSLAB on Risø campus, as shown in Figure 5.1.
The microgrid is primarily powered by renewable energy sources (RES) and is
connected to the external grid through a 200 kVA transformer. The setup consists
of the following components (from left to right in the figure): a connection to the
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external grid, the transformer, a 5 kW PV system, an emulated 20 kW PV system, a
10 kW wind turbine, a controllable load, and two chargers (C1 and C2), connected
to the PCC. The connection capacity at the PCC is limited to 53 A (36.6 kW),
which is lower than the combined maximum capacity of the two chargers, of 64 A
(44 kW). The emulated PV system consists of a power source that can mimic PV
power production in real-time, but its rated power can be manually changed. It is
used to reproduce PV power production in case RES production during the testing
day is absent or very limited. The controllable load simulates varying grid loads,
providing a way to test the performance of the system under different conditions. In
the experiments, four EVs are used, one for each charger plug. The test includes two
Renault ZOEs and two Nissan LEAFs: both models can charge with a maximum
current of 32 A. However, ZOEs have three-phase charging capabilities, charging
with a power of 22 kW, while the LEAFs are single-phase and have a maximum
power consumption of 7.36 kW.

Figure 5.1: Electrical system setup and representation of the devices involved.

5.2 Test power-sharing
This test is performed to validate the suitability of the control architecture for
power-sharing among the charging EVs. During the first test, the four EVs were
connected sequentially, in the order: ZOE 1, ZOE 2, LEAF 1 and LEAF 2. Fig. 5.2
shows the power consumption over time for each EV. When ZOE 1 was connected
to C1, it started charging with a maximum current of 32 A because the connection
capacity was not reached, and no power-sharing was needed. Upon the connection
of ZOE 2 to charger C2, the system activated its power-sharing functionalities to
prevent exceeding the connection capacity at the PCC of 53 A. This resulted in the
CA providing to both EVs an equal current of 26.5 A, theoretically corresponding
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to 18.3 kW each. However, the graph shows that both EVs consumed only 17 kW.
When LEAF 1 was connected to C1, the VA in C1 had to share its maximum
current capacity of 32 A equally among the two EVs. Therefore, each EV charged
at 16 A. These set-points correspond to 11 kW for ZOE 1 and 3.7 kW for LEAF 1.
The CA redistributed the remaining current (21 A) to ZOE 2, corresponding to
14.5 kW. While the LEAF 1 adjusted its power consumption precisely to 3.7 kW,
both ZOEs undershot their set-points: ZOE 1 charged at 10 kW instead of 11 kW
and ZOE 2 charged at 13.7 kW instead of 14.5 kW. Subsequently, LEAF 2 was
connected to C2, requiring the CA to redistribute the current capacity at the
PCC between C1 and C2 again. Each EV was thus allowed a current of 13.25 A,
corresponding to 3 kW for the LEAFs and 9.1 kW for the ZOEs. However, the ZOEs
again undershot, consuming only 8 kW each. Finally, both ZOEs were disconnected
and the two LEAFs shared the connection capacity of the PCC equally, consuming
6.1 kW each. The test concluded with the disconnection of all the EVs.

The test demonstrates that the distributed control architecture is capable of
performing power-sharing functions effectively and in a timely manner. Both the
CA and VA ensured that no overloads occurred, either at the PCC connection
capacity or at the individual chargers. Furthermore, the study reveals key insights
into the physical capabilities of both the chargers and the EVs.

One important finding relates to the power factor characteristics of the EVs.
The undershoot observed in the power consumption of the two ZOEs compared
to their set-points is linked to the consumption of reactive power during power
modulation. As documented in [91], power modulation impacts reactive power
generation in all EV models charging with alternating current (AC). The paper
reveals that this production varies significantly among different EV models, con-
firming that second-generation Renault ZOEs consume a high amount of reactive
power compared to other EVs. Additionally, this effect is more pronounced at lower
charging power levels. In AC chargers, since the output of the chargers corresponds
to an allowed current for the EVs, the actual active power they consume depends
on the power factor characteristic of their on-board charger.

Another key insight relates to the physical limitations of the chargers in han-
dling power-sharing when both three-phase and single-phase EVs are connected.
Specifically, in the presented experimental setup, the 53 A limitation applies to
each phase individually. As a result, when a single-phase EV is charging, the
other connected three-phase EVs must reduce their consumption across all phases
to avoid exceeding the capacity of the system on the most heavily loaded phase.
In the test scenario, for instance, when all EVs were connected, only one phase
reached full capacity (53 A), while the other two phases operated at half capacity
(26.5 A). Therefore, in presence of single-phase EVs, the controller must limit the
overall power shared among the EVs to ensure that no phase exceeds its current
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capacity. Phase imbalances during EV charging are problematic not only for the
power-sharing capabilities of charging clusters but also for grid operators (GOs),
who must ensure that phase imbalances on every grid node remain within tolerance
levels. This issue can be mitigated by rotating the wiring of each plug, so that an
equal number of plugs have each of the three phases as their primary phase. This
rotation reduces the likelihood of multiple single-phase EVs charging on the same
phase, thereby minimizing the risk of phase imbalances.
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Figure 5.2: Power-sharing test: active power of EVs

5.3 Test power-scheduling
This test is performed to validate the suitability of the local control to perform
power-scheduling among the charging sessions based on the ρint set by the users.
To demonstrate the functionality, during the test, the constant power reference set
by the CA is 16 A, and the power-sharing functionality within the VAs is removed,
forcing the system to only perform power-scheduling among the EVs. Additionally,
to maximize switching events during the test, both EVs were connected with equal
user priorities , and the queuing time before switching was reduced to 30 seconds.
As a result, once one EV begins charging, its ρint diminishes relative to the other,
prompting the VAs to pause its session and resume charging for the idle EV. The
short queuing time was specifically chosen to increase the number of switches during
the testing period. However, in practical applications, a longer queuing time would
be preferable to avoid excessive switching between EVs.
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Figure 5.3: Power-scheduling test: active power of the EVs (top graph) and
internal priority ρint for the two EVs

Fig. 5.3 shows a time history of the power consumption from the two ZOEs
employed for the test. The two ZOEs are connected almost at the same time, with
ZOE 1 being the first one to be scheduled. The bottom graph illustrates the ρint

function within the VAs signalling, with a value of 1, the start of an EV charging
session to the other VAs. This allows all the other VAs to either refrain from tak-
ing action or to disconnect or reduce their power consumption to accommodate the
new charging session. As the charging session progresses, the ρint decreases and,
when the priority value of the ZOE 1 becomes lower than the priority of ZOE 2, the
scheduling system activates, pausing the session of ZOE 1 and starting the session
of ZOE 2. The switching repeats other two times before the end of the test. The
graph highlights that the charging EV lowers the power consumption to an interme-
diate step before halting the charging session completely. This is possibly because
of an interference of the anti-overshoot functionality embedded in the VAs, which
lowers the power consumption of the EV before the other can connect. This inter-
mediate step is not desired and leads to two overshoots of the power reference from
the CA during the last two switches of the charging sessions. The anti-overshoot
functionality of the VAs is important to prevent the system from over-shooting
the power reference during the first stages of power-sharing when a new charging
session starts or resumes. However, this functionality should have been deactivated
alongside the power-sharing function, as having one without the other can inter-
fere with power-scheduling and cause overshoots. During the last two switches,
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the system overshoots the power reference of 0.9 kW and 1.8 kW respectively, the
overshoots last respectively 1.05 s and 5.25 s, not being a risk for standardised type
C breakers, used at the PCC. A more comprehensive analysis of the overshoot
can be found in Paper [P6]. While further investigation is required and the test
needs to be rerun to ensure optimal control tuning, the power-scheduling function-
ality of the local control layer has demonstrated technical feasibility. Future work
will revisit the test to refine and enhance the power-scheduling capabilities of the
architecture.

A crucial key limitation was found during the tests of the system, which concerns
the EVs. In detail, it was found that not all the EVs have the capacity to restart
a charging after the charging session was interrupted by the charger, without the
direct physical interaction of the user with the EV through key or by opening the
doors. As with the reaction time of the EVs and the reactive power production, the
behaviour of different EVs models can vary significantly and the outputs of the tests
with unknown models can be unpredictable. These findings further highlight the
urgency of standardization of the interaction between EVs and EVSEs, discussed
in the previous chapter. Solving this problem is of utmost importance for future
development of smart charging infrastructure.

5.4 Test RES following
This test was performed to validate the capabilities of the control architecture to
coordinate power consumption of the chargers to match RES power production.
The controller aims to match power production without disconnecting the EVs
when power is too low. During the test, the system received real-time measure-
ments of RES production, supplemented by the PV emulator to compensate for
the insufficient RES power generation caused by unfavorable weather conditions.
During the test, ZOE 1 and ZOE 2 and C1 were used.

Figure 5.4 shows a time-history of the RES power production and EV power
consumption during the test. Similarly to the first test, the two EVs are connected
subsequently. Before activating the RES following mode, the first EV and the sec-
ond EVs were connected subsequently. The first drop in the graph corresponds to
the reduction in power consumption by the first EV to make room for the second
EV as it began its charging session, ensuring that the combined load did not ex-
ceed the current capacity of the charger. Once both EVs were connected, the RES
following mode was activated, and the system started power-sharing to align with
RES production. During the test, the RES power experienced two 10 kW drops,
due to the gradual curtailment of the PV emulator. Despite a notable undershoot
in power consumption—–attributed to the consumption of reactive power from the
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Figure 5.4: RES power matching test: aggregated active power of the cluster and
RES production

EVs–—the system successfully adjusted the power consumption to match the fluc-
tuating RES input. It also ensured that the EVs maintained at least the minimum
charging level when RES power was insufficient, as seen in the latter half of the
test, where RES production hovered around 4 kW, and the EVs still consumed ap-
proximately 6 kW. The RES generation experienced a brief spike, lasting around
10 seconds, which was not followed by an increase in EV power consumption. This
lack of responsiveness was associated primarily due to the PI controllers in the
VAs becoming ”wound up” at the low saturation limit. In detail, when RES in-
put dropped below the minimum charging threshold of the EVs, the PI controllers
continuously generated set-points to match RES production. However, since the
EVs could not charge below their minimum power level, a persistent negative error
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accumulated in the integral term of the PI controller, driving the output to its
negative saturation point. Once this limit was reached, the integral term gradually
lowered its value, regardless of the output of the PI controller. As a result, when
RES conditions improved, the PI controller was slow to respond, requiring time to
unwind the stored error in the integral term.

To address this issue, a later version of the VAs incorporated an anti-windup
mechanism in the PI controllers. This modification limited the buildup of the
integral term when the controller reached its saturation point, allowing the VAs to
respond more quickly to changes in input without becoming stuck at their output
limits.

Overall, the test demonstrated the effectiveness of the distributed control ar-
chitecture in coordinating the charging of two EVs connected to a single charger,
ensuring power-sharing in line with RES production.

5.5 Test peak shaving

DTUDate Title 1

5 sec

Figure 5.5: Transformer protection test. Top graph: transformer loading and
threshold for power curtailment. Bottom graph: active power of the EVs
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This test was performed to validate the capabilities of the system to pause the
cluster consumption in the event of transformer overloading. For the scope of the
demonstration, the two LEAFs were connected to C1 and C2, and the transformer
loading limit was set to 10 kW. Fig. 5.5 shows the time history of the test: in the
top graph, the power consumption of the two EVs is illustrated, while the bottom
graph shows the transformer limit with the red dotted line and the power exported
or imported during the test. The power exported is indicated with negative values,
while the power imported is indicated with positive values. The graph starts by
showing the disconnection of RES production happening at 2100 s. Afterwards, the
two EVs are connected to the chargers, sharing the available 10 kW to prevent trans-
former overload. At 2370s an external controllable load of 40 kW was connected,
resulting in a spike in the transformer loading, which reached 50 kW. Within 5 s
the system reacted by halting the charging sessions of both the EVs. When the op-
erating conditions of the transformer were restored, the charging sessions restarted
automatically. This demonstration shows that the distributed control architecture
can disconnect EVs in a timely manner to perform transformer protection.

5.6 Priority-based frequency regulation
This section describes the performance of the system in providing frequency reg-
ulation to the grid while coordinating the charging sessions of EVs according to
priority. Two tests were performed: in the first, all the EVs have the same pri-
ority, and therefore, their involvement in regulating the frequency is equal; in the
second, the user inputs are set according to different charging urgency, and thus,
the control system gives the EVs different power shares and different degrees of
involvement. It is important to note that fulfilling the energy request and respect-
ing the duration of the charging session are not the focus of the investigation. The
CA receives frequency measurements fmeas from the meter at the PCC. In the
CA, there is an integrated droop control which translates these inputs into power
reference P ref

CA . The CA broadcasts P ref
CA to the VAs. The VAs have the same

controlling algorithm described in Section 3.3. A more detailed description of the
controller and its mathematical formulation is found in Paper [P7].

In the tests, the two ZOEs were connected to C1 and C2. A virtual connection
capacity of 32 A is chosen for the test, and a maximum current of 16 A is applied
to each plug. In the test with equal priorities, the same user inputs were chosen for
the two charging sessions, and the power range allocated to frequency regulation
was set to ±2.5 kW. Consequently, the aggregated power set-points of the EVs
varied between 12.5 kW and 17.5 kW for a frequency range of 49.9 Hz to 50.1 Hz.
In contrast, in the test with different priorities, the internal priorities ρint were
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set to 0.7 and 0.3, respectively, and the power range for frequency regulation was
increased to ±3 kW. As a result, the aggregated power set-points ranged from 13
kW to 19 kW for the same frequency range of 49.9 Hz to 50.1 Hz.
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Figure 5.6: Time history of the frequency test with equal priorities ρint: frequency
and power measured (top graph), power dispatched to each vehicle (middle graph),
priority of the EVs (bottom graph).

5.6.1 Test frequency regulation with equal priorities
Figure 5.6 presents a time-history of the test, highlighting the key parameters: the
top graph displays the measured frequency and power throughout the test, the
middle graph shows the power consumption of each EV, and the bottom graph
illustrates the priority trends, ρint, for the two EVs over the course of the test.
The top graph features a double y-axis, with both y-axes aligned to emphasize the
precision of the controller. The top graph shows fast and accurate coordination
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of the CA and VAs control actions to adjust the aggregated power consumption
of the EVs. The system shows a general undershoot of the power consumption
compared to the frequency-related set-points. The graph also shows the system
delays in following the power set-points. These delays are due to multiple factors:
the communication delays due to the different intermediate nodes between the
communication path that goes from the PCC to the CA and the VAs, the reaction
time of the PI controllers within the VAs, and the reaction times of the EVs. The
middle graph shows that the EVs have equal power adjustment with some relative
divergence, where at times, the first EV is consuming more and other times, the
second EV is consuming more. These divergences could be considered negligible or
the result of random interactions between the controllers and the EVs. However,
it cannot be ruled out that, despite efforts to match their initial conditions, the
two EVs may have differed in temperature, state of health of the battery, or other
factors that were not accounted for before the test. These factors could be further
investigated in future work. The bottom graph displays the trends of ρint for the
two EVs, starting around 0.43 and decreasing to 0.35. These ρint values mirror the
power consumption patterns of the two EVs, with the EV that charges the fastest
showing a more rapid decline in ρint. Consequently, since EV1 consumes the most
power by the end of the experiment, it concludes with the lowest ρint.

5.6.2 Test frequency regulation with different priorities
Similarly for the test with equal priority, in Fig. 5.7 the time history of the fre-
quency regulation performances is provided. Although the graph shows very similar
behaviour to the one in the first test, there is a more significant delay and addi-
tional oscillation of the power measured at the PCC compared to the reference
power. The second graph shows that one of the EVs is constantly charging to the
maximum power, showing almost no participation to frequency regulation, while
the second EV is the only one involved in the frequency regulation. Such changed
working conditions in the controlling action might result in a need for different
controller tuning, which will be addressed in future work. The priority trends for
both EVs ran nearly parallel throughout the charging session, with their priorities
decreasing as they approached the completion of their requested energy.

Finally, Fig.5.8 presents a normalized cross-correlation on the left to visualize
the delays, and a histogram on the right showing the error distribution between
the P meas

P CC and the expected power consumption of the cluster, highlighting both
the delay and the precision of the control action. In the left graph, the y-axis
illustrates the normalized cross-correlation coefficient and the x-axis the value of
lag in seconds. The lag represents the displacement between the two time-series
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Figure 5.7: Time history of the frequency test with different priorities ρint: fre-
quency and power measured (top graph), power dispatched to each vehicle (middle
graph), priority of the EVs (bottom graph).

for which each cross-correlation coefficient is calculated. The normalized cross-
correlation peaks at 0.98 at a lag value of 8.48 seconds. Such a result indicates
that the two curves have a very high degree of similarity but the measured power
curve is delayed by 8.48 seconds compared with the expected power curve. The
skewness of the right graph confirms the undershoot of the control action of the
system, which is, on average, 0.17 kW. Generally, the error ranges from -1.08 kW
to 0.48 kW.

These results demonstrate the fast and accurate response of the control action
for frequency regulation, as well as the technical feasibility of the control architec-
ture to handle more complex tasks that combine frequency regulation (FTM) with
charging prioritization (BTM).
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Figure 5.8: Normalized cross-correlation of the frequency with the power mea-
sured during the experimental validation (left graph); Histogram of the error dis-
tribution between expected power and measured power during the experimental
validation (right graph).

5.7 Summary of the results
This section summarizes the findings from the experimental validation of the con-
trol system described earlier. The experiments aimed to confirm the technical feasi-
bility of the functionalities previously simulated in computational analyses, though
they were tested on a smaller scale due to limited access to chargers and EVs.
These functionalities included power-sharing, RES power matching, peak shaving
(as detailed in Paper [P5]), power-scheduling (Paper [P6]), and priority-based
frequency regulation (Paper [P7]).

Overall, the system effectively managed all tested functionalities. The CA suc-
cessfully provided a dynamic power reference for distribution among chargers, while
the VAs autonomously coordinated to meet power demands based on priority. The
system demonstrated both speed and accuracy, with a response time of under
5 seconds for disconnecting EVs in transformer overload situations and an aver-
age reaction time of 8.5 seconds during frequency regulation tests involving two
ZOEs. Precision was mostly maintained, though reactive power consumption by
EVs affected set-point accuracy.

However, some challenges were identified, particularly regarding controller tun-
ing and interactions. For instance, in the RES power matching test, the PI con-
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troller experienced ”windup” issues, and during power-scheduling tests, the anti-
overshooting feature of the VA interfered with the switching of charging sessions,
causing minor overshoots. These challenges were tied not to the architecture itself,
but rather to the need for better tuning of the controllers, which have since been
addressed in the current EV cluster at the Risø Campus. Future work will focus
on longer-duration tests (over several days) to assess the combined functionality of
power-scheduling, power-sharing, and prioritization for a variety of FTM services,
such as RES following and transformer protection, as simulated in Paper [P4].

The experimental campaign also provided key insights into real-world EV-EVSE
interactions. The power-sharing experiment indicated that single-phase EVs could
significantly limit the control range of other EVs in the cluster due to phase imbal-
ances and current limitations on each phase at the PCC breakers. Specifically, to
prevent tripping, the controller needs to protect the most heavily loaded phase, even
if this results in underutilization of the remaining phases. A mitigation strategy
could involve either a passive or combined passive-active approach. The passive ap-
proach entails rotating the wiring of chargers to balance phase distribution within
the cluster. An active approach would complement this by mapping the phase con-
figuration within the controller, allowing optimization of the control action based
on the primary phase of each charger.

Another limitation affecting the accuracy of the control action is the variability
in EV behavior. The tests revealed significant differences between EVs in terms of
reactive power consumption, response delays, and their ability to resume charging
automatically after a controller-induced pause. While reactive power issues and
response delays require careful consideration to optimize control strategies and
maintain grid stability, they are not critical to the feasibility of smart charging
functionalities or the proposed architecture. However, the inability of some EVs to
automatically resume charging poses a major challenge to the technical feasibility
of power-scheduling strategies in commercial applications. This unpredictability
in EV behavior warrants further investigation, requiring solutions either from a
control system perspective or through standardization of EV functionalities.



CHAPTER 6
Conclusion

6.1 Summary
Automated EV smart charging technologies have the potential to become essential
components of future smart grids. These technologies enable dynamic control of EV
charging processes, offering flexible storage capacity to the grid and enhancing the
security and stability of electricity supply. This is especially important as energy
production increasingly relies on RES, which are less controllable than traditional
energy sources, and energy demand from EVs becomes increasingly significant for
the grid.

This thesis explores the potential of EV clusters to function autonomously as
controllable loads, providing flexibility services to GOs while ensuring a seamless
charging experience for EV users. The focus of the thesis can be grouped in two
perspectives: the first is the design of an analytical framework to simplify the
planning and sizing of smart EV clusters, with an eye on the future development
of flexibility markets and the standardization of EV-based flexibility services. The
second is the design of an autonomous distributed control architecture to harness
the flexibility potential of EV clusters and provide controllability both on a large
scale, to GOs and aggregators, and on a small scale, to CPOs and EV users. The
designed control architecture involves a two-layer control, consisting of a cloud-
based control unit for the global control and an autonomous control unit embedded
within the charger, for local control. The control architecture was developed and
implemented in a workplace parking lot at Risø campus. The project demonstrated
the feasibility of the system and assessed its potential capabilities.

The first part of the thesis focuses on the integration of smart EV clusters as
controllable loads for providing grid services. The opening chapter provides an
overview of the deployment status of smart EV infrastructure, identifying techno-
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logical, economic, and policy barriers to their integration as providers of flexibility
services. These barriers create uncertainty around the flexibility potential of EV
clusters and their profitability as controllable loads, which hinders investment in
smart EV infrastructure. To address this uncertainty, the thesis proposed an ana-
lytical framework designed to quantify the flexibility potential of EV clusters. This
data analysis tool enables CPOs to leverage their extensive metering data to sum-
marize the flexibility potential of clusters across a variety of services using a few
simple metrics. The method was applied to a computational sensitivity analysis
of an existing workplace EV cluster, evaluating how various cluster characteristics
and user behaviours influence its flexibility potential. The sensitivity analysis re-
vealed that user energy requests, EV battery sizes, and connection patterns are the
most critical factors when sizing an EV cluster and selecting a suitable strategy.
These factors significantly influence both the amount and timing of flexibility, with
clusters offering more flexibility at the beginning of work shifts and less throughout
the day due to fewer new connections. The study identifies scheduling-based smart
charging strategies as means for mitigating the effects of insufficient connection
capacity in clusters. These strategies are also essential for fully utilizing the power
capacity of chargers, especially when the chargers have high power capacity. The
analysis also showed that the number of EVs alone does not significantly impact
flexibility potential. Instead, connection patterns and energy requests have a much
greater influence, affecting the timing and amount of flexibility over a given time
period.

The second part of the thesis focused on the development of the autonomous
distributed control architecture for EV clusters. In the different chapters, the
thesis covered the design concept and implementation, development stages, com-
putational analysis, and experimental validation of the system. The computational
analysis was first applied to a single-cluster configuration for local services, then
to an aggregation of clusters coordinating their consumption to match wind tur-
bine power production and reduce load to prevent transformer overloading. In the
simulations, the distributed control architecture effectively managed charging ses-
sions across both control layers: the cloud-based control successfully coordinated
power consumption among clusters by dispatching dynamic power set-points, en-
suring peak shaving and RES power matching; simultaneously, the chargers au-
tonomously scheduled and modulated each charging session based on user-defined
charging urgency, matching the dynamic set-points from the cloud-based control.
The last chapter of the thesis described the experimental demonstration of the
simulated smart charging functionalities on a smaller scale. Overall, the test val-
idated the technical feasibility of the distributed control architecture for power-
sharing, power-scheduling, RES power matching, peak shaving, and priority-based
frequency regulation. The experimental campaign, conducted with Renault ZOEs
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and Nissan Leafs, demonstrated effective and consistent performance, with the
cluster achieving full reaction to a new power measurement within 8.5 seconds.
However, the system encountered some control limitations, primarily resulting in
undershoots in EV power consumption compared to the set-points. Certain issues,
such as phase imbalances caused by single-phase EVs and reactive power produc-
tion during EV modulation, can be mitigated, and solutions were proposed. Other
limitations, particularly related to the incompatibility of some EV models with
scheduling strategies, underscore the need for policies promoting the standardiza-
tion of onboard charging technologies.

6.2 Perspectives for future research
The first part of the thesis proposed an analytical framework for the quantification
of flexibility potential of EV clusters. On this regard, two key areas for future re-
search have been identified. First, the method could be enhanced by incorporating
indexes that account for the individual flexibility of each charging session. This
is particularly relevant for the TFI, as time flexibility can vary significantly be-
tween EVs. Using a single parameter to represent this could be misleading, as the
analysis showed. Understanding this variation could help compare the scheduling
effectiveness of different charging strategies and offer insights into user behaviour.
Second, further research should investigate the optimal flexibility capacity for EV
clusters, focusing on how cluster size and electrical layout affect CAPEX and po-
tential OPEX savings from flexibility services based on market pricing forecasts.
These insights could enhance the planning of smart charging clusters and improve
returns on investment for CPOs and aggregators.

The second part of the thesis introduced a novel autonomous distributed control
architecture as a promising solution for large-scale control of smart EV clusters,
enabling both BTM and FTM services. However, field tests were limited to a single
cluster with a maximum of four EVs, and conducted over a short time period. Fu-
ture research should expand these tests to larger-scale scenarios, involving multiple
clusters and more EVs to fully assess the potential of the architecture.

Future research should further refine the control strategy by investigating the
interaction between global and local control output update rates, local control tun-
ing, and the behavior of a diverse range of EV models. During the tests, significant
differences in control accuracy, reaction times, and delays were observed among
various EV models. Notably, some vehicles were unable to automatically restart
charging after being paused by the controller, requiring manual intervention, such
as opening the door, which posed a major limitation for power-scheduling function-
alities. Additionally, variations in on-board charging technologies led to differing
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behaviours related to reactive power production and phase consumption. These in-
consistencies introduced unpredictability, limiting the controllability and response
time of the system, and must be considered in commercial applications.

Finally, a valuable next step in researching this novel architecture would be
a techno-economic comparison between the distributed control architecture and
conventional centralized systems. While the distributed approach offers scalability
and reduces the computational load on a single cloud entity, potentially lowering
operational costs, its increased design and control complexity may lead to higher
per-charger costs. A comparison of the two approaches could offer deeper insights
into the practical feasibility and cost-effectiveness of distributed control architec-
tures.
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Abstract�The mass penetration of electric vehicles (EVs)
could develop grid stability problems due to the increase
of peak loads created by coincident charging factors. Smart
charging is the control of the EV charging loads and has
long been identi�ed as a potential solution. Smart charging
could also contribute to grid stability by mitigating the
intermittent nature of renewable energy generation. This
paper describes the current status of EV �exibility services
at the distribution level. The analysis of the smart charging
status is done considering the technological, economic and
regulatory frameworks, and presenting what the different
barriers of each of these aspects are. Additionally, the
paper introduces the ACDC project (Autonomously Con-
trolled Distributed Charger), which aims at developing an
EV clustering method based on distributed smart charging
control logic for �exibility services. For divulgation purposes,
the scheduled test case scenario of the parking lot at the
Technical University of Denmark is described. The paper
concludes on some of the most relevant actions to overcome
the most imminent barriers and to push further the roll-
out of EV charging infrastructure towards the target EV
penetration planned by policymakers.

Index Terms�Electric Vehicle, Distribution Grid, Smart
Charging, Flexibility

I. INTRODUCTION

In order to achieve draw-down of CO2 emissions, the
governments are trying to hinder the reliance on fossil
fuels for energy production and transportation, in favor of
sustainable technologies. On the energy production front,
this means promoting renewable energy systems (RES),
while regarding the transportation sector, this consists of
speeding up the electri�cation of private and public trans-
portation systems through the roll-out of electric vehicle
(EV) technologies. The global scheduled roll-out of EVs
aims at reaching 50 million EVs by 2025 and 140 million
by 2030 [1]. Charging large EV �eets can result in stability
and security challenges in the distribution grid, associated
with grid components not being properly dimensioned to
stand the resulting increased power required [2]. However,
thanks to smart charging, EVs have the potential of
adapting their power consumption to the current needs of
the distribution grid. The provision of such distribution
grid services could delay, or even set aside, the necessity
for costly grid updates [3].

Many demonstration projects [4] are currently working
on the feasibility of different grid services through smart
charging, providing test cases to gain experimental data.
EV clusters can be deployed both behind the meter (BTM)
and in front of the meter (FTM) [5]. BTM services are

services provided to the users and they consist of load
coordination among different EVs, buildings (residential,
commercial or industrial) and eventual distributed energy
resources (DER) at the connection point. FTM services are
provided to the Distribution System Operators (DSOs). In
this case the EVs can be coordinated in groups by ag-
gregators and provide their �exibility directly to the grid.
Smart charging could contribute to the supply adequacy
and quality, reduction of peak loads and transformer con-
gestion, reduction of curtailment and allowance for higher
usage of low-cost RES electricity [6], [7]. The challenges
associated with the integration of EVs in the power system
can be categorized in technological, economics, and policy
related [8]. The objective of this paper is to identify and list
the most relevant challenges in each of these categories,
and to conclude by suggesting a set of actions that could
be taken for overcoming such obstacles. Furthermore, this
paper introduces the ACDC (Autonomously Controlled
Distributed Charger) project providing an overview of its
demonstration layout.

Firstly, section II provides a conceptual basis including
the de�nition of different EV �exibility services. Secondly,
section III describes the status of technological maturity
of EV smart chargers. Section IV, provides a description
of the economic framework for �exibility while in section
V there is a description of the regulatory status of EV
infrastructures. Finally, section VI introduces the ACDC
project and section VII concludes with some general
recommendations deduced from the literature review in
each of the described �eld.

II. SMART CHARGING AS GRID FLEXIBILITY SERVICE

This section describes in more details the different
smart charging con�gurations and explains what are the
�exibility services. The section ends with a description
of the properties of �exibility services useful for the
following sections.

A. Smart charging

In Fig.1 the possible smart charging con�gurations are
illustrated. The unidirectional power �ow (V1G) chargers
allow the car to adjust its rate of charging. Additionally,
the vehicle-to-grid (V2G) technology allows to inject
power back to the grid. These con�gurations are FTM
because the charger interacts directly with the grid and
can be directly controlled by the DSO or aggregator.
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Fig. 1. Illustration of different smart charging con�gurations adapted
from [9].

The other two are vehicle-to-home (V2H) and vehicle-
to-building (V2B), both BTM con�gurations: in these last
two con�gurations the car is connected to a house or a
building and it adjusts its consumption to generate services
for the household/building (V2H/V2B).

B. Possible �exibility services from EVs

In the power grid, �exibility services are power regu-
lations performed by either supply or demand, with the
scope of maximising the security and stability of energy
supply. Fig. 2 describes the main services that can be
provided with EVs. Such services can be categorized in
system �exibility and local �exibility. The �rst category
consists of services that target the system as a whole,
including the transmission and the production side of the
grid. The local �exibility, which is the main focus of this
paper, consists of DSO services (also called FTM services)
and BTM services. The DSO services are directly man-
aged and controlled by the DSO through contracts with
aggregators or directly with the user. They aim at reducing
voltage unbalances (voltage magnitude regulation, phase
voltage unbalance reduction), solving the grid instabilities
related with the capacity of transformers and lines cables
(congestion prevention, capacity management), optimizing
the loads to reduce losses (loss reduction) and increase the
power quality by active or reactive power injection (power
quality correction). Smart chargers available today are still
not capable of power quality correction, although studies
showed that it could need little development effort and be
pro�table [10].

BTM services aim at minimizing the electricity cost
by importing the least possible energy from the grid and
schedule charging at times where the cost of electricity is
lower.

In order to clearly de�ne the quantity and the quality of
a �exibility service, we follow the de�nition of theoretical
and practical attributes given by the authors in [11].
Theoretical attributes are the attributes that characterize
the ideal load modulation set point. Practical attributes
are additional attributes introduced due to the unideality
of the systems (e.g. delays, tolerances, etc.), and they
describe the actual performance with which the charger
can follow those set-points. These attributes are described
below.

Theoretical Attributes:
� Direction: Unidirectional or Bidirectional power ad-

justment capabilities (V1G or V2G).
� Power Capacity: Maximum active power possible.
� Starting time: Starting time of the service.
� Duration: Duration of the service.
� Location: Location of the electric vehicle supply

equipment (EVSE) or EV related to the grid topology.
Practical Attributes:
� Accuracy: Maximum allowed tolerance between re-

quired and delivered power response.
� Precision: Maximum allowed tolerance between the

power setpoint and the actual power erogation.
� Activation Time: Time between setpoint reception and

�exibility activation.
� Ramp-up time: Time that it takes for the charger to

adapt to a higher set-point.
� Ramp-down time: Time that it takes for the charger

to adapt to a lower set-point.
These attributes need to be assessed to be within stan-

dardized tolerances, and to be transparently communicated
among the stakeholders for the provision of �exibility ser-
vices. Such communication is crucial for the establishment
of quality and therefore value of the different products
provided.

III. CURRENT TECHNOLOGY AND INFRASTRUCTURES

A. Electric Vehicle Supply Equipment
Nowadays smart charging technologies have reached

market roll-out in Europe. The overview of the commer-
cially available chargers carried out in [12] concludes
that, in 2020, more than 50% of the available EVSE pre-
sented smart charging functionalities. The most common
functionalities reported in the paper are load modulation
(dynamic load management and limitation of power set-
points) and power sharing with the household/building.
Here, some of the capabilities of the top-end smart charg-
ers available today are described:

� BTM functionalities: These capabilities refer to the
ability to coordinate the charging between the vehi-
cles and the household/building demand and eventual
DER production. The charging can be coordinated via
power sharing, scheduling and charging prioritization
(using state-of-charge (SOC), driving plan or pattern).

� Inter-connectivity: In order to provide the above-
mentioned distribution services and BTM functionali-
ties, smart chargers are able to have multiple commu-
nication channels: they are connected locally with the
building energy meter, but also they are connected to
the internet, from which they could be coordinated by
aggregators in order to provide �exibility. Moreover,
their status is usually available via the internet or
Bluetooth so that the user can interact remotely with
the EV, the charger and easily plan his trip.

� System recognition: ID number of the individual
EVSE, or alternatively of the EV, must be de�ned to
ensure that the proper user is procured and remuner-
ated for the delivered �exibility. Further information
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Fig. 2. Description of the different �exibility services that EVs can provide.

should also be made accessible by the EV manufac-
turers, which is, e.g., currently not the case for the
SOC data. Naturally, user privacy must be ensured
by regulations so that all collected data are treated as
con�dential and kept private.

It is important to notice that the capabilities listed
describe the top-end chargers available, and therefore the
characteristics are not representative of the average of
the chargers in the market and even less of the chargers
currently deployed. Indeed the majority of the chargers in
European cities are not capable of any smart function, thus
also called �dumb� chargers.

B. Control architecture
The coordination and control of different clusters of

smart chargers need to be performed effectively by the
DSO, user or aggregator. Different control architectures
have been proposed and investigated in the literature [13].
They can be categorized into centralized, decentralized
or distributed control architectures. The centralized ar-
chitectures rely on a central intelligence called Cloud
Aggregator (CA), which controls directly all the chargers.
In the decentralized approach, the intelligence is called
Virtual Aggregator (VA). The VA resides in each charger
and is therefore sensitive to local measurements. Since
the centralized control relies on a single server, it is
prone to disconnection errors and delays. On the other
hand, the decentralized system is very robust, although its
controlling capacity is less ef�cient due to the limited data
it receives from the system. Finally, the distributed control
approach combines the bene�ts from both architectures.
It is able to coordinate between local control and global
control because it communicates both with VA and CA.

C. Grid observability and smart metering
One of the most important factors in the prompt de-

velopment of charging infrastructures is the development
of smart metering and grid observability. Direct measure-
ments from EVSE or other local metering systems could
provide the DSO with more knowledge about the grid,
making it capable of judging if �exibility procurement or
grid reinforcement are necessary.

Countries where the adoption of smart chargers is
combined with experimental demonstration campaigns are
leading the way towards the generation of invaluable

lessons on user behaviours, the correct planning of charg-
ing infrastructures as well as economic and policies sug-
gestion for aggregators, DSOs and governments [14].

In the majority of the countries where smart meters
are deployed, all units are certi�ed and installed by the
DSO, which is also responsible for data collection and
management.

It is of particular importance to clearly de�ne the re-
quirements on the speci�c measurement parameters, such
as the sampling rate, which must be chosen as a trade-off
between the information speed on the one hand, and the
installation and data management cost on the other.

The European Clean Energy Act requires that all mem-
ber states assess the cost-bene�t of smart meters and
ensure that at least 80% of consumers are equipped
with smart meters by 2024, if the cost-bene�t analysis
is positive [15]. It is also stated that smart meters func-
tionalities should include remote reading with two-way
communication and a sampling rate not greater than 15-
min. Yet, there are no international standards that would
ensure these functionalities, so the status across Europe
considerably varies.

However, several European countries have plans for
a wide-scale roll-out of smart meters supported by the
national regulatory framework. Yet, there is still a rela-
tively large share of countries that has not started their
deployment due to negative or inconclusive results of the
cost-bene�t analysis [2].

As a result, many of the consumers still buy �dumb
chargers� because they are cheaper and countries do not
incentivize the purchase of smart options. The additional
cost of retro�tting the older EVSEs once EV smart charg-
ing becomes a common practice should be considered.

The EV chargers and models need to show their inter-
nal parameters to DSOs and aggregators to be managed
correctly in the �exibility service. There is still a lack
of experimental data on the practical attributes of the EV
capabilities, and authors in [16] state that there might be a
difference in EVs response accuracy based on the external
conditions.

Smart meters characteristics and functions need to be
standardized as their varying performances is observed to
be one of the major barriers towards �exibility procure-
ment.
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D. Information and communication technologies
Information and communication technology (ICT) en-

sures advanced metering, control and transactional com-
munication among different stakeholders: EVs, EVSEs,
DSOs, TSOs, market operators/players and the end-user.
ICTs are crucial to provide grid monitoring for the ac-
tual research and development of �exibility services. EV-
related communication protocols can be divided into front-
end and back-end protocols, and they are respectively
between the EV and EVSE and between the EVSE and
a third party, such as an aggregator. Nowadays, the vast
majority of contemporary EVs are compliant with IEC
61851 or SAE J1772 standard, according to which the
EV charging current can be limited between the minimum
charging current of 6 A and the maximum one, which is
the EVSE rated current (10 A, 16 A, 32 A, etc.). One of
the present limits of the existing protocols is the lack of
communication of fundamental EV information, such as
battery size and SOC. Moreover, there are not protocols
that support entirely V2G functions. Standard ISO/IEC
15118 covers communication between EVSE and EV, as
well as among all stakeholders involved in the supply
process [17]. It takes into account the data encryption
for both con�dentiality and data integrity purposes and it
is currently being revised to include V2G functionalities
if used together with OCCP 2.0 or IEC 63110 (between
EVSE and aggregator or charge point operator).

IV. ECONOMIC FRAMEWORK FOR FLEXIBILITY

The economic framework for �exibility services is a
central barrier hindering the development of a �exibility
value chain. The economic and regulatory frameworks are
hugely interconnected. This section will illustrate different
economic tools currently under development for creating
�exibility value on the DSO perspective that are proposed
by the literature [18].

A. Grid codes
This approach proposes to update grid codes for grid

connection of �exible loads or DER with the scope of
imposing �exibility requirements. There are discussions
on what should be strategical requirements to facilitate
the development of market-based �exibility services.

B. Connection agreements
These are agreements between DSOs and consumers for

�exibility provision. There are two main types of smart
connection contracts: interruptible contracts and variable
capacity contracts (VCCs) [8]. Interruptible contracts enti-
tle the DSOs to control EV charging energy consumption
based on the grid conditions. This type maximizes grid
stability at the expense of user comfort and acceptance.
In VCCs, the DSOs provide scheduled or dynamic max
power allowance for charging necessities and related dy-
namic prices.

C. Electricity tariffs
This mechanism generates an indirect provision of

�exibility because it encourages end-users to adapt their
consumption. Network tariffs are paid by the consumers,

together with other taxes. They consist of roughly 25% of
the electricity bill and resemble the planning and opera-
tional costs of the network. There are different kinds of
tariff structures/components: energy component (e /kWh),
capacity component (e /kW), grid connection component
(e ). Currently, not all countries are deploying network
tariffs to encourage the use of �exibility. Although some
of the above-mentioned tariffs are still under development,
every country should update the electricity tariff to include
at least two components: the capacity and an energy one
[11].

The ToU (Time-of-Use) tariff is a simple price mecha-
nism to incentivize off-peak consumption that could result
in reduced congestion. However, with high-penetration
scenarios the charging synchronization of large �eets
during off-peak hours is a potential risk.

A tariff structure trending in current research is the
Distribution Locational Marginal Prices (DLMPs), where
the cost of electricity is dependent on the particular nodes
of the distribution grid. There are different variations
of such tariff, which can include local constraints such
as voltage, losses, power quality, etc. These structures,
although promising, raise some important concerns regard-
ing the dif�culty of implementation as well as inequality
and transparency issues.

Dynamic capacity tariffs could be a very ef�cient frame-
work. These tariffs would force consumers to adapt their
maximum consumption to the grid conditions for a given
period of time. The drawbacks of the capacity tariffs are
that they could hinder the development of fast-charging
stations.

D. Flexibility markets
In recent years some markets for different EV �exibility

services were developed (for example, system balancing
and energy management) and started being used by ag-
gregators. EV �exibility markets at the distribution level
are still far from suf�cient, since there is not a market
structure and digital infrastructure [19]. Regulators should
incentivize the creation of a larger number of smaller local
�exibility markets based on nodal pricing systems [20].
With a Market-based approach, DSOs explicitly procure
�exibility services from a market. The penetration of the
EV-based services in �exibility markets will increase the
value of such services and allow their trading among
different stakeholders. Again, there are various viable
approaches: Long or Medium-term bilateral contracts or
short terms Market Platforms. The role of the DSO is to
de�ne the �exibility requirements, which can be offered
by different aggregators or prosumers.

Market frameworks have a strong potential to generate
value for all stakeholders [21] and are the preferred
approach by regulators.

V. REGULATION

A. Rede�ning the role of DSOs
Before the beginning of the transition towards renewable

energy resources the grid was easier to operate. This is
because it had a virtually radial shape with the consumers
at the center and the producers at the outer radiuses. The
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�ow was unidirectional and the loads and production were
easier to forecast and control. Therefore the DSO approach
to congestion and voltage issues was simply reinforcing
the grid when needed (the so-called ��t-and-forget� ap-
proach). The economic and regulatory frameworks were
therefore built around this model and the DSOs were
remunerated based on the capital expenditures (CAPEX)
for grid renovation.

Nowadays, the evolution towards smart grids requires a
shift towards a TOTEX-based (total expenditure) frame-
work, where the DSOs need to minimize their OPEX
(operational expenditure) as well as the CAPEX. This need
is at the moment only partially met and there is still need
for a reform of the regulatory framework to push the DSOs
to manage their expenditures proactively and to deploy the
value of load �exibility [22].

B. Standardization of EV connections
Because of its technological novelty, there are often

some administrative problems related to V2G technol-
ogy. In more details, V2G chargers installation imply
additional and often redundant administrative procedures
that discourage their adoption by the user. The cause of
these obstacles is that connection requirements, classi�-
cation and standardization of V2G connections are not
fully developed yet. Regulators, system operators, EV and
EVSE manufacturers need to work on the standardization
of interconnection requirements in order to reduce the
administrative processes and ensure safety for both end-
user and the system itself. On the other hand, V1G,
V2H and V2B are more technologically mature and their
connections have already been standardized in the previous
years [17].

C. Interaction between actors
As previously stated, there are different approaches for

DSOs to provide �exibility: Grid codes based, contract
based and market based approaches. The grid codes based
approach requires the DSOs to stipulate direct obligations
for �exibility provisions or contract arrangements directly
with the EV user so that they can directly control the EV
charging process. The market-based approaches require
an additional interaction between DSOs and TSO. The
interaction between DSOs and EV users often requires
the mediation of aggregators, which can cluster different
EVs and manage their �exibility into tradeable services
packages.

The interaction between DSOs and TSOs is considered
a key aspect in the European Clean Energy Package as the
penetration of RES and DER increases. This is because the
distribution network and the transmission network often
have different needs that could be in contrast. Often the
needs of the transmission network need to be prioritized
compared to the ones of the distribution network.

VI. THE ACDC PROJECT

Some of the aspects discussed in this paper are anal-
ysed by the ACDC project. The ACDC (Autonomously
Controlled Distributed Charger) is a Danish project that
aims at developing a clustering method for autonomous

smart charging with distributed control architecture and
a virtual aggregator. The cluster contains a set of EV
chargers controlled to provide FTM and BTM grid ser-
vices. The global grid status is communicated via a Cloud
Aggregator, through which FTM services can be provided.
Furthermore, the local coordination between the chargers
for BTM services is handled by the virtual aggregator.
The development of the clustering method is ongoing,
although a more detailed description of the control logic
is available in [23] together with the simulation results of
a V2H scenario with 2 EVs. As part of the demonstration
campaign, the designed technology will be installed in one
of the parking lots of the Risł research campus of the
Danish Technical University (DTU). A satellite picture
of the parking lot is shown in Fig. 3. The scope is to
validate the charging performances in a V2B of�ce case.
The parking lot will host 8 smart chargers with 2 type-2
plugs each. Each plug can support a maximum charge rate
of 11 kW from a 3 phase charger. The parking lot could
potentially charge with a max power of 88 kW. However,
the grid capacity of the parking is limited to 43 kW (63
A, 3 phase). The parking lot will serve to develop and
demonstrate ACDC’s distributed charging control logic for
BTM and FTM services under limited grid capacity.

Fig. 3. Satellite picture of the parking lot location. The red dots indicate
the chargers.

VII. CONCLUSION

An overview of the current development status of the
EV integration in the distribution grid was provided. Many
authors believe that smart chargers could potentially be
an important component of the future smart grid. Smart
charging could drastically reduce the drawbacks related to
EV integration and, at the same time, solve the increasing
grid instability problems due to other sources, like DER.
However, there are still many barriers before the smart
charging technology is fully mature. In this paper, the
authors described the current status of EV �exibility
services at the distribution level, including the technolog-
ical, economic and regulation perspectives. Moreover, the
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TABLE I
FUTURE STEPS NEEDED TO PUSH THE DEVELOPMENT OF ROBUST EV INFRASTRUCTURES FOR DISTRIBUTION GRID SERVICES IN EACH OF THE

FIELDS ANALYZED

Technical Economic framework Regulatory framework
Further R&D on smart charging capabilities. Keep or introduce temporary incentives for

cars, shared mobility and Mobility-as-a-
service

Enhance active management requirement to
DSOs

Standardize and ensure interoperability be-
tween different EVs and EVSE.

Research on business models for aggregators
and charge point operators

Standardize cost-bene�t analysis for smart
meters

Develop and test ICT and standards (espe-
cially V2G)

Develop and test new Network tariff struc-
tures

Ensure a clear classi�cation and standard-
ization of V2G connection requirements for
V2G prosumers

User interactivity and interconnectivity Strategical location for different types of
chargers to ensure trust in EV infrastructures
investors

Create incentives for smart chargers purchase

Continue the demonstration project cam-
paigns to gather data.

Establish local �exibility platforms with in-
creasingly competitive approaches.

De�ne DSO-TSO priorities and the interac-
tion between every stakeholder

Increase grid observability Continuous revision and improvement of
economic framework of �exibility based on
the lessons learned

Set ambitious targets (CO2 reduction, tar-
gets for different transport types)

authors introduced the ACDC project and a test case of
its demonstration campaign to explain part of the ongoing
research and development on clustering methods for smart
charging functionalities. In conclusion, recommendations
on possible steps to be followed in each of the analyzed
perspectives are summarized in table I: From a technical
point of view, the bottleneck for the roll-out of smart
charging is the related ICT: Development of the existing
standards and protocols is needed to ensure EVSE-EV
interoperability, user-EVSE interactivity and grid observ-
ability. From an economic point of view, the focus should
be on two aspects: developing market platforms to provide
trading of services and developing business models to
assure pro�tability for investors of EV infrastructures, as
well as aggregators and prosumers. Finally, the regulatory
framework should set ambitious targets and stimulate
technical and economic value-chain development. This can
be done by standardizing and including the different tech-
nologies, de�ning their available products and regulating
the interaction between stakeholders along the value chain.

ACKNOWLEDGMENT

The work in this paper is supported by the research
projects ACDC (EUDP grant number: 64019-0541) and
FUSE (EUDP grant number: 64020-1092).

REFERENCES

[1] International Energy Agency, �Global ev outlook: Entering the
decade of electric drive,� tech. rep., 2020.

[2] K. Knezovi·c, M. Marinelli, A. Zecchino, P. B. Andersen, and
C. Traeholt, �Supporting involvement of electric vehicles in dis-
tribution grids: Lowering the barriers for a proactive integration,�
Energy, vol. 134, pp. 458�468, 2017.

[3] L. Calearo, A. Thingvad, H. H. Ipsen, and M. Marinelli, �Economic
value and user remuneration for ev based distribution grid services,�
Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies
Europe, ISGT-Europe 2019, 9 2019.

[4] M. Marinelli et al., �Electric vehicles demonstration projects-an
overview across europe,� UPEC 2020 - 2020 55th International
Universities Power Engineering Conference, Proceedings, 9 2020.

[5] International Renewable Energy Agency, �Behind-the-meter batter-
ies: innovation landscape brief,� tech. rep., 2019.

[6] P. Hanemann, M. Behnert, and T. Bruckner, �Effects of electric
vehicle charging strategies on the german power system,� Applied
Energy, vol. 203, pp. 608�622, 2017.

[7] M. V. D. Berg, I. Lampropoulos, and T. AlSkaif, �Impact of electric
vehicles charging demand on distribution transformers in an of�ce
area and determination of �exibility potential,� Sustainable Energy,
Grids and Networks, vol. 26, p. 100452, 2021.

[8] F. G. Venegas, M. Petit, and Y. Perez, �Active integration of
electric vehicles into distribution grids: Barriers and frameworks for
�exibility services,� Renewable and Sustainable Energy Reviews,
vol. 145, p. 111060, 7 2021.

[9] The International Renewable Energy Agency, �Innovation outlook:
Smart charging for electric vehicles,� tech. rep., 2019.

[10] S. Martinenas, K. Knezovic, and M. Marinelli, �Management
of power quality issues in low voltage networks using electric
vehicles: Experimental validation,� IEEE Transactions on Power
Delivery, vol. 32, pp. 971�979, 4 2017.

[11] K. Knezovi·c, M. Marinelli, P. Codani, and Y. Perez, �Distribution
grid services and �exibility provision by electric vehicles: A review
of options,� Proceedings of the Universities Power Engineering
Conference, vol. 2015-November, 2015.

[12] K. Sevdari, �Electric vehicle chagers market outlook,� tech. rep.,
2020.

[13] X. Han et al., �Taxonomy for Evaluation of Distributed Control
Strategies for Distributed Energy Resources,� IEEE Transactions
on Smart Grid, 2018.

[14] C. Hecht, S. Das, C. Bussar, and D. U. Sauer, �Representative,
empirical, real-world charging station usage characteristics and data
in germany,� eTransportation, vol. 6, 11 2020.

[15] European commission, �Regulation (eu) 2019/943 on the internal
market for electricity,� 2019.

[16] K. Knezovic, S. Martinenas, P. B. Andersen, A. Zecchino, and
M. Marinelli, �Enhancing the role of electric vehicles in the
power grid: Field validation of multiple ancillary services,� IEEE
Transactions on Transportation Electri�cation, vol. 3, pp. 201�209,
3 2017.

[17] H. S. Das, M. M. Rahman, S. Li, and C. W. Tan, �Electric vehicles
standards, charging infrastructure, and impact on grid integration: A
technological review,� Renewable and Sustainable Energy Reviews,
vol. 120, 3 2020.

[18] Council of European Energy Regulators, �Flexibility use at distri-
bution level,� tech. rep., 2017.

[19] T. Pallesen and P. H. Jacobsen, �Solving infrastructural concerns
through a market reorganization: A case study of a danish smart
grid demonstration,� Energy Research and Social Science, vol. 41,
pp. 80�88, 7 2018.

[20] J. Ostergaard et al., �Energy security through demand-side �exi-
bility: The case of denmark,� IEEE Power and Energy Magazine,
vol. 19, pp. 46�55, 3 2021.

[21] A. Gadea, M. Marinelli, and A. Zecchino, �A market framework for
enabling electric vehicles �exibility procurement at the distribution
level considering grid constraints,� 20th Power Systems Computa-
tion Conference, PSCC 2018, 8 2018.

[22] Transport & Environment, �How implementing the clean energy
package can foster electromobility,� tech. rep., 2020.

[23] K. Sevdari, L. Calearo, S. Striani, L. Rłnnow, P. B. Andersen, and
M. Marinelli, �Autonomously distributed control of electric vehicle
chargers for grid services,� 2021, under-review.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on September 21,2023 at 15:58:56 UTC from IEEE Xplore.  Restrictions apply. 



PAPER [P2]

Flexibility Potential Quantification of Electric Vehicle
Charging Clusters

Authors:

Simone Striani, Tim Unterluggauer, Peter Bach Andersen, Mattia Marinelli

Under review in:

Sustainable Energy, Grids and Networks



94



Flexibility Potential Quanti�cation of Electric
Vehicle Charging Clusters

Simone Striani, Tim Unterluggauer, Peter Bach Andersen, Mattia Marinelli
Department of Wind and Energy Systems

Technical University of Denmark
Roskilde, Denmark

fsistri; timun; pba; matmg@dtu.dk

Abstract�A signi�cant obstacle to providing �exibility services
with electric vehicles (EVs) is the uncertainty surrounding the
pro�tability and �exibility potential of charging clusters when
utilised as a �exible load. Currently, there is a lack of compre-
hensive and easily applicable methods for quantifying �exibility
in the literature. This paper introduces an evaluation tool and
a set of �exibility indexes to assess the capability of charging
clusters to deliver �exibility services. The method is designed to
evaluate and quantify the �exibility potential of charging clusters
in terms of short-term and long-term power adjustments and
charge scheduling. Through sensitivity analysis, we examine how
connection capacity, EV battery capacities, power capabilities,
and the number of daily charging sessions in�uence the �exibility
potential of charging clusters. Our �ndings highlight a direct
relationship between the grid connection capacity of clusters
and their ability to perform short-term power adjustments.
Moreover, while larger batteries tend to reduce energy and time
�exibility, their increased storage capability facilitates managing
and scheduling a larger energy volume. Furthermore, for the
days analysed, the �exibility potential showed minimal sensitivity
to the number of daily charging sessions. Instead, the amount
of energy requested and connection patterns emerge as key
determinants of overall �exibility. In summary, this research
provides valuable insights that can inform the design, monitoring,
and assessment of EV charging clusters when evaluating their
suitability for various �exibility services.

List of Abbreviations

APFI Average Power Flexibility Index
BTM Behind the meter
CAPEX Capital expenditures
CPO Charge point operator
DER Distributed energy resource
EFI Energy Flexibility Index
FTM In front of the meter
HEF Hourly energy �exibility
MPFI Minimum Power Flexibility Index
OPEX Operational expenditures
RES Renewable Energy Sources
SoC State of charge
TFI Time Flexibility Index

I. INTRODUCTION

The push to electrify the transport sector as a means of
reducing carbon emissions has spurred extensive research into
challenges related to the adoption of electric vehicles (EVs),
including the planning of charging infrastructure [1] and the
integration of EVs into power systems [2]. Although EVs
can strain the power distribution grid [3], they also present
opportunities for various stakeholders by acting as �exible
loads and providing �exibility services [2]. These �exibility
services can be classi�ed as behind the meter (BTM) or in
front of the meter (FTM), with FTM services being further
classi�ed as local or system-wide [2]. BTM services offer
bene�ts to EV users [4] or charging site owners [5] by
lowering grid connection and charging costs or improving
the self-consumption of distributed energy resources (DERs)
[6, 7]. Local FTM services support the power distribution
network by addressing issues such as grid losses [8], peak
shaving [9], congestion management [10], voltage imbalances
[11], and reducing transformer loss-of-life [12]. System-wide
FTM services contribute to the stability of the transmission
system, providing frequency control [13, 14] and facilitating
the integration of variable renewable energy sources [15].

A. Motivation and objectives
Charging infrastructure, especially in Denmark, is often

implemented in the form of charging clusters, where mul-
tiple outlets share a single grid connection. These clusters
typically use load-sharing management systems to optimise
power distribution, thereby reducing grid connection costs
[16]. Although smart charging systems can potentially enable
additional �exibility services, their exploitation faces several
challenges, including technical, economic, and policy-related
issues as outlined in [17]. Furthermore, a signi�cant obstacle
to offering these services is the uncertainty regarding the
�exibility potential and pro�tability of EV charging clusters.

This paper addresses the challenge of quantifying the �ex-
ibility potential of EV charging clusters by examining the
in�uencing factors. We introduce an evaluation tool and a
set of �exibility indexes to assess the capability of charging
clusters for BTM and FTM �exibility services. This tool
is intended to support charge point operators (CPOs) and
aggregators in estimating the effectiveness of providing these
�exibility services to users and grid operators. Additionally,



we perform a sensitivity analysis to evaluate how various
factors, such as connection capacity, battery capacity, power
capabilities, and the number of charging events, affect the
�exibility potential of charging clusters.

B. State of the art in �exibility quanti�cation
Despite the importance of understanding the �exibility

potential of EVs, its quanti�cation remains complex and
underexplored. Existing literature offers various approaches,
often focusing on a single dimension. The works in [18�
20] examine time-based �exibility, with [18] focusing on
public charging in residential areas and [19, 20] on of�ce
locations. Research [21] investigates non-residential charging
in California, de�ning �exibility as the ratio of idle to total
connection time. Studies such as [22�24] quantify �exibility in
terms of power or energy. For example, [22] examines public
and workplace charging in Helsinki under Finnish regulations,
while [23, 24] focuses on German data. Paper [25] analyses
the EV �exibility potential of residential apartment complexes,
de�ning �exibility as idle capacity, which is the product of idle
time and maximum charging power.

More recent work tries to quantify �exibility from multi-
ple perspectives, considering different dimensions. The paper
[26] introduces a distributed coordination strategy between
charging clusters and the distribution system operator, using
three indexes to quantify the contribution of �exibility: 1)
a deviation index, 2) a charging target violation index, and
3) a mileage index. The �rst index assesses the deviation
of the State of Charge (SoC) from the baseline, the second
index quanti�es the satisfaction loss when the departure SoC
deviates from the baseline, and the third index re�ects battery
degradation costs [27]. The research in [28] introduces four
different �exibility metrics addressing 1) total load shift, 2)
increase in midday load, 3) peak reduction, and 4) �atness
of the load curve. These metrics are used to quantify the
impact of different charging strategies and plug-in behaviours
on �exibility provision. Similarly, [29] addresses EV �exibility
with respect to different charging strategies but provides a
systematic review and assessment. The review focuses on
four dimensions of �exibility: 1) temporal, 2) durational, 3)
quantitative, and 4) locational �exibility. The authors conclude
that the �exibility of charging strategies is underexploited and
that the different dimensions are not equally leveraged. The
research presented in [30] stresses that the quanti�cation of
EV �exibility also hinges on the respective stakeholder and
introduces a comprehensive Norwegian case study to quantify
the potential �exibility of EVs in apartment buildings. This
work assesses a multitude of power and energy �exibility
KPIs, including peak power reduction, self-consumption, and
ef�ciency. Finally, the studies [31, 32] quantify the aggregated
�exibility of EVs through extensive mathematical modelling.
Although both papers provide novel approaches to quantifying
the �exibility for a �eet of EVs, their applicability remains
questionable due to complexity and data availability concerns.

In conclusion, most of the literature approaches the topic
of quantifying EV �exibility from a single dimension, namely

power, time, or energy. When addressed individually, these
de�nitions do not provide a comprehensive perspective on
�exibility by covering all perspectives. Furthermore, existing
�exibility de�nitions fail to include the trade-offs between
BTM and FTM �exibility goals. For instance, power �exibility
might help understand how power demand could be modu-
lated, but it doesn’t necessarily reveal the time cost for the
users. Additionally, due to limited connection capacity and the
need for power sharing, there is no straightforward relationship
between the power modulation rate and the decrease in idle
time [33].

C. Contributions
This paper contributes to the EV �exibility quanti�cation

literature by introducing a straightforward yet comprehensive
set of criteria to assess the �exibility potential of EV charging
clusters. The proposed approach offers a promising alternative
to existing methods, which often fail to evaluate the trade-
offs between competing �exibility services or are complex
to apply. Additionally, through sensitivity analysis, the paper
provides concrete insights into EV cluster dimensioning and
its suitability for various �exibility services based on current
or projected characteristics. Finally, the paper illustrates the
applicability of the proposed criteria by analysing a real-world
workplace charging cluster in Copenhagen, Denmark, using
actual data from the chargers deployed.

This paper is organized as follows: Section II outlines
the methodology used in this study, including the �exibility
indexes and the simulation model; Section III details and
analyzes the key �ndings; Finally, Section IV summarises the
conclusions drawn from the study, discusses its limitations,
and suggests directions for future research.

II. METHODOLOGY

This section outlines the methodology of this study, focusing
on the design of the proposed �exibility metrics and the
computational analysis conducted for an EV cluster located
in Denmark. Subsection II-A discusses the power, energy, and
time constraints of a charging cluster, as well as two charging
strategies, which inform the de�nition of four qualitative �ex-
ibility indexes and one quantitive criterion in Subsection II-B.
Subsection II-C demonstrates the practical application of these
indexes, while Subsection II-D elaborates on the model de-
sign, including input parameters and output metrics. Finally,
Subsection II-D addresses the underlying assumptions and
limitations of the model.

A. Charging cluster constraints
To quantify the �exibility potential of a charging cluster,

it is essential to establish lower and upper boundaries and a
potential solution space based on its electrical dimensions and
connection patterns. Exempli�ed for an illustrative charging
cluster in Fig. 1, we describe those attributes in more detail
in the following.

To start with, we need to introduce the physical upper and
lower boundaries of the charging cluster, which are as follows:
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Fig. 1: Example of the aggregated power time-series for a generic charging cluster. The graph illustrates the boundaries
in�uencing the power consumption of the EVs over time.

� Grid connection capacity of the EV cluster: Illustrated
as the solid black line in Fig. 1, the grid connection
capacity de�nes the maximum power the charging cluster
can deliver. Often, the grid connection is lower than
the combined outlet capacity of the charging cluster to
minimise grid connection costs and accelerate charging
infrastructure deployment [16].

� Minimum charging power capacity: Vehicle-to-grid
charging systems could potentially inject power into the
grid and discharge the EVs, expanding the minimum
charging power capacity to negative values. However,
since this technology is not yet fully available for com-
mercial applications, this study considers only unidirec-
tional charging. Consequently, the lower power limit of
the charging cluster is set to 0 kW, as indicated by the
dashed black line in Fig. 1.

While the boundaries mentioned above consider the technical
limitations of the charging cluster, its �exibility potential
further depends on the connected EVs and their charging
behaviour. In the following, we describe the theoretical maxi-
mum power and energy capabilities of the charging cluster in
more detail:

� Maximum power capacity of connected EVs: When
the grid connection capacity is not fully utilised, the
power delivered to each EV is constrained by either the
maximum power capacity of the chargers or the EV
itself. Consequently, the total potential power demand
of the charging cluster will vary over time and can
be de�ned for timestep t as

Pn
i=1 pmax;i(t), where n

represent the number of EVs charging, and pmax;i is the
maximum power capacity of each charger and EV. This
variable power capacity limit, illustrated by the green
line in Fig. 1, is particularly relevant in charging clusters

with low rates of concurrent charging.

� Maximum energy potential of the EV cluster: The
area encompassed by the boundaries given by the grid
connection capacity, the minimum charging power ca-
pacity, and the power capacity of the connected EVs
represents the maximum energy potential Epot. It is
represented by the green area in the Fig. 1. In abstract
terms, the energy potential of the cluster is the energy
that the charging cluster could potentially charge to EVs
with in�nite energy storage within the boundaries of the
power capacity of the chargers, connection pattern and
connection capacity of the cluster (i.e., all EVs charge
at full power for the entire duration of their connection
time).

However, the current boundaries do not consider the limited
battery capacity of the EVs. Once an EV is fully charged or
has reached the energy level requested by the user, it will
stop charging. Afterwards, the EV will remain idle until its
scheduled disconnection time. Fig. 1 illustrates two charging
strategies used to highlight the aforementioned limited energy
capacity and are needed to derive the quantitative �exibility
criteria within this paper. These strategies will be referred to
as Pmax Strategy, represented in blue in Fig. 1, and Pmin
Strategy, depicted in yellow. The design of Pmax Strategy aims
to charge the EVs as quickly as possible (i.e., by providing
maximum power). In contrast, Pmin Strategy is designed to
charge the EVs as slowly as the connection duration of each
EV allows (i.e. the charging demand is spread equally over
the whole duration of being plugged).

1) Pmax Strategy: The Pmax Strategy is the charging strategy
currently commercialised in most charging clusters. It
calculates the charging power of the i-th EV at time t as:



PEVi(t) =

(
CC
n if

Pn
i=1 PEVi(t) � CC

Pmax;i(t) if
Pn

i=1 PEVi(t) < CC;
(1)

where CC represents the grid connection capacity in kW,
n is the number of EVs charging at time t, and Pmax;i(t)
is the maximum power that the i-th charger and EV allow.
The formula describes that if the connection capacity has
been reached, all the chargers will avoid overshooting it
by modulating their charging power equally (i.e., by load
sharing). In contrast, if the connection capacity is not
reached, each charger will maximise the charging power.

2) Pmin Strategy: On the other hand, the Pmin Strategy
calculates the charging power of the i-th EV at time t as:

PEVi(t) =

(
CC
n if

Pn
i=1 PEVi(t) � CC

Erequested,i
tdisconn,i�tconn,i

if
Pn

i=1 PEVi(t) < CC:
(2)

In addition to the connection time tconn;i, the strategy
requires inputs from the user of the i-th EV, namely the
total energy requested Erequested;i and the expected time
of disconnection tdisconn;i, to calculate the charging power.

It is important to note that, unless scheduling functionalities
are considered, compliance with the IEC 61851-1 standard
requires the EVs to have a minimum allowable current of
6 A [34]. For single-phase and three-phase EVs charging with
a Type 2 plug, this translates to minimum power capacities
of 1.38 kW and 4.15 kW, respectively. This paper does not
focus on any speci�c EV charging technology; therefore, we
recommend tailoring the Pmin Strategy and Pmax Strategy to
the capabilities of the charging technology under consideration
when deploying this evaluation tool.

B. Flexibility evaluation criteria
This section outlines the criteria developed in this study to

evaluate the �exibility potential of an EV charging cluster.
To begin with, we introduce four �exibility indexes designed
to provide a qualitative assessment of the �exibility potential
of an EV cluster. A �exible cluster is de�ned as a cluster
that can deliver �exibility services without compromising user
charging requirements (e.g. when EVs maintain idle time).
Conversely, an in�exible cluster cannot provide �exibility
services without negatively impacting the ful�lment of the
user’s charging demand. In the following �exibility indexes,
an in�nitely �exible cluster is assigned a score of 1, while
a fully in�exible cluster is assigned a score of 0. Within the
context of the previously de�ned cluster constraints, the four
indexes for a generic charging cluster are as follows:

1) Energy Flexibility Index (EFI): From the energy per-
spective, the energy �exibility index is de�ned as:

EFI = 1�
Ech

Epot
: (3)

In the formula, Ech is the aggregated energy demand,
de�ned as the total energy delivered to all the EVs connected
during the time period under analysis (e.g. the blue area

depicted in Fig. 1). The EFI is relevant to understand the
suitability of the charging cluster to delay energy in time.

2) Power Flexibility Indexes (MPFI and APFI): Concern-
ing the power domain, we distinguish two different indexes.
On the one hand, the Minimum Power Flexibility Index is
de�ned as:

MP F I = 1�
Pmax;avg

CC
; (4)

where Pmax;avg is the average daily maximum that the ag-
gregated power of the charging cluster reaches over a given
period, and CC is the connection capacity. The MPFI esti-
mates the remaining power �exibility during peak utilisation
of the charging cluster.

On the other hand, the Average Power Flexibility Index is:

AP F I = 1�
Pmean;ch

CC
; (5)

where Pmean;ch is the average charging power dispatched by
the charging cluster, considering only the time periods during
which at least one EV is charging. The MPFI and APFI are
important for understanding the ability of the charging cluster
to make short-term power adjustments under peak demand
conditions and average operating conditions, respectively. A
signi�cant difference between the MPFI and APFI indicates a
highly variable utilization rate throughout the day.

3) Time Flexibility Index (TFI): Lastly, in the time do-
main, the time �exibility index is de�ned as:

T F I =
tidle;avg

ttot;avg
: (6)

While tidle;avg represents the average idle time of the EVs
connected to the charging cluster when fully charged, ttot;avg
depicts the average total connection time of the EVs. The TFI
estimates how much the charging session can be shifted in
time without in�uencing the charging ful�lment. The TFI is,
therefore, relevant for BTM services and charge scheduling.

Finally, we propose the quantitative indicator to assess the
�exibility potential of the EV cluster over the time period
under analysis as follows:

4) Hourly energy �exibility (HEF): In the previous sub-
section, we de�ned the Pmax Strategy and Pmin Strategy as
the ultimate upper and lower boundaries of the EV cluster,
respectively. By comparing the energy accumulated over time
between these two strategies, we can quantify the hourly
�exibility, which represents the amount of energy that can be
deferred each hour without compromising charging ful�lment.
The hourly energy �exibility is de�ned as:

HEF = �E =
Z t+1

t
�P (t)dt; (7)

where t and t+1 denote the interval between the beginning and
the end of each hour of the day, and �P (t) is the difference in
power consumption between the charging strategies at time t.
Understanding the pro�le of HEF is crucial for identifying
when and how much energy �exibility is available.



Fig. 2: Venn diagram illustrating the relationship between
the �exibility indexes and types of �exibility services (see
Table A1). Services requiring short-term power adjustment
are associated with the APFI and MPFI (blue domain), while
services requiring long-term �exibility services are linked to
the EFI (red domain). Additionally, BTM �exibility services
correspond to the TFI (yellow domain). The diagram helps to
visualise the overlap and distinct areas of �exibility services
related to each index.

C. Application of �exibility indexes

Fig. 2 shows a Venn diagram illustrating a set of �exibility
services assigned to each of the four qualitative �exibility
indexes proposed in this paper. As previously mentioned,
the power-related �exibility indexes MPFI and APFI aim to
measure the capability of the charging cluster to perform
short-term power adjustments. Examples of such adjustments
include synthetic inertia, virtual inertia or any fast frequency
services. In contrast, the EFI evaluates the ability of the charg-
ing cluster to sustain power adjustments over time. Examples
of such services include congestion management and valley
�lling. Lastly, within this framework, the TFI measures the
capacity of the charging cluster to perform BTM services.
Longer idle times increase the ability to shift charging to more
cost-effective periods. This capability is used in practices such
as bill optimization and Time of Use based charging strategies.
The de�nition and requirements of such �exibility services can
be found in Table A1 in the appendix. The allocation of the
given �exibility services in the different domains of the Venn
diagram is based on the standardised activation time, duration,
and technical requirements for such �exibility services. It is
important to note that the mutual in�uence of one index on
the other could depend on the charging strategy used.

Furthermore, the �ow chart and corresponding table pre-
sented in Fig. 3 illustrate the application of the �exibility
indexes for analysing an EV charging cluster. This framework

demonstrates how a CPO can utilize these indexes to plan the
design or upgrade an EV cluster to maximize its �exibility
according to the desired types of services. The analysis fo-
cuses on the most relevant combinations of �exibility indexes,
resulting in six distinct cases. To keep the overview concise,
cases with high MPFI are omitted, as they are considered
less critical compared to those with high MPFI. Additionally,
two paths in the �owchart are excluded because they are not
deemed realistic. These paths correspond to scenarios where
only one �exibility index signi�cantly deviates from the others
(i.e., low TFI and high TFI). The framework offers suggestions
for improving the �exibility potential or charging ful�lment for
each case. While some improvements are optional, achieving
a balanced �exibility score across the different indexes is
considered ideal.

D. Computational demonstration of the method

To demonstrate the method for quantifying the �exibility
of an EV cluster, a simpli�ed model of a workplace charging
cluster located in Copenhagen, Denmark, has been developed.
The cluster includes 10 chargers, each with a capacity of
22 kW, while the overall grid connection capacity is limited
to 82 kW. Fig. 4 illustrates the model along with its inputs
and outputs. The model operates with a time resolution of
one minute and uses real charging session data provided by
the CPO Spirii for the year 2022.

The model utilizes two primary types of inputs. First, it
incorporates user behaviour data from the charging sessions,
including connection and disconnection times, as well as
energy demand, to establish the connection patterns within
the charging cluster. Second, it integrates information about
the cluster’s electrical layout, such as connection capacity and
individual charger power, to identify the cluster’s constraints,
as detailed in Subsection II-A. Using these inputs, the model
derives the Pmax Strategy and the Pmin Strategy. Initially,
the model employs equations 1 and 2 to calculate the power
required for each EV at each timestep under both strategies.
Next, it integrates the charging power for each EV over time
to determine the total energy charged. Each EV will cease
charging once its energy demand Erequested;i is ful�lled. The
end-time of each charging session is then calculated, along
with the idle time for each EV. Finally, the model computes
the total power consumption and the total energy charged for
the entire charging cluster.

The model outputs include the �exibility index scores
and the HEF. Additionally, it provides time series data on
aggregated power, charging patterns, and connection patterns
of the EVs. This data is used to analyze the results in the
subsequent section.

E. Assumptions and limitations of the simulation

During the design of the simulation model to demonstrate
the �exibility quanti�cation method, several assumptions were
made to simplify the analysis and address the lack of more
detailed EV charging data.
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CASE Description

1 The EV cluster shows high rates of concurrent charging at certain times (low MPFI), but all the other indexes indicate a high
potential for both BTM and FTM �exibility services. Implementing a smart charging strategy could improve energy and time
management or support a range of �exibility services. Lowering the grid connection capacity could reduce capital expenditure
(CAPEX) if the EV cluster is still in the planning phase.

2 In addition to peak concurrent charging conditions (low MPFI), the power capacity of the chargers may also limit the performance
of the EV cluster. High APFI and low EFI suggest that the system has a limited ability to delay energy accumulation over time.
Given the high TFI, the EV cluster could be expanded by adding more chargers, potentially in combination with adding charging
prioritisation strategies. Alternatively, reducing the connection capacity could lower CAPEX if the EV cluster is still in the
planning phase.

3 The EV cluster demonstrates limited �exibility potential: it experiences high utilisation rates at certain times (low MPFI), but
charging sessions are otherwise infrequent and isolated (high APFI). The EVs are only connected for short durations (low TFI),
a pattern commonly observed in EV clusters at shopping malls or highway charging stations, which are only heavily used during
speci�c times of the day.

4 The cluster exhibits high levels of concurrent charging overall. However, by implementing a smart charging strategy, there is
potential to delay energy consumption in time for both BTM and FTM services, as indicated by high EFI and TFI.

5 The cluster shows high levels of concurrent charging overall. However, the combination of high EFI and low TFI indicates an
opportunity to implement a smart charging strategy. This could lead to more optimal scheduling of charging sessions and improved
overall charging ful�lment.

6 The highly utilized charging cluster faces high rates of concurrent charging, with frequent load sharing and minimal potential
to delay energy consumption. The EVs have limited idle time. To address this, increasing the grid connection capacity and
implementing a smart charging strategy is recommended.

Fig. 3: Overview of key �exibility index combinations requiring adjustments to enhance �exibility potential or charging
ful�lment. The �gure outlines six primary cases and recommends speci�c actions for each scenario.

The �rst limitation relates to the real-life implementation of
the Pmin Strategy. In the model, connection and disconnec-
tion times, along with the energy demand recorded for each
charging event, are used to derive the Pmin Strategy. While
the simulation, therefore, relies on historical data, in practice,
the planned departure time and energy demand would need to
be provided by the user, with the control strategy executed in
real-time. Although requiring user input might hinder large-
scale implementation, it was deemed necessary to quantify the
�exibility potential in this work.

Next, a notable limitation is the lack of detailed modelling
of the EV battery and onboard charger dynamics. Previous
research has shown that the modulation of charging power

can signi�cantly affect the charging ef�ciency of EVs [35]. In
particular, reducing the charging power often leads to lower
ef�ciency, where the energy stored in the battery may be
less than the energy delivered by the chargers. Our model
does not explicitly account for this relationship, which may
result in a slight overestimation of energy accumulation in the
Pmin Strategy, and consequently, the �exibility potential of
the EV cluster. This slight overestimation could be mitigated
by charge scheduling rather than relying on power modulation.
Although the assumption of constant ef�ciency is not entirely
accurate in real-world scenarios, it was considered acceptable
given the primary objectives of this study.

Another limitation stems from the assumption that all EVs
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Fig. 4: Flowchart of the model, illustrating the inputs (in green), the intermediate calculations of the model (in blue), and the
outputs (in red).
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Fig. 5: Analysis of the EV charging cluster performance on August 31, 2022, using the original Pmin strategy. The �gure
includes a radar graph on the left showing �exibility index results, a plot of the aggregated power demand of the EV cluster
at the top right, and a chart of the number of EVs connected and charging at the bottom right.

have constant and equal charging power, regardless of their
SoC or model. In reality, the variation in charging power across
different SoCs and EV models could affect the dynamics
within a charging cluster, a factor not addressed in the current
study. This assumption was deemed necessary in the absence
of information about the charging power during the charging
sessions or the EV models and their SoC during the charging
sessions. Although incorporating power measurement data
from each charger could enhance the accuracy of the model,
this level of detail is deemed beyond the scope of the current
study.

It is important to notice that these simulations primarily fo-
cus on demonstrating the application of the proposed �exibility
quanti�cation method and the associated �exibility indexes,

serving as a proof of concept. The computational analysis and
the simpli�ed EV cluster model are only used to illustrate their
practical utility and exemplify their potential use in real-life
scenarios. While the results provide a broad understanding of
how various parameters affect �exibility potential, the paper
does not aim to comprehensively analyse the charging cluster
data. For a more thorough evaluation of cluster performance,
a detailed analysis with high-accuracy models and larger
datasets�ideally covering multiple years�is recommended.

III. RESULTS AND DISCUSSION

This section presents the results of applying the proposed
�exibility criteria to the modelled EV cluster. Subsection III-A
provides an analysis of the EV cluster with default charging
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Fig. 6: Comparison of the �exibility potential of the EV charging cluster on August 31, 2022, using two different charging
strategies: Pmax Strategy and Pmin Strategy. The �gure includes the aggregated power time series in the top-left, the number
of EVs connected and charging in the bottom-left, the accumulated energy demand in the top-right, and the HEF in the
bottom-right.

behaviour (i.e., Pmax Strategy), utilising the original data
input. This analysis evaluates the performance of the cluster
using the proposed �exibility indexes and draws conclusions
regarding the optimal dimensioning of its electrical layout.
Next, Subsection III-B addresses the HEF of the charging
cluster by additionally considering Pmin Strategy. Finally,
through a sensitivity analysis, the study investigates the impact
of different charging cluster characteristics on both qualitative
and quantitative �exibility criteria. The results of the �exibility
indexes, along with the HEF metrics, are analysed to offer
insights into the performance of the charging cluster under
varying conditions. Speci�cally, the study examines the effects
of connection capacity in Subsection III-C, EV battery capac-
ity in Subsection III-D, charger capacity in Subsection III-E,
and the number of charging events in Subsection III-F.

A. Qualitative �exibility potential assessment of the cluster

This section presents an analysis of the EV charging cluster
using original input data from August 31, 2022, the day
with the highest number of charging sessions in the historical
dataset (15 sessions). Fig. 5 provides a radar plot (left)
displaying the performance of the EV cluster across various
�exibility indexes for this day. The top-right plot illustrates the
aggregated power demand, while the bottom-right plot shows
the number of EVs connected and actively charging. The MPFI
is 0, indicating a lack of �exibility during peak hours due to
intensive concurrent charging in the early hours of the day. In
contrast, the APFI is 0.67, which, when combined with the
MPFI, suggests signi�cant variability in utilisation throughout
the day. The aggregated power demand and the number of EVs
charging plots reveal that peak utilization occurs at 5:00 AM,
when four EVs are charging simultaneously, drawing a total

of 82 kW. The high EFI of 0.88 indicates that the charging
of all EVs can be substantially delayed without compromising
their charging needs. This is further supported by the high TFI
of 0.91 and by the bottom-right graph, which shows that, on
average, EVs remain idle 91% of their connection time. This
suggests a considerable �exibility potential within the cluster.
Implementing a smart charging strategy could leverage this
idle time to enhance power �exibility during peak periods.

Overall, the results reveal that the EV cluster under anal-
ysis is signi�cantly over-dimensioned for the current user
behaviour, particularly considering that the selected day rep-
resents the highest utilization rate in 2022. This suggests
that the CAPEX invested in sizing the connection capacity
may be excessive. However, as EV adoption increases and
the utilization rate of the cluster rises in future years, the
current capacity could become more appropriate. In the short
term, adopting an effective charging strategy could reduce
operational expenditures (OPEX) by maximising the �exibility
potential of the cluster.

B. Quantitative �exibility potential assessment of the cluster

In the following, we apply our �exibility quanti�cation
method to assess the �exibility potential of the analysed EV
charging cluster. Fig. 6 provides a detailed illustration of our
analysis for August 31, 2022. The top-left panel of the �gure
displays the aggregated power of the EV charging cluster over
the course of the day, while the bottom-left panel shows the
number of EVs that are charging and connected. The top-right
panel presents the total accumulated energy, and the bottom-
right panel illustrates the HEF throughout the day. Each graph
encompasses the results for both the original scenario, which
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Connection Capacity: 80%

Connection Capacity: 50%
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Fig. 7: Impact of the grid connection capacity on the charging cluster performance. The colours green, blue, and red represent
scenarios in which the connection capacity is 80%, 50%, and 30% of the original grid connection (82 kW), respectively. On
the left, �exibility indexes are evaluated, while the HEF is depicted on the right.

utilises Pmax Strategy (shown in green), and the Pmin Strategy
scenario (shown in yellow).

Compared to the original Pmax Strategy, the Pmin Strategy
decreases the aggregated power consumption by prolonging
the charging duration of all EVs and maintaining a minimum
power level throughout the entire charging period. This effect
is illustrated in the bottom-left plot, where the number of EVs
charging under the Pmin Strategy matches the number of EVs
connected, as indicated by the black dotted line. Consequently,
the Pmin Strategy results in a lower and more stable aggre-
gated power consumption throughout the day. Speci�cally,
it reduces the peak aggregated power consumption during
high-demand hours from 82 kW to 25 kW and shifts the peak
consumption period from approximately 5:30 AM to 7:30 AM.

Lastly, the accumulated energy graph shows that in both
strategies, the EVs charge a total of 124 kWh. However, there
is a substantial difference in the rate at which energy is
accumulated between the two strategies. This difference is
directly proportional to the number of EVs charging at any
given time. The HEF graph con�rms this trend, revealing two
peaks: one at 45 kW at 6:00 AM and another at 9.8 kW at
5:00 PM. The average HEF of the EV cluster is 14 kWh. This
trend is crucial as it highlights the signi�cant impact of user
behaviour, which is in�uenced by the type and location of the
EV cluster, on the timing and amount of �exibility the cluster
can provide. In this particular workplace EV cluster, the timing
of �exibility appears to depend on the shifts of the workers
parking their EVs and plugging them into the chargers.

In the following, we analyse the sensitivity of the �exibility
criteria with respect to the aforementioned parameter.

C. Impact of connection capacity
In the �rst analysis, the sensitivity of the �exibility potential

of the EV cluster on August 31, 2022, is evaluated by varying
the grid connection capacity. Three scenarios are considered,

TABLE I: Flexibility criteria results for various connection
capacities. The connection capacity, expressed as a percentage,
is based on the original grid connection of 82 kW.

Grid connection capacity [%] 30 50 80

MPFI 0.00 0.00 0.17
APFI 0.36 0.60 0.75
EFI 0.69 0.78 0.83
TFI 0.79 0.83 0.84
Maximum HEF [kWh] 31.37 36.83 37.45
Average HEF [kWh] 10.95 11.40 11.51

wherein the connection capacity is set to 30%, 50%, and
80% of the original grid connection of 82 kW, respectively.
Each scenario utilises chargers with a power capacity of
11 kW. Fig. 7 displays the results of this analysis. The left
graph illustrates the performance of the EV cluster across the
different �exibility indexes, while the right plot depicts the
corresponding HEF for each scenario. A detailed summary
of the sensitivity analysis outcomes is further presented in
Table I. The MPFI ranges from 0 in the �rst two cases to
0.17 in the last scenario, showing that the connection capacity
during peak utilization rate is not reached only in the last
scenario. The APFI is also low, with a signi�cant variation,
ranging from 0.36 to 0.75 as the connection capacity increases.
The variation in EFI is less pronounced but still notable,
ranging from 0.69 to 0.83, while the TFI shows the least
variation, ranging from 0.79 to 0.84.

The HEF increases with increasing connection capacity.
Speci�cally, the maximum HEF rises from approximately
31 kWh to 37 kWh, while its average increases from roughly
11 kWh to 11.5 kWh. As illustrated in Fig. 7, at 30% connec-
tion capacity, the HEF exhibits several instances of negative
values, signifying missed charging opportunities attributable
to suboptimal energy management within the Pmax Strategy.
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Added capacity per car: 30 kWh

Added capacity per car: 15 kWh
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Fig. 8: Impact of the battery size on the charging cluster performance. The colours green, blue, and red represent scenarios
with an additional battery capacity of 30, 15, and 0 kWh, respectively. The �exibility indexes are assessed on the left, whereas
the HEF is assessed on the right.

Speci�cally, the total energy accumulated by the end of the
day with the Pmin Strategy exceeds that of the Pmax Strategy.
This discrepancy arises because, upon reaching the connection
capacity limit, the Pmax Strategy allocates power uniformly
across all EVs, irrespective of their departure schedules.
Consequently, some EVs may depart before achieving full
charge. Such a result highlights the need for strategies capable
of scheduling charging sessions in EV clusters with limited
connection capacity.

Overall, these results indicate that connection capacity sig-
ni�cantly affects the suitability of the EV cluster for power-
based �exibility services under the given conditions. In con-
trast, its impact on time and energy �exibility is only marginal.
Despite the average idle time of all EVs being 60%, the HEF
reveals that at least one EV did not complete its charging
session before the disconnection time. In future work, we will
consider modifying the time �exibility index to account for
the time �exibility of EVs with the lowest idle time.

D. Impact of battery capacity
Next, the �exibility potential of the EV cluster on August

31, 2022, is examined by varying the battery capacities across
different scenarios. In the �rst scenario, the power capacity
of the chargers remains unchanged. In the second scenario,
the battery capacity is increased by 15 kWh, and in the third
scenario, it is increased by 30 kWh. Although the exact battery
capacities of the EVs are not known, it is assumed that the
energy requested by users re�ects the battery capacity. Accord-
ingly, the additional energy is added to the energy requested
under the original conditions. The connection capacity is set at
82 kW, with each charger having a power capacity of 11 kW.
This sensitivity analysis is essential for understanding how
the �exibility potential of EV clusters may evolve with future
generations of EVs, given the anticipated increase in battery
capacity.

TABLE II: Flexibility criteria results for various battery ca-
pacities. The table shows the additional capacity beyond the
initial energy capacity, which is assumed to be equal to the
charging demand of the EVs.

Additional battery capacity [kWh] 0 15 30

MPFI 0.34 0.07 0.00
APFI 0.80 0.72 0.69
EFI 0.83 0.63 0.45
TFI 0.84 0.63 0.45
Maximum HEF [kWh] 37.4 76.5 94.5
Average HEF [kWh] 11.5 23.1 26.7

Fig. 8 and Table II illustrate the results following the same
format as the previous sensitivity analysis. Overall, the results
show a decline in all �exibility indexes as battery capacities
increase. This is because, as the energy demand increases, the
ability to defer charging diminishes when connection time and
charger power capacity are held constant. The most affected in-
dexes are the EFI, which drops from 0.83 to 0.45, and the TFI,
which decreases from 0.84 to 0.45. Additionally, the MPFI
falls from 0.34 in Scenario 1 to 0 in Scenario 3, indicating
a higher peak power demand. Conversely, the APFI is less
impacted due to charger capacity constraints and the relatively
consistent number of EVs charging concurrently each hour,
aside from the initial peak. An interesting observation from
Fig. 8 is that while the EFI decreases with increasing battery
capacity, the HEF that can be achieved by delaying charging
actually increases. This �nding underscores that the HEF is
signi�cantly in�uenced by the storage capacity available in the
cluster and the duration of each EV’s charging session. Indeed,
Scenario 3 demonstrates the highest HEF observed in this
study, with a peak of 94.5 kWh and an average of 26.7 kWh.
Moreover, as battery capacities grow, the peak utilization
rate�and consequently, the peak HEF�shifts to later times.
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Charging Power: 22 kW

Charging Power: 11 kW

Charging Power: 6 kW

Fig. 9: Impact of the charging power on the charging cluster performance. The colours green, blue, and red represent scenarios
where the charging power is set to 22 kW, 11 kW, and 6 kW, respectively. Flexibility indexes are evaluated on the left, while
HEF is depicted on the right.

Speci�cally, the HEF peaks at 5:00 AM in Scenario 1 and at
8:00 AM in Scenario 3.

Overall, these results demonstrate that battery capacity is the
most crucial parameter in�uencing the energy and time �exi-
bility of a charging cluster. Speci�cally, when the connection
capacity is suf�ciently high, larger battery capacities increase
the amount of energy consumption that can be deferred each
hour. Furthermore, as the idle time of the EVs decreases, the
peak in utilization rate and energy �exibility shift to later
times. Finally, this sensitivity analysis underscores the comple-
mentarity between qualitative and quantitative measurements
of �exibility criteria. While the qualitative measure of energy
�exibility potential indicated by the EFI decreases due to
reduced room within the constraints of the cluster to schedule
energy delivery over time, the total amount of �exible energy
increases signi�cantly, enhancing the HEF.

E. Impact of charging power
In this sensitivity analysis, the �exibility potential of the

EV cluster on August 31, 2022, is evaluated by varying
the charging power capacities of the chargers and EVs. The
simulated charging capacities are 6 kW in Scenario 1, 11 kW
in Scenario 2, and 22 kW in Scenario 3 (same as base case),
which re�ect the range of existing AC power capacities
available for slow charging. The connection capacity is kept
at 82 kW.

Fig. 9 and Table III present the results of the analysis.
The radar graph in Fig. 9 demonstrates that increasing the
EV charging capacity diminishes the �exibility scores for the
power indexes MPFI and APFI, with MPFI being the most
affected, decreasing to 0 in the �nal scenario. Conversely,
the EFI and TFI scores exhibit an inverse relationship to
these power indexes. Higher EV charging capacity facilitates
faster charging, thus enhancing the potential to adjust charging
schedules to meet grid operators’ and users’ needs. However,

this bene�t is accompanied by an increased peak power de-
mand, particularly in the absence of a smart charging strategy.
The HEF results indicate that higher power capacities correlate
with a higher HEF, with peak values ranging from roughly
35 kWh in Scenario 1 to approximately 45 kWh in Scenario 3,
and average values ranging from 9.6 kWh in Scenario 1 to
14 kWh in Scenario 3. Additionally, as the power capacity
of the chargers increases, the peak HEF shifts to earlier
times, moving from 6:00 AM in Scenario 1 to approximately
5:00 AM in Scenario 3.

TABLE III: Flexibility criteria results for different charging
power capabilities.

Charging power [kW] 6 11 22

MPFI 0.57 0.34 0.00
APFI 0.86 0.80 0.68
EFI 0.74 0.83 0.88
TFI 0.74 0.84 0.91
Maximum HEF [kWh] 35.2 37.5 44.7
Average HEF [kWh] 9.6 11.5 14.0

F. Impact of number of charging events
The last sensitivity analysis of this study examines how

the number of charging events affects �exibility potential.
Three different days were selected for this analysis: Scenario 1
represents August 31, 2022, when 15 charging sessions were
recorded; Scenario 2 represents February 16, 2022, with 10
recorded charging sessions; and Scenario 3 represents January
18, 2022, which saw �ve recorded charging sessions. The
connection capacity is kept at 82 kW, and the charger power
capacity is 11 kW.

Fig. 10 and Table IV showcase the results of the analysis.
In general, the results from the �exibility indexes and the
HEF indicate that the number of daily charging sessions is not
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 Number of charging sessions: 5

 Number of charging sessions: 10

 Number of charging sessions: 15

Fig. 10: Impact of the number of charging sessions on the charging cluster performance. The colours green, blue, and red
represent scenarios where 5, 10, and 15 charging sessions are considered, respectively. On the left, �exibility indexes are
evaluated, while the HEF is shown on the right.

TABLE IV: Flexibility criteria results for different numbers of
charging sessions. The analysis is based on simulations from
different days, each varying in the total number of recorded
charging events.

Number of charging events 5 10 15

MPFI 0.34 0.20 0.60
APFI 0.80 0.77 0.82
EFI 0.83 0.80 0.87
TFI 0.84 0.81 0.87
Maximum HEF [kWh] 37.5 58.9 32.2
Average HEF [kWh] 11.5 22.8 14.4

the primary factor in�uencing the �exibility potential. Instead,
the total energy requested by the EVs and the connection
patterns play a more signi�cant role. Notably, Scenario 2,
where 10 EVs charge a total of 150 kWh, scores the lowest
across all �exibility indexes, despite having fewer charging
sessions compared to Scenario 3, where 15 EVs charge a
total of 112 kWh. Overall, the radar graph shows only a
marginal impact on the �exibility indexes, except for the
MPFI, which decreases from 0.6 to 0.2. The HEF graph further
highlights the predominant in�uence of the energy requested,
with the HEF averaging 22.8 kWh and reaching a maximum of
58.9 kWh in Scenario 2. In comparison, Scenario 3 averages
14.4 kWh with a peak of 32.2 kWh. Additionally, the graph re-
veals a different distribution of �exibility based on connection
patterns.

IV. CONCLUSION

This paper introduces an evaluation tool and a set of �exi-
bility criteria to assess the �exibility potential of EV charging
clusters. The evaluation tool is demonstrated using an existing
workplace charging cluster located in Copenhagen, Denmark,
leveraging real historical data. The method is designed to

quantify the suitability of a charging cluster to provide both
BTM and FTM �exibility services. Speci�cally, the criteria are
de�ned to evaluate short-term and long-term power adjustment
capabilities, as well as charge scheduling capabilities. The pro-
posed method consists of �ve �exibility criteria: four �exibility
indexes to provide a qualitative assessment of the �exibility
potential and one quantitative metric. The �ve criteria are
de�ned as follows:

� Minimum Power Flexibility Index (MPFI): Quanti�es the
power �exibility potential during peak utilization of the
charging cluster.

� Average Power Flexibility Index (APFI): Represents the
average power �exibility potential throughout the charg-
ing process.

� Energy Flexibility Index (EFI): Assesses the ability of
the charging cluster to strategically delay the charging
requested by users.

� Time Flexibility Index (TFI): Evaluates the ability of
the cluster to manage EV charging while simultaneously
offering additional services.

� Hourly Energy Flexibility (HEF): Provides an hourly
measurement of the maximum amount of energy that can
be deferred by employing a smart charging strategy.

Among these, the MPFI and APFI focus on power-based
�exibility services, while the EFI relates to energy-based ser-
vices and the TFI is primarily associated with BTM services.
Conversely, the HEF provides an energy-based measurement
that quanti�es the extent and timing of energy deferral capa-
bilities. When employed within a pseudo-real simulation envi-
ronment, this method facilitates the evaluation of the suitability
of the cluster for diverse �exibility services under operational
conditions. It also supports the design of new charging clusters
and the monitoring and optimisation of existing systems.

Furthermore, a sensitivity analysis was performed to exam-



ine how different determinants affect the �exibility potential
of charging clusters. The characteristics considered encompass
hardware layout (such as the grid connection capacity and
charger/car power capacity), software technology (including
control strategies and the utilisation of user inputs), and user
behaviour (encompassing charging patterns and EV character-
istics). Although the primary objective of this study was not
to analyse the speci�c charging cluster but rather to illustrate
the �exibility criteria, it was observed that the analysed cluster
was highly oversized relative to its utilisation rate in 2022. The
sensitivity analysis further revealed that:

� A reduction in grid connection capacity signi�cantly
reduces the suitability of the charging cluster for power-
based �exibility services, while its effects on energy
�exibility are marginal. Although the average idle time
of all the EVs was only marginally affected, a substantial
reduction in connection capacity necessitates priority-
based charging scheduling.

� Storage capacity/energy requested is the most in�uential
factor for energy and time �exibility, while its impact
on power �exibility is less pronounced. Higher energy
requests allow for greater energy �exibility gains through
smart charging strategies and shift the timing of energy
availability throughout the day.

� Increasing the power capabilities of the chargers enhances
the ability of the cluster to schedule energy consumption
over time but also raises peak power consumption. This
results in higher power peaks and longer average idle
times.

� The number of charging sessions has a limited impact on
the �exibility potential of the cluster. Instead, the total
energy charged/requested and user connection patterns
are more critical determinants for evaluating �exibility
potential.

� Optimizing the charging strategy by adjusting power
levels and scheduling charging sessions improves �ex-
ibility potential across all scenarios examined. Effective
charging strategies are essential for maximizing �exibility
and improving charging ef�ciency in clusters with poorly
designed electrical layouts.

These �ndings underscore the importance of selecting ap-
propriate charging strategies, particularly during periods of
high concurrent charging, to optimise �exibility and meet the
needs of both grid operators and users.

A. Future work
The study identi�es two key areas for further research. To

begin with, the current evaluation indexes (MPFI, APFI, EFI
and TFI) assess the performance of the entire EV cluster
but do not account for the individual performance of each
EV. Future research should develop metrics that evaluate the
charging ef�ciency and �exibility of each EV separately, as
this will enable a more precise optimization of the charging
control strategy. The current metrics are averaged across all
EVs, which overlooks the fact that each EV may have different
charging needs and �exibility. For example, new metrics could

address factors such as minimum idle time and lost charging
opportunities for individual EVs.

Second, future studies should investigate the optimal �ex-
ibility capacity for clusters under various conditions. This
involves analysing how the size of the electrical layout of
a charging cluster impacts CAPEX and the potential reduc-
tion in OPEX due to �exibility services. Additionally, the
accessibility of EV clusters to �exibility markets, along with
the standardization and pricing of these services, will play a
crucial role. Gaining insights into these aspects could improve
the planning and management of smarter charging clusters and
enhance returns on investment for CPOs and aggregators.

ACKNOWLEDGMENT

The work in this paper is supported by the research projects
ACDC (EUDP grant number: 64019-0541) and FUSE (EUDP
grant number: 64020-1092).

REFERENCES

[1] T. Unterluggauer, J. Rich, P. B. Andersen, and
S. Hashemi, �Electric vehicle charging infrastructure
planning for integrated transportation and power distri-
bution networks: A review,� ETransportation, p. 100163,
2022.

[2] F. G. Venegas, M. Petit, and Y. Perez, �Active integra-
tion of electric vehicles into distribution grids: barriers
and frameworks for �exibility services,� Renewable and
Sustainable Energy Reviews, vol. 145, p. 111060, 2021.

[3] T. Unterluggauer, F. Hipolito, J. Rich, M. Marinelli, and
P. B. Andersen, �Impact of cost-based smart electric
vehicle charging on urban low voltage power distribu-
tion networks,� Sustainable Energy, Grids and Networks,
vol. 35, p. 101085, 2023.

[4] R. Fachrizal, M. Shepero, D. van der Meer, J. Munkham-
mar, and J. Wid·en, �Smart charging of electric vehicles
considering photovoltaic power production and electric-
ity consumption: A review,� eTransportation, vol. 4, p.
100056, 2020.

[5] X. Su, H. Yue, and X. Chen, �Cost minimization control
for electric vehicle car parks with vehicle to grid tech-
nology,� Systems Science & Control Engineering, vol. 8,
no. 1, pp. 422�433, 2020.

[6] M. H. Tveit, K. Sevdari, M. Marinelli, and L. Calearo,
�Behind-the-meter residential electric vehicle smart
charging strategies: Danish cases,� in 2022 International
Conference on Renewable Energies and Smart Technolo-
gies. IEEE, 2022.

[7] M. M¤uller, Y. Blume, and J. Reinhard, �Impact of behind-
the-meter optimised bidirectional electric vehicles on the
distribution grid load,� Energy, vol. 255, p. 124537, 2022.

[8] E. Sortomme, M. M. Hindi, S. D. J. MacPherson, and
S. S. Venkata, �Coordinated charging of plug-in hybrid
electric vehicles to minimize distribution system losses,�
IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 198�
205, 2011.



[9] K. Prakash, M. Ali, M. Siddique, A. Karmaker,
C. Macana, D. Dong, and H. Pota, �Bi-level planning
and scheduling of electric vehicle charging stations for
peak shaving and congestion management in low voltage
distribution networks,� Computers and Electrical Engi-
neering, vol. 102, p. 108235, 2022.

[10] K. Knezovi·c, S. Martinenas, P. B. Andersen,
A. Zecchino, and M. Marinelli, �Enhancing the role
of electric vehicles in the power grid: �eld validation
of multiple ancillary services,� IEEE Transactions
on Transportation Electri�cation, vol. 3, no. 1, pp.
201�209, 2016.

[11] J. N·ajera, H. Mendonc‚a, R. M. de Castro, and J. R.
Arribas, �Strategies comparison for voltage unbalance
mitigation in lv distribution networks using ev chargers,�
Electronics, vol. 8, no. 3, p. 289, 2019.

[12] M. Soleimani and M. Kezunovic, �Mitigating transformer
loss of life and reducing the hazard of failure by the
smart ev charging,� IEEE Transactions on Industry Ap-
plications, vol. 56, no. 5, pp. 5974�5983, 2020.

[13] E. Yao, V. W. S. Wong, and R. Schober, �Robust
frequency regulation capacity scheduling algorithm for
electric vehicles,� IEEE Transactions on Smart Grid,
vol. 8, no. 2, pp. 984�997, 2017.

[14] S. Falahati, S. A. Taher, and M. Shahidehpour, �A new
smart charging method for evs for frequency control of
smart grid,� International Journal of Electrical Power &
Energy Systems, vol. 83, pp. 458�469, 2016.

[15] F. Mwasilu, J. J. Justo, E.-K. Kim, T. D. Do, and J.-
W. Jung, �Electric vehicles and smart grid interaction: A
review on vehicle to grid and renewable energy sources
integration,� Renewable and Sustainable Energy Reviews,
vol. 34, pp. 501�516, 2014.

[16] T. Unterluggauer, F. Hipolito, P. B. Andersen, J. Rich,
and M. Marinelli, �Conditional connection agreements
for ev charging: Review, design, and implementation of
solutions for the low voltage distribution grid,� Under
review, 2024.

[17] K. Sevdari, L. Calearo, P. B. Andersen, and M. Marinelli,
�Ancillary services and electric vehicles: An overview
from charging clusters and chargers technology perspec-
tives,� Renewable and Sustainable Energy Reviews, vol.
167, p. 112666, 2022.

[18] M. K. Gerritsma, T. A. Al Skaif, H. A. Fidder, and
W. G. van Sark, �Flexibility of electric vehicle demand:
Analysis of measured charging data and simulation for
the future,� World Electric Vehicle Journal, vol. 10, no. 1,
pp. 1�22, 2019.

[19] M. A. van den Berg, I. Lampropoulos, and T. A. AlSkaif,
�Impact of electric vehicles charging demand on distri-
bution transformers in an of�ce area and determination
of �exibility potential,� Sustainable Energy, Grids and
Networks, vol. 26, p. 100452, 2021.

[20] J. Rominger, M. Loesch, and ..., �Utilization of Electric
Vehicle Charging Flexibility to Lower Peak Load by
Controlled Charging (G2V and V2G),� in FAC Workshop

on Control of Smart Grid and Renewable Energy Systems
(CSGRES 2019), no. Csgres, 2019, pp. 1�6.

[21] E. C. Kara, J. S. Macdonald, D. Black, M. B·erges,
G. Hug, and S. Kiliccote, �Estimating the bene�ts of
electric vehicle smart charging at non-residential loca-
tions: A data-driven approach,� Applied Energy, 2015.

[22] P. H. Divshali and C. Evens, �Behaviour analysis of
electrical vehicle �exibility based on large-scale charging
data,� 2019 IEEE Milan PowerTech, PowerTech 2019, no.
731297, 2019.

[23] M. Hijjo and A.-L. Klingler, �Modeling and simulation of
electric vehicle �exibility to support the local network,�
in 2021 International Conference on Smart Energy Sys-
tems and Technologies (SEST), 2021, pp. 1�6.

[24] M. Voß, M. Wilhelm, and S. Albayrak, �Application
independent �exibility assessment and forecasting for
controlled EV charging,� SMARTGREENS 2018 - Pro-
ceedings of the 7th International Conference on Smart
Cities and Green ICT Systems, vol. 2018-March, no.
Smartgreens 2018, pp. 108�119, 2018.

[25] L. Słrensen, K. B. Lindberg, I. Sartori, and I. Andresen,
�Analysis of residential EV energy �exibility potential
based on real-world charging reports and smart meter
data,� Energy and Buildings, vol. 241, p. 110923, 2021.

[26] J. Zhang, L. Che, X. Wan, and M. Shahidehpour, �Dis-
tributed hierarchical coordination of networked charging
stations based on peer-to-peer trading and ev charging
�exibility quanti�cation,� IEEE Transactions on Power
Systems, pp. 1�1, 2021.

[27] M. Ca�nigueral and J. Mel·endez, �Flexibility management
of electric vehicles based on user pro�les: The arnhem
case study,� International Journal of Electrical Power &
Energy Systems, vol. 133, p. 107195, 2021.

[28] C. Gschwendtner, C. Knoeri, and A. Stephan, �Mind the
goal: Trade-offs between �exibility goals for controlled
electric vehicle charging strategies,� Iscience, vol. 26,
no. 2, 2023.

[29] J. B. Gutierrez-Lopez and D. M¤ost, �Characterising
the �exibility of electric vehicle charging strategies: a
systematic review and assessment,� Transport Reviews,
vol. 43, no. 6, pp. 1237�1262, 2023.

[30] 	A. L. Słrensen, B. B. Morsund, I. Andresen, I. Sartori,
and K. B. Lindberg, �Energy pro�les and electricity
�exibility potential in apartment buildings with electric
vehicles�a norwegian case study,� Energy and Buildings,
vol. 305, p. 113878, 2024.

[31] N. K. Panda and S. H. Tindemans, �Ef�cient quanti�ca-
tion and representation of aggregate �exibility in electric
vehicles,� Electric Power Systems Research, vol. 235, p.
110811, 2024.

[32] F. Al Taha, T. Vincent, and E. Bitar, �An ef�cient method
for quantifying the aggregate �exibility of plug-in electric
vehicle populations,� IEEE Transactions on Smart Grid,
2024.

[33] K. Sevdari, L. Calearo, S. Striani, P. B. Andersen,
M. Marinelli, and L. Rłnnow, �Autonomously distributed



control of electric vehicle chargers for grid services,�
in 2021 IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe). IEEE, 2021, pp. 1�5.

[34] K. Sevdari, L. Calearo, B. H. Bakken, P. B. Andersen,
and M. Marinelli, �Experimental validation of onboard
electric vehicle chargers to improve the ef�ciency of
smart charging operation,� Sustainable Energy Technolo-
gies and Assessments, vol. 60, p. 103512, 2023.

[35] L. Calearo, C. Ziras, K. Sevdari, and M. Marinelli,
�Comparison of smart charging and battery energy stor-
age system for a pv prosumer with an ev,� pp. 1�6, 2021.



Appendix



TABLE A1: Classi�cation of potential EV �exibility services for FTM applications (Own illustration based on the work
in [17]).

Frequency services
Services Description
1. Fast frequency reserve
2. Frequency containment reserve
3. Frequency restoration reserve
4. Replacement reserve
5. Synthetic inertia
6. Virtual inertia

1. Power injection starts within 2 seconds and lasts for several minutes; assists in reducing the Rate
of change of frequency.
2. Power injection begins within 30 seconds and is fully activated within 2-5 minutes; aids in
containing deviations from the nominal frequency.
3. Activated within 5-15 minutes and sustained until frequency is restored; assists in bringing the
system frequency back to its nominal value.
4. Power delivered within 15 minutes to 1 hour; ensures suf�cient active power reserves following a
disruption and replaces the Frequency restoration reserve.
5. Immediate response (<1 second) to frequency changes; emulates the behaviour of traditional
rotating generators.
6. Instantaneous response to frequency changes through the use of power electronics and advanced
control technologies.

Grid stability
Services Description
1. Emergency power
2. Energy arbitrage
3. RES power smoothing
4. Black start capability
5. Anti-islanding
6. Low voltage ride through
7. Fault ride through
8. Valley �lling
9. Peak shaving

1. Activated during emergencies to provide critical infrastructure with power; typically involves non-
scheduled power plants that can start up quickly.
2. Involves charging when prices are low (off-peak) and discharging when prices are high (peak).
3. Aims to reduce the variability of power output from renewable energy sources, which helps to
mitigate issues like power �ickering.
4. Helps the power grid to restart after a total or partial blackout by supplying power until
interconnected system is established again.
5. Prevents local generators from continuing to supply power during a wider network outage, ensuring
the safety of repair crews and preventing the spread of faults.
6. Requires power generation systems to maintain operation despite dips in grid voltage; contributing
to overall grid stability.
7. Requires power generation systems to maintain operation during grid faults or abnormal operating
conditions, such as short circuits.
8. Involves charging energy storage systems during off-peak periods (when demand is low) and
discharging them during peak times; helps to alleviate load peaks.
9. Entails reducing or curtailing demand during peak times to relieve stress on the grid.

Congestion management
Services Description
1. Time of use
2. Type of use
3. Dynamic pricing
4. Extreme day pricing
5. Peak time rebate
6. RES power matching
7. Phase balancing
8. DER power matching

1. Involves varying electricity prices based on the time of the day to encourage consumers to shift
their electricity use to periods of lower demand.
2. Featured different rates depending on the type of electricity usage, with additional fees based on
grid carbon intensity.
3. Encompasses the adjustment of electricity prices in real-time according to supply and demand;
requires advanced metering infrastructure and sophisticated rate design.
4. Refers to signi�cantly increased electricity prices on days with expected extremes, often in response
to weather events; it aims to incentivize consumers to shift their usage away from these peak periods.
5. Offers discounts or rebates to customers who reduce their electricity usage during peak demand
periods.
6. Involves scheduling the operation of Renewable Energy Sources (RES) to align with demand
pro�les, helping to mitigate the issues caused by the intermittency of RES.
7. Aims to distribute electrical loads evenly across all phases in a three-phase power system to
improve ef�ciency and reduce losses.
8. Matches supply with demand in systems with DERs, often through demand response programs or
adjustments to DER output.
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Abstract—This paper proposes an autonomous distributed
control design for coordinating the charging process of park-
ing lots for electric vehicles (EVs). The focus of this paper is to
investigate the performance of the modeled architecture. The
model simulates for 24 hours an of�ce parking lot scenario
with real input data from 16 EVs. The primary objective is
to quantify the ful�llment of the demand and the guaranteed
amount of energy for each user. The secondary objective is
to analyze the effects of restricting the power capacity of the
parking lot from 88 kW to 43 kW. In the constrained charging
scenario, the system guarantees a minimum energy of 12.2
kWh (roughly 61 km) to each car connected for at least 5
hours and 54 minutes. In the unconstrained charging scenario
12 EVs reach maximum state-of-charge (SOC), while 11 EVs
reach it in the constrained one. Demand ful�llment is only
marginally different between the two scenarios because the
�nal SOC values of the EVs are nearly the same. On the other
hand, constraining connection capacity reduces signi�cantly
the idle state of six chargers.

Index Terms—Electric Vehicle, Distribution Grid, Smart
Charging, Flexibility

I. I NTRODUCTION

Electric grids must withstand the increased volatility of
energy production and energy demand. On the production
side, this is because electricity production will gradually
shift towards renewable energy sources (RES), which are
less predictable and controllable. On the demand side, this
is because electric vehicles (EVs) will gradually become
the main private means of transportation [1]. The charging
of large EV �eets will increase the amplitude of peak
energy demand due to concurrent charging in peak hours
[2], [3]. Smart charging is a technology that allows EVs
to become �exible loads for the grid and deliver �exibility
services to the distribution and transmission system [4] .
Consequently, this technology has the potential to mitigate
the negative impacts of the penetration of RES and EVs [5].
As a results, the mass roll-out of smart chargers offers the
opportunity to reduce or delay expensive grid upgrades [6].
Smart charging is a novel technology, therefore extensive
experimental data on its optimal features and development
is needed [7]. For instance, it needs to be further technically
developed, standardized, and exhaustively tested before its
full roll-out. Many technical aspects of the technology need
to be further developed: the chargers technical character-
istics and the information and communication technology
(ICT) need to be standardized so that interoperability is
ensured between chargers, EVs, smart meters and grid
components [8]. The smart charging technology can be

investigated through experimental campaigns and math-
ematical modeling of charging clusters. Demonstration
campaigns are the starting point for the generation of data
to be used for the further development of the technology
[9]. Grid observability of already deployed chargers is the
key to the development of smart charging on a large scale;
therefore, deployed chargers should be coupled with smart
meters to generate real usage data in different scenarios
[10]. The design of mathematical models is the starting
point for understanding the interaction between the clusters
and the vehicles for behind-the-meter (BTM) services,
and between the clusters and the grid for front-of-the-
meter (FTM) services [11]. In short, BTM services are a
series of power and energy services that can be used to
ful�ll speci�c user's needs. They are generally provided to
users or the building connected to the parking lot by the
system. Examples of BTM services are energy arbitrage,
power sharing and power scheduling between EVs. FTM
services are other power and energy services meant to
bene�t the grid and to ensure its optimal performances.
They are managed by its operators (such as DSOs and
TSOs). Some FTM services are congestion management,
peak-shaving and voltage unbalance reduction. A more
complete description of the grid services can be found
in [11]. This paper focuses on the technical side of the
development of smart charging, through the modelling of
a smart charger based on a distributed control architecture.
The focus is on BTM services and on illustrating the design
and performance of such a control architecture. The rest
of the paper is structured as follows. Section II describes
the objective of the research in more detail; Section III
describes the methodology adopted for the study; Section
IV introduces the results of the case study simulation;
Section V provides conclusions and future work.

II. OBJECTIVES OF THE RESEARCH

This work is part of the modelling and demonstration
activities of the ACDC project (Autonomously Controlled
Distributed Chargers). The project aims to develop a clus-
tering method for smart chargers in which different parking
lots can be monitored and governed with a distributed
control architecture. Such an architecture consists of two
control intelligences: the cloud aggregator (CA) and the
virtual aggregator (VA). The former is responsible for the
coordination of different parking lots for the provision of
�exibility services FTM and grid integration. The latter is



responsible for the coordination of the different chargers
within a parking lot for BTM services. The user can
interact with the system to check charging schedule and
monitoring the charging session. The CA will guarantee
full controllability by grid operators for the provision of
�exibility services on the market. The VA will guarantee
maximization of user comfort and minimization of charging
point operators' (CPO) expenses.

This study will focus on the local control architecture,
describing the VA and illustrating the performance of the
parking lot components, in terms of ful�llment of the users'
charging sessions. Therefore, the control architecture needs
to ensure that each user of the parking lot has a certain
minimum amount of energy available at the end of the
charging session. The parking lot model performs power
scheduling and power sharing among the connected EVs
throughout the day. The research objectives of this paper
are:

� Analysing the performance of power scheduling and
power sharing functions in order to lower the point of
common coupling (PCC) connection capacity.

� Giving an overview of the EV charging sessions in
order to measure the capacity of the parking lot to
ful�ll the users' demand.

� Measuring the �exibility available in the parking lot
in terms of chargers' idle time and surplus energy
available.

III. M ETHODOLOGY

This section describes the methodology implemented in
this paper. The model developed uses as a starting point
the model previously built in [12].

A. Comparison of control architecture strategies

There are several types of control architectures. They
can be classi�ed as centralized, decentralized, or distributed
[13]. The centralized control architecture consists of one
central control element that collects information from the
grid and decides the power set-points for the power demand
/ supply of every device remotely. In the decentralized
control architecture, the central (common) control objec-
tive is pursued independently by local control elements
independently; therefore, local control elements only use
local measurements and actuators. The distributed control
architecture, instead, contains both a central controller (in
this case the CA) and a local controller (in this case the
VA). The central controller coordinates charging clusters
on a higher level. For example, CA receives information
from the grid and dispatches set-points to the local con-
troller. At the lower level, local controllers process and
distribute the set-points among the different devices with
local communication. The advantages and drawbacks of
centralized control, distributed control, and decentralized
control are described in [14]. Although previous smart
charging strategies rely on a centralized control approach
[15], this study exploits the distributed control approach.
The dual nature of the communication, both local and
cloud-based, is worth being explored for several reasons:
with this strategy, the charger would be capable of working
even if the communication with the grid is interrupted, or
if one of the chargers stops working; moreover, the local

communications between the controlling units is faster and
more robust [16].

B. Global system architecture

Fig. 1 provides an overall illustration of the control
architecture applied to a number of N clusters. The CA
and the VA are, respectively, two intelligences that control
the parking lot power demand both according to the status
of the grid and to the preferences of the EV users.

Fig. 1. Global system architecture and communication paths between
different actors.

The CA is the global intelligence, and it has two main
functions: the �rst is receiving signals from the grid, such
as RES production, electricity price, and grid congestion.
The CA translates these inputs into power set-points and
sends them to the VA of each cluster. The second function
is to receive user inputs (via the mobile app) and to
distribute them to the VAs. The users' inputs are the state
of charge (SOC) at the time of plug-in, the battery capacity
and the scheduled time of departure. The VA is the local
intelligence and broadcasts power set-points received from
the CA to all the chargers of its cluster. Based on user
preferences, the VA gives instructions to the chargers, such
as charging priority and power scheduling based on SOC.
Lastly, the smart meter feedbacks the power consumed to
the CA, so that the CA can continuously redistribute the
power among the parking lots according to the availability
of cars and local grid conditions.

C. Local system architecture

Fig. 2 provides a simpli�ed illustration of the model
for a single cluster. Each charger is composed of the VA
(divided into primary and secondary functions) and the
charger controller. The parking lot contains N chargers. In
the parking lot, there is a smart meter connected to the point
of common coupling (PCC). The primary function of the
VA (shortly VA primary) is the constant power set point
reception from the cloud and consequent constant adjust-
ment of the total demand of the parking lot. VAprimary
is active only in one of the chargers, to avoid redundancy
in communication. However, in case of its malfunctioning,
other chargers can automatically replace it with their VA.
The secondary function of the VA (shortly VAsecondary)
is to schedule and share charging power among the EVs,
and it is active in all the N chargers. A description of
the power and information �ow follows: On the left, the



Fig. 2. Local system architectures and communication between different components of the parking lot.

smart meter records the power �owing from the grid to the
chargers. The smart meter sends the consumption measure-
ments through wired communication to VA1primary, part
of charger 1. VA1primary also receives set-points from
the CA via Wi-Fi or Ethernet communication. Such set-
points are the result of the CA processing data from the
grid. VA1 primary compares the difference between the
set-points of the CA and the actual measurement of the
smart meter and calculates an error value. VA1primary
broadcasts the error value to all the chargers via cable (for
charger 1) and via wireless communication (for chargers 2
to N). The users communicate their inputs via the mobile
app to the CA. The CA sends them to the secondary
function of each VA, via Wi-Fi communication. Each
VA secondary stores the information from the charger
meter and communicates with the PI control and with the
switch according to the EV priorities. The power coming
from the grid �ows through the smart meter to the switches.
The switches deliver alternately the power to one of the
connected EVs based on the schedule calculated by each
VA secondary. Each VAsecondary would automatically
calculate the current SOC based on scheduled charging
and user input. The total power demand is continuously
recorded by the smart meter.

D. Case Study

For the scope of this paper, the model is tailored to a
parking lot scenario. The simulated scenario is a workplace
parking lot of the Risø research campus of Technical
University of Denmark. The parking lot will house 8
smart chargers with double type-2 plugs for each charger.
Each charger can simultaneously charge only one car,
even if two cars are plugged in. Each plug can support a
maximum current of 16 A (11 kW charging 3 phase or 3.68
kW charging 1 phase). In the unconstrained scenario, the
maximum power capacity of the parking lot is therefore 88
kW, while in the constrained charging scenario a fuse limit
of 43 kW is chosen. In the latter scenario, the chargers will
perform power scheduling and sharing to avoid overloading
the fuse. When constructed, the parking lot will be suitable

for experimental analysis to validate the results of the
simulation and expand the �ndings to a larger scale.

E. Model assumption and inputs

The model is designed in Matlab/Simulink. The simu-
lation has a total time of 24h, with a variable time-step.
The inputs of the model are EV parking behavior data
from a real of�ce parking lot and are summarized in Table
I. The table shows in the same color the EVs connected
to the same charger. The data are provided by a Nissan
EV telematics and consist of a dataset containing arrival
time, SOC at the beginning of the session, and planned
departure time from 16 EV users in a time range of 24
hours with a time resolution of one second. In addition,
the simulation incorporates EV models and relative battery
capacity. They represent a sample of the most common
EVs found in the DTU university campus. Such info is

TABLE I
INPUTS OF THE MODEL FOR THE SIMULATION.



inputted in the model directly to characterize the EVs, their
arrival and departure time. Based on these information the
VA schedules their charging time and power. The switch
performs scheduling by prioritizing the EVs with lower
SOC with schedules of 30% SOC each. The EV models
contain a simpli�ed battery model and AC-DC converter
ef�ciency which decreases linearly from 90% at full charge
(11 kW for 3 phase charging or 3.68 kW for 1 phase
charging) to 80% at minimum charge (4.15 kW for 3 phase
charging or 1.38 kW for 1 phase charging) [17]. At the end
of each iteration, the power consumed by each charger is
recorded on the smart meter. The smart meter will calculate
the total power demand of the last iteration for the next
iteration cycle. More information about the model's signal
discretization and communication delays can be found in
[12].

IV. RESULTS

Figure 3 displays the connection and charging time of
EVs throughout the day. The y-axis shows the EV number,
while the x-axis shows the time in hours. For each EV
the dotted line represents the connected time while the
continuous line is the actual charging time. The lines of
EVs connected to the same charger are shown in the
same color. Fig.3 gives a detailed overview of the charging
schedule of each EV, and the alternate switching between
two EVs plugged on each charger. Further, some EVs reach
their maximum SOC and stop charging before leaving. The
surplus energy is used to charge the rest of EVs faster.
However, the same energy surplus can be used for FTM
�exibility services if the other EVs are already charging
with maximum capacity.

Fig. 3. Connection and charging time history of the simulation.

Fig. 4 provides the overall results of the parking lot simu-
lation during the 24 hours period. The top graph illustrates
a time history of the charging power in the constrained
charging and unconstrained charging cases for comparison.
The bottom graph shows the time history of the number of
EVs charging and the number of EVs connected in the
constrained charging case. In the unconstrained charging
case the peak demand due to concurrent charging is 66

kW. However, the bottom graph suggests that 43 kW is an
acceptable limit because most of the EVs are fully charged
and stop charging long before they leave the parking lot. In
fact, after 11:30 am, only 6 cars are charging at the same
time.
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Fig. 4. Overall time history of the total power demand with unconstrained
and constrained charging (top). Time history of number of EVs connected
and charging (bottom)

Table II shows the performance of the charging sessions
for the parking lot. In detail, the results are similar for both
scenarios: 11 EVs are fully charged by the end of their
charging session in the constrained scenario, one less than
the unconstrained one. Otherwise, the results are very sim-
ilar. EV11 has the lowest SOC of 78% in both scenarios.
However, EV11 charges in both scenarios to its maximum
power while connected, showing that constrained charging
does not affect its demand ful�llment. EV11 is a single
phase EV with a high battery capacity of 62 kWh and it
manages to charge 25 kWh (roughly 125 km). Regarding
EVs that do not reach 100% SOC: the minimum amount of
energy guaranteed by the parking lot is 12.2 kWh if an EV
is parked for at least 5 hours and 54 minutes. Therefore,
assuming that EVs drive an average of 5 km per kWh, the
parking lot is capable of guaranteeing approximately 61 km
of driving autonomy during the simulated day. In addition,
six of the eight chargers reach idle state for an average of
4 hours and 19 minutes per charger because their plugged
EVs are fully charged. This idle time shows that, in this
simulation, the fuse limit could be even lower than 43 kW
without a signi�cant effect on vehicle demand ful�llment.
However, such time buffer can be used for FTM �exibility
services.

Lastly, the parking lot erogates power for 19 hours
and 24 minutes over 24 hours. In such time, the total
energy output in the constrained charging scenario is 414
kWh, whereas in the unconstrained charging scenario it
would instead be 413 kWh. This con�rms that the charging
bottleneck is the power limit of each charger (11 kW, for
3 phase charging, and 3.68 kW, 1 phase charging) and not
the fuse limit. The actual energy stored in the EV batteries
is 368 kWh and 373 kWh in the constrained and uncon-



TABLE II
TABLE SHOWING THE MOST RELEVANT SIMULATION OUTPUT PER CAR ANDPER CHARGER

strained charging scenarios, respectively. This difference is
due to the lower AC-DC conversion ef�ciency of the cars
when modulating the charging power. These losses can be
minimized by prioritizing power scheduling over power
sharing. However, such losses may still be acceptable
considering that the system reduces the overloading of the
grid and the need to upgrade the connection capacity of
the parking lot and components of the distribution grid.

V. CONCLUSION AND FUTURE WORK

This paper illustrates an autonomous distributed control
and logic design for coordinating the charge of EVs in
a parking lot. The modeled architecture is applied to a
24 hours simulation of an of�ce parking lot scenario with
real input data from 16 EVs. Two scenarios are compared:
constrained charging (43 kW fuse limit) and unconstrained
charging (88 kW is the maximum power that can be
supplied by the chargers). The local performance of the
parking lot follows: 11 EVs reach maximum SOC in
the constrained scenario, one less than the unconstrained
one. Otherwise the demand full�llment performances are
similar. EV11 reaches only 78% SOC in both scenarios due
to its slow charging capacity. The parking lot guarantees a
minimum of 12.2 kWh (roughly 61 km) to each car and
has a signi�cant amount of idle time from 6 chargers. This
is because most EVs are fully charged before the charging
session ends, and the resulting energy buffer can be used
for FTM �exibility services or to further reduce the fuse
limit. Overall, the architecture schedules the charging of
all EVs correctly, starting from the ones with lower SOC.
Having two plugs per charger, of which one is functioning
at a time, is a convenient way to have more EVs connected
without needing a high connection capacity. Prioritizing
power scheduling over power sharing and limiting the
modulation of the charging power is also important not to
lose ef�ciency in AC-DC energy conversion of the EV. In
the future, the model will also be used to investigate phase
balancing, by automatically switching 3 phase EVs to 1
phase. Furthermore, the simulated EV parking lot scenario
will be constructed and used to validate the results.
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Abstract�Smart charging has a strong potential to mitigate
the challenges in security of supply caused by the increasing
reliance on renewable energy sources (RESs) and electric vehicles
(EVs). This paper describes the performances of an autonomous
distributed control for coordinating the charge of four parking
lots as part of a virtual power plant. The virtual power plant
consists of a wind farm and four parking lots located in
different areas of the grid and connected to two different feeders.
The control architecture is applied to a 24-hour simulation
with input data from a wind park, the loading data of two
feeders, and user behavior from 68 EVs. The objectives of the
architecture are: maximization of the wind power usage to charge
the EVs; minimization of feeders overloading; minimization of
energy imported from the grid; assurance of suf�cient charging
ful�llment; wind power variability mitigation. Under simulated
conditions, the control architecture keeps the feeder loading
below 80% by reducing the power allowance to the parking lot
during peak demand. Nonetheless the four parking lots guarantee
an energy charged of 10.7 kWh for all EVs starting the charging
session with less than 60% state of charge (SOC). The total
energy produced by the wind power plant is 4.36 MWh, of which
1.34 MWh is used to charge EVs. The remaining 3.07 MWh is
exported to the grid, and only 92 kWh is imported from the grid
for charging. Further investigation is needed regarding the wind
power variability mitigation, as its reduction is only marginal
under simulated conditions.

Index Terms�Electric Vehicle, Distribution Grid, Virtual
Power Plant, Smart Charging, Flexibility

I. INTRODUCTION

The power system is experiencing two major energy tran-
sitions: the transition to renewable energy sources (RESs)
as the main source of energy and the transition to electric
vehicles as the main mean of transportation. Therefore, in
the near future, the power system will experience increased
�uctuation both in energy demand and energy supply [1].
On the one hand, the energy supply will �uctuate more due
to the intermittent nature of RES. On the other hand, the
energy demand will have larger peaks and valleys due to
concurrent charging of EVs at certain times of the day [2].
The overloading of feeders and lines may lead Distribution
System Operators (DSOs) to reinforce the already existing
infrastructure or deploy power system �exibility solutions to
delay expensive upgrades of the grid [3]. Such �exibility can
be provided from EVs, through smart charging. Smart charging

is de�ned as the adaptation of the charging process of the EVs
according to both the power system condition and the needs
of the vehicle users [4]. Smart charging can be used to deliver
�exibility services to the distribution and transmission system.
Consequently, this technology has the potential to mitigate the
negative impacts coming from both RES and EV penetration
[5]. As a results, the mass roll-out of smart chargers offers the
opportunity to reduce or delay expensive grid upgrades [3].
Flexibility services provided by EVs can be divided into two
categories, namely behind-the-meter (BTM) and in-front-of-
the-meter (FTM) [6]. BTM services bene�t users and focus
on coordinating the EVs consumption with other loads (e.g.
buildings) and distributed energy resources (DER) behind the
point of common coupling (PCC). FTM services bene�t the
grid, and are managed by the DSOs and TSOs in order to
ensure stability and security of supply. In [7], it is thoroughly
explained what are BTM and FTM services. These types
of grid services include prioritizing charging during off-peak
times to assist in reducing peak loads, alleviating feeder
congestion through charging power adjustments, and reducing
wind power curtailment through the utilization of excess wind
power production for the charging process [8].

This paper investigates the application of smart charging
in a virtual power plant (VPP) scenario. VPPs are a type
of clustering model that attempts to manage geographically
scattered electrical generation and demand as if they were one
entity for the system operator [9]. The mission of a VPP is
to network DERs in order to monitor, forecast, and trade their
power [10]. Inside a VPP, EVs are able to provide wind power
production matching [11]. In this context autonomous control
of electric vehicles is deployed within multiple parking lots
for the provision of FTM services [12]. This study focuses
on the global control architecture and on its application to a
simulated virtual power plant scenario. In the virtual power
plant, the architecture adjusts the power set points for each
EV clusters to achieve the following scopes:

� Maximize wind energy usage for charging EVs.
� Provision of an energy buffer to store wind energy in

times of low demand.
� Provision of congestion management for the feeders to
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which parking lots are connected.
� Assurance of a suf�cient amount of energy to all the cars

connected to the parking lots.
� Provision of wind power variability mitigation through

charging modulation
The rest of the paper is structured as follows. Section II
describes the objective of the research in more detail; Section
III describes the methodology adopted for the study; Section
IV introduces the results of the case study simulation; Section
V provides conclusions and future work.

II. METHODOLOGY

This section describes the methodology implemented in this
paper. The model developed uses as a starting point the model
previously built in [13] and further developed in [14].

A. System architecture
The system architecture used in this study relies on a

distributed control approach [15]. The communication happens
both on local level and on global level with a cloud-based solu-
tion. Figure 1 provides an overview of the control architecture.
In the �gure the grey shaded areas represents a number of N
generic location in the distribution grid. The electricity in each
area is distributed to all the connected buildings, and to the
parking lots. The cloud-based global control is performed by
the Cloud Aggregator (CA). The local control architecture is
performed by the Virtual Aggregator (VA), present in all the
N parking lots. The functions of the CA are the following:
signal reception and processing, controllability and power set

point dispatch. The CA receives signals from the grid, such as
RES production from the surrounding RES power plants, and
grid congestion. The CA provides controllability to different
actors (Aggregator, DSOs and TSO) according to other signals
(for example electricity price, or market bids). In addition, the
CA provides information to parking lot users about which
parking lots are available via mobile app. Users can also
input through the app different requests to schedule and set
their charging session priority. The users’ inputs are the state
of charge (SOC) at the time of plug-in, the battery capacity
and the scheduled time of departure. The CA processes these
inputs and dispatches to the VA both power set points and
user requests. The VA receives inputs from the CA and from
the smart meter of the parking lot. On the one hand, the
VA stores the user’s information and schedules the charging
sessions accordingly. Based on user preferences, the VA gives
instructions to the chargers, such as charging priority and
power scheduling based on SOC and energy charged. On
the other hand, the VA of each parking lot matches the
power reference given by the CA with the actual consumption
recorded from the smart meter. In case there are buildings
connected to the same smart meter, the VA will additionally
perform power sharing between the buildings and the parking
lot. For each time step, the VA broadcasts new power set points
to all the chargers of its cluster. The global control ends each
iteration with a feedback loop from the smart meter to the
CA. The smart meter updates the CA on the power consumed
in the previous iteration. Therefore, the CA collects power

Fig. 1. Global system architecture and communication paths between different actors.
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consumption data from the N parking lots and redistributes the
power among the parking lots according to the availability of
cars and local grid conditions. For a more detailed description
of the local system architecture, this article refers to [14].
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Fig. 2. Top graph: Scaled wind power output of Kalby wind farm. Bottom
graph: feeder loading for Kastelbakken (in blue) and Rytterknægten (in
orange)

B. Model Inputs

For the scope of this paper, the model is tailored to
the power system deployed on the island of Bornholm in
Denmark. The time domain of the simulation is 24 hours.
The inputs of the simulation are SCADA secondly power
production data from Kalby wind farm consisting of three
wind turbines with a rated power of 2 MW [16]. Power
production is scaled by a factor of 10 before it is used as
input for the simulation to match the parking lot load. The
grid structure is also tailored to part of the transmission
and distribution system of the island. The parking lots are
connected to the 10.6 kV feeders with a rated apparent
power of 500 kVA, called Kastelbakken and Rytterknægten,
respectively. The model receives secondly loading data of both
feeders recorded on the 20th of January 2020. Figure. 2 shows
the original data on wind power production and feeder loading.
Notice that the feeders have two daily peaks each, during
which they eventually reach values higher than 80%, which
is the system’s threshold for disconnecting the parking lots.
This is because a safety margin of 20-30% feeders loading
should always be kept in order to manage sudden spikes
in demand. The EV behavior consists of pseudoreal data of
68 EVs generated from recorded data of 16 EVs by Nissan
EV telematics. The dataset contains arrival time, SOC at the
beginning of the session, and planned departure time from EV
users. The dataset has a time range of 24 hours with a time
resolution of one second. The EV models and relative battery
capacity are added by the authors. They represent a sample of
the most common EVs found in the DTU university campus.

C. Simulation model and assumptions

The model is created in Matlab/Simulink. The simulation
runs with a variable time step, setting the minimum time
step at 0.1 s. More information about the model’s signal
discretization and communication delays can be found in [13].
Figure 3 shows the layout of the grid to which the system is
applied. The system architecture controls four parking lots,
two connected to Kastelbakken feeder and two connected to
Rytterknægten feeder. The parking lots connected to Kastel-
bakken feeder house 8 and 32 EV plugs, respectively. The ones
connected to the Rytterknægten feeder house 16 and 12 EV
plugs, respectively. Each of the chargers in the parking lots
is equipped with type-2 plugs. Each charger has two plugs,
but can simultaneously charge only one car. Each plug can
support a maximum current of 16 A (11 kW charging three-
phase or 3.68 kW if charging single-phase). Each charger
contains a switch, deployed to charge alternately both cars
plugged according to a schedule decided automatically by the
system. The schedule prioritizes EVs according to two criteria:
the �rst is the SOC inputted by the user at the beginning of
the charging session; the second is how much energy the EV
charged during the current session. The priority lowers linearly
as the SOC and energy charged increase. When two EVs on
the same charger reach the same priority, the switch start
giving power to the idle EV. One charging window lasts circa
5 kWh, but it varies marginally according to SOC and battery
capacity. The VA continuously keeps track of the priority order
of the cars in order to gradually disconnect the cars with the
lowest priorities as the power allowance decreases. In case
the feeder reaches a loading of 80% or higher all the EVs
of the parking lot are disconnected. The EV models contain
a simpli�ed battery model and AC-DC converter ef�ciency
which decreases linearly from 90% at full charge (11 kW for
three-phase charging or 3.68 kW for single-phase charging) to
80% at minimum charge (4.15 kW for three-phase charging
or 1.38 kW for single-phase charging) [17].

Table I contains the maximum power capacities for all
parking lots in both constrained and unconstrained scenarios.
Notice that in the unconstrained scenario, the system does not
perform any power curtailment, and the maximum capacity of
each parking lot is given by the power limit of the chargers,
which is 11 kW. In the constrained charging scenario, the
chargers adjust the power consumption to the power allowance
with a PI controller. The CA instead adjusts the power set
points given to all parking lot with a droop controller based
on the percentage loading of the feeders.

Parking lot Unconstrained scenario Constrained scenario
1 (8 EVs) 44 kW 21 kW
2 (32 EVs) 176 kW 86 kW
3 (16 EVs) 88 kW 43 kW
4 (12 EVs) 66 kW 32 kW

TABLE I
MAXIMUM POWER FOR EACH PARKING LOT IN EACH SCENARIO
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Fig. 3. Simpli�ed grid layout for the system

III. RESULTS

Figure 4 provides the overall results of the simulation for
parking lot 2, taken as example, during the 24 hours period.
The top graph illustrates a time history of the charging power
in the constrained charging and unconstrained charging cases
for comparison. The graph shows in blue the dynamic power
reference adjusting to the wind power and to the feeders
congestion. The dynamic power reference acts as an upper
boundary for the smart charging power. The power reference
is controlled by the CA based on the available wind power and
on transformer congestion. As expected, in both constrained
and unconstrained charging scenarios, the power demand of
the parking lot is lower then the power reference when there
are not enough EVs available to use such power. The bottom
graph shows the number of EVs connected and charging in
the constrained charging scenario. When the power reference
becomes too low and not all the connected EVs can charge
at least with their minimum power, the EVs with the lowest
priorities get gradually disconnected. From 0 to 6 am, the
feeder is not loaded, therefore, the power reference equals
the fuse limit. Later in the day, when the feeder becomes
overloaded, the power reference is reduced, and eventually
the parking lots are disconnected for safety reasons. Towards
the end of the day, because of EVs leaving the parking lot, the
power allowed cannot be used. As a consequence, the virtual
power plant either distributes the power to other parking lots
or exports it to the grid.

Figure 5 shows the distribution of energy charged for all the
EVs based on their initial SOC. The graph describes that for
both single-phase and three-phase EVs the system prioritizes
the EVs with lower SOC and delays the charging of EVs
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with high initial SOC. In detail, single-phase EVs with an
initial SOC lower than 60% manage to charge at least 10.7
kWh. This means that in the current conditions the 4 parking
lots guarantee a driving autonomy of 53.5 km, assuming that
the EVs can drive 5 km per kWh. With the current logic,
the system charges three-phase EVs roughly three times more

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 28,2023 at 15:51:40 UTC from IEEE Xplore.  Restrictions apply. 



than single-phase EVs. This ratio could be decreased in order
to guarantee a higher guaranteed energy charged to all EVs.
However, this could potentially create discontent in three-
phase EV users of the parking lot.
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Figure 6 describes the in�uence of parking lots on feeders
and the power output of the virtual power plant during the
simulated 24 hours. Both feeders (top and middle graphs)
reach high-level loading (above 90%) in the unconstrained
charging scenario. In the constrained charging scenario, the
control architecture manages to maintain the feeder loading
below the designed threshold of 80%. Notice that there are
some peaks above 80%, however those peaks are present in
the original data and are not due to the in�uence of the parking
lots. The bottom graph shows the net power production of the
virtual power plant, which is de�ned as:

Pnet = Pwind � Pcharging (1)

Where Pwind is the power produced by the wind farm and
Pcharging is the power used by the four parking lots. The
bottom graph shows also a �tting curve in order to visualize
the average net power without the wind power �uctuation.
In the current layout, the wind power produced is almost
always higher than the power used by the parking lots. As
a consequence, the virtual power plant is always exporting
power to the grid. Table II presents the evaluation indices
for the virtual power plant in the constrained EV charging
scenario. The total energy produced during the day is 4.36
MWh of which 1.34 MWh is used to charge the EVs. The
remaining 3.07 MWh is exported to the grid. A very small
amount of energy (92 kWh) is imported from the grid to charge
when the wind production is very low and the parking lots are
full. Lastly, the average root-mean-square error provides an
assessment of the wind power variability mitigation performed
by the parking lots.
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Index Value
Total energy produced [MWh] 4.36

Total energy used [MWh] 1.34
Energy imported [MWh] 0.092
Energy exported [MWh] 3.07

Average RMSE wind power production 33.22
Average RMSE VPP 33.05

TABLE II
INDEXES OF EVALUATION FOR THE VIRTUAL POWER PLANT

There are two values of average root-mean square error
(RMSE): the �rst represents the average oscillation of the
wind power production; the second represents the average
oscillation of the net VPP power. In the �rst case, the error
is calculated between the �tting curve of the wind power
production and the actual wind power production. In the
second case, the error is calculated between the �tting curve
of the net VPP power (showed in Fig. 6) and the actual net
VPP power exported. Both values of RMSE are then aver-
aged over the 24 hours. The two values are only marginally
different, and therefore show an insuf�cient capacity of the
system to mitigate wind power variability in the simulated
conditions. The reason for such behavior might lie in the
relative dimensions of the components of the system: wind
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farm, parking lots and feeders. In detail, on the one hand,
the wind power capacity might be too large compared to the
capacity of the parking lot. On the other hand, the high loading
of the feeders is the main driver of the power adjustments
of the parking lot during peak hours. Further investigation is
needed to investigate the capacity of the system to perform
wind power variability mitigation.

IV. CONCLUSION AND FUTURE WORK

This paper illustrates the performances of an autonomous
distributed control for coordinating the charge of four parking
lots as part of a virtual power plant. The virtual power plant
consists of a wind farm and four parking lots located in
different parts of the grid and connected to two different
feeders. The system is investigated via a 24-hour simulation
including input data of a wind park, loading data of two
feeders, and user behaviour from 68 EVs. Two scenarios are
compared: unconstrained charging and constrained charging.
In the �rst scenario, the EVs always charge at their maximum
power. In the second scenario, the architecture controls the
parking lots demand with the following scopes: maximization
of the wind power usage to charge the EVs; minimization of
feeders overloading; minimization of energy imported from
the grid; assurance of suf�cient charging ful�llment; wind
power variability mitigation. In the unconstrained charging
scenario, the feeders loading reached peaks of 95%, which
in a real case scenario would remove any safety margin used
to handle sudden spikes or changes in the demand. In the
constrained charging scenario, the control architecture kept
the loading of both feeders under the requested value of 80%,
by reducing the power allowance given to the parking lots
during peak demand. On the local level, the control logic
prioritized EVs with lower SOC and disconnected the EVs
with lower priority when the feeders were highly loaded. In
the simulated conditions, the guaranteed amount of energy for
EVs with SOC lower than 60% was 10.7 kWh. Therefore,
assuming a driving consumption of 1 kWh per 5 km, the
4 parking lots guaranteed a driving autonomy of 53.5 km
after the charging session. The remaining power that could
not be allocated to the EVs, either due to ful�llment of their
charging requirements or due to lack of EV availability, was
injected to the grid. Regarding the performances of the virtual
power plant, the total energy produced during the day was
4.36 MWh of which 1.34 MWh was used for charging the
EVs. The remaining 3.07 MWh was exported to the grid. A
very small amount of energy (92 kWh) was imported from the
grid for charging. The system showed only marginal capacity
to mitigate wind power production variability in the simulated
conditions. Some hypothetical reasons were formulated: for
example the power capacity of the parking lots compared to
the wind farm power capacity; the high loading of the feeders
being a major constraint to the power allowance trends of the
parking lots. In the future, wind power variability mitigation
studies are going to be addressed. Furthermore, different VPP
layouts and dimensions will be investigated in order to �nd
the optimal ratio between EV storage and power production.

ACKNOWLEDGMENT

The work in this paper is supported by the research projects
ACDC (EUDP grant number: 64019-0541) and FUSE (EUDP
grant number: 64020-1092). Website: www.acdc-bornholm.eu
and www.fuse-project.dk

REFERENCES

[1] H. Kondziella and T. Bruckner, �Flexibility requirements of renewable
energy based electricity systems - A review of research results and
methodologies,� Renewable and Sustainable Energy Reviews, vol. 53,
pp. 10�22, 2016.

[2] L. Calearo, A. Thingvad, K. Suzuki, and M. Marinelli, �Grid loading
due to ev charging pro�les based on pseudo-real driving pattern and user
behavior,� IEEE Transactions on Transportation Electri�cation, vol. 5,
2019.

[3] M. Resch, J. Buhler, B. Schachler, and A. Sumper, �Techno-Economic
Assessment of Flexibility Options Versus Grid Expansion in Distribution
Grids,� IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 3830�
3839, 2021.

[4] �Innovation outlook smart charging for electric vehicles summary for
policy makers,� tech. rep., IRENA, 2019.

[5] C. Crozier, T. Morstyn, and M. McCulloch, �The opportunity for smart
charging to mitigate the impact of electric vehicles on transmission and
distribution systems,� Applied Energy, vol. 268, no. March, p. 114973,
2020.

[6] F. G. Venegas, M. Petit, and Y. Perez, �Active integration of electric
vehicles into distribution grids: Barriers and frameworks for �exibility
services,� Renewable and Sustainable Energy Reviews, vol. 145, 2021.

[7] S. Striani, K. Sevdari, L. Calearo, P. Andersen, and M. Marinelli,
�Barriers and solutions for evs integration in the distribution grid,� 2021
56th International Universities Power Engineering Conference (UPEC),
2021.

[8] M. B. Anwar, M. Muratori, P. Jadun, E. Hale, B. Bush, P. Denholm,
O. Ma, and K. Podkaminer, �Assessing the value of electric vehicle
managed charging: a review of methodologies and results,� Energy &
Environmental Science, 2022.

[9] H. Saboori, M. Mohammadi, and R. Taghe, �Virtual power plant (vpp),
de�nition, concept, components and types,� pp. 1�4, 2011.

[10] N. Kraftwerke, �Virtual power plant: How to network distributed energy
resources.� https://www.next-kraftwerke.com/vpp/virtual-power-plant.
Accessed 16 December 2021.

[11] C. Binding, D. Gantenbein, B. Jansen, O. Sundstr¤om, P. B. Andersen,
F. Marra, B. Poulsen, and C. Træholt, �Electric vehicle �eet integration
in the Danish EDISON project - A virtual power plant on the island of
Bornholm,� IEEE PES General Meeting, PES 2010, 2010.

[12] K. Sevdari, L. Calearo, P. B. Andersen, and M. Marinelli, �Ancillary
services and electric vehicles: an overview from charging clusters and
chargers technology perspectives,� Renewable and Sustainable Energy
Reviews.

[13] K. Sevdari, L. Calearo, S. Striani, P. B. Andersen, M. Marinelli,
and L. Rłnnow, �Autonomously distributed control of electric vehicle
chargers for grid services,� in 2021 IEEE PES Innovative Smart Grid
Technologies Europe (ISGT Europe), pp. 1�5, IEEE, 2021.

[14] S. Striani, K. Sevdari, Y. Kobayashi, K. Suzuki, P. B. Andersen, and
M. Marinelli, �Autonomously distributed control of ev parking lot
management for optimal grid integration,� International Conference on
Renewable Energies and Smart Technologies (IC-REST), 2022, under-
review.

[15] X. Han, K. Heussen, O. Gehrke, H. W. Bindner, and B. Kroposki,
�Taxonomy for evaluation of distributed control strategies for distributed
energy resources,� IEEE Transactions on Smart Grid, vol. 9, pp. 5185�
5195, 9 2018.

[16] M. Ledro, L. Calearo, J. M. Zepter, T. Gabderakhmanova, and
M. Marinelli, �In�uence of realistic ev �eet response with power and
energy controllers in an ev-wind virtual power plant,� Sustainable
Energy, Grids and Networks, vol. 31, p. 100704, 2022.

[17] L. Calearo, C. Ziras, K. Sevdari, and M. Marinelli, �Comparison of
smart charging and battery energy storage system for a pv prosumer
with an ev,� in 2021 IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe), pp. 1�6, IEEE, 2021.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 28,2023 at 15:51:40 UTC from IEEE Xplore.  Restrictions apply. 



PAPER [P5]

Laboratory Validation of Electric Vehicle Smart
Charging Strategies

Authors:

Anna Malkova, Simone Striani, Jan Martin Zepter, Mattia Marinelli, Lisa Calearo

Published in:

Proceedings of the 2023 58th International Universities Power Engineering Con-
ference (UPEC)

DOI:

10.1109/upec57427.2023.10294673.

https://doi.org/10.1109/upec57427.2023.10294673


130



Laboratory Validation of Electric Vehicle Smart
Charging Strategies

Anna Malkova, Simone Striani,
Jan Martin Zepter, Mattia Marinelli

Department of Wind and Energy Systems
Technical University of Denmark

Roskilde, Denmark
fanmalk; sistri; jmwze; matmg@dtu.dk

Lisa Calearo
Ramboll Danmark A/S

Copenhagen S, Denmark
licl@ramboll.com

Abstract�Electric vehicles (EVs) are the connecting point of
the transportation and electricity sectors and are an important
milestone towards the decarbonization goal. Smart charging of
EVs is considered a key enabler for the broad deployment of
EVs. Acting as �exible demand, smart charging releases stress
on the grid infrastructure and enables potential �exibility to
the renewable energy sources (RES), thereby enhancing the
power system. This paper presents results from experimental
tests with two smart charger prototypes developed within the
ACDC project. The autonomously and distributed controlled
chargers connecting four EVs are integrated into the Energy
System Integration Lab (SYSLAB) of the Technical University
of Denmark. The conducted tests aim at different �exibility
services, namely power sharing, RES following, and transformer
protection. The developed chargers ful�l the assigned tasks and
are able to provide ancillary services to the grid and RES.

Index Terms�Smart chargers, Electric vehicles, Flexibility,
Renewable energy sources

I. INTRODUCTION

The energy transition from fossil fuels is one of the main
tasks addressed by governments to reach the CO2 drawdown.
Yet, several tasks need to be solved for achieving a smooth
transition, such as the extended deployment of renewable en-
ergy sources (RES), electri�cation of the transport and heat ap-
plications, and ef�cient use of energy [1]. The deployment of
both large-scale and domestic RES increases the vulnerability
of the network due to their intermittent generation. Increased
controllability and predictability of RES and more �exible
participation in the electricity market can be achieved using
energy storage technologies [2] such as stationary battery
storage, electric vehicles (EVs) batteries and others.

At the same time, according to transport electri�cation
trends by 2030, the number of EVs will also grow and reach
200 million globally [3] and 0.8 million in Denmark [4] in
particular. As the number of EVs increases, their uncontrolled
charging impact on the energy infrastructure will also in-
crease. This could create challenges, e.g., network congestion,
generation capacity expansion, and reduction of transformers’
lifespan, among others [5]. Nevertheless, EVs have a potential
of �exibility reserve for the power system with a suf�ciently
large battery capacity (global average of EV battery capacity

is 65.8 kWh [6]) and high availability to charge (e.g. more
than 90% of daytime in Denmark [7]). Ref. [8] suggests that
by aggregating EVs and deploying smart charging strategies,
it will be possible to limit, or even avoid, the aforementioned
problems in the electrical grid, as well as reduce investment in
essential stationary storage systems. Smart charging is de�ned
in [9] as an adaptation of EVs charging process to meet power
systems conditions and EV users’ needs. Smart charging can
be implemented with respect to different objectives (technical,
�nancial), control approaches (centralized, distributed, decen-
tralized) and scaling factors (residential buildings, parking
lots, regional level) [10]. According to [11] ancillary services
for the grid provided by smart charging can be divided into
frequency and �exibility services. Further, the authors in [12]
distinguish local �exibility services between front-of-the-meter
(FTM) and behind-the-meter (BTM). FTM services, such as
prevention of transformer and load peaks congestion, voltage
control, loss reduction, and power quality enhancement, are
dispatched by the distribution system operator for grid needs.
In turn, BTM services aim to reduce the energy bill using
price signals and increasing the rate of self-consumption (if
distributed RES are applied) while also serving as a backup
power battery.

Despite extensive research on the modelling of smart charg-
ing strategies, their experimental implementation and testing in
real systems are still limited and only little literature exists on
this topic. Frendo et al. [13], for instance, developed a smart
charging algorithm for EVs parked at a workplace, which was
validated through a one-year �eld test. However, the algorithm
was designed solely with the objective of improving customer
satisfaction and did not take into account grid services or
RES. On the other hand, in [14] a centralized smart charging
approach was explored, aiming to provide multiple ancillary
services, but the study was limited to a single EV and did not
consider any RES integration.

This paper presents the results of a �eld demonstration of
two chargers providing a broader spectrum of smart charging
strategies. The demonstration has been performed in the En-
ergy System Integration Lab (SYSLAB) located in DTU Risł
Campus, Denmark. The smart charging logic implementation
is based on previous models described in [15] and [16]. The979-8-3503-1683-4/ 23/$31.00 '2023 IEEE



smart charging strategy embedded in the chargers is developed
on a rule-based method and considers a distributed approach
(according to the classi�cation of the authors in [17]) with the
combination of both the FTM and BTM services. The goal of
the ACDC project is to implement smart distributed charging
control in workplace parking lots. Four control objectives are
demonstrated in this article:

� Power sharing
� RES following
� Transformer protection (TRAFO)
� Cloud aggregator communication failure
All four modes are working together, reacting to the dy-

namic conditions and requirements of the system. However,
during the demonstration, the tests have been conducted on
the individual modes to explicitly showcase the performances
of each mode separately.

The rest of the paper is structured as follows. Section II
describes the smart charging control architecture description;
Section III presents the actual electrical experimental setup;
Section IV speci�es the system limitations; Section V de-
scribes the control objectives in a more detailed way; Sec-
tion VI introduces the results of the smart charging experi-
ments; and Section VII provides the conclusions and future
work prospects.

II. CONTROL ARCHITECTURE DESCRIPTION

In this section, the communication and control architectures
of the laboratory setup are presented.

A. Communication architecture
The communication scheme can be observed in Figure 1.

Initial information necessary for smart charging implementa-
tion includes wind-produced power, PV-produced power, trans-
former loading, fuse limit at the point of the charging cluster
connection, and EV connection status. This information is sent
every 1 s to the central cloud server, which is implemented
through Amazon Web Services (AWS). Subsequently, AWS
broadcasts such information to the virtual aggregators (VA) of
the chargers. The VAs are the controllers of each plug. When
the �rst EV is connected the corresponding VA becomes the
primary VA and dispatches power for all connected EVs (on
Figure 1 the EV1 is connected �rst and hence VA1 becomes
the primary VA). The AWS also stores the latest status of each
VA: EV connection status, current, and charging phases.

Fig. 1: Communication scheme

Information from the AWS to the charger and vice versa is
transmitted via mobile Internet using SIM cards placed on
the chargers’ control boards. The information �ows in the
following order:

� Input information from measurement boards and chargers
arrives at the AWS cloud server.

� The AWS broadcasts this information to the primary VA.
� Primary VA processes the received information and sends

control outputs to the AWS.
� The AWS then dispatches those signals to the other VAs.
If there is a fault event and the primary VA goes of�ine, the

next available and operating VA (i.e., an EV is connected) will
take on its role (shown through dashed arrows in Figure 1).

B. Control architecture
The control scheme (Figure 2) shows the control loop and

the key roles of the actors in the system. The responsibility
of the AWS is shown in light green and the VAs in blue.
The primary VA (VA1) receives the system data and EVs
connection status from AWS, executes the power allocation
and produces power references for each plug. The main logic
behind power allocation is to provide maximum available
power while sharing it equally between connected cars and fol-
lowing the designated mode of operation. The charging power
is measured at the chargers’ connection points and transmitted
via the AWS to the VA1. Then these two P meas go through
the processing inside the VA1 and transform into measure-
ments of each plug. The transformation happens according to
the EVs status and the power sharing principle. For example,
if all four EVs are connected then the measurements from the
chargers P measch1;ch2 convert into four plug measurements:
P meas1;2;3;4 = [ P measch1

2 ; P measch1
2 ; P measch2

2 ; P measch2
2 ].

If only one EV is connected to a charger, the respec-
tive P measch is allocated to that EV. After summation of
P ref1;2;3;4 and P meas1;2;3;4 in VA1, the four errors are
produced. All errors except the error of VA1 are redirected
to other VAs through AWS. Error 1 of the VA1 is transferred
internally. Then the PI controller inside each VA reacts to the
received error and controls the power �ow to the plug.

Fig. 2: Control scheme

III. EXPERIMENTAL SETUP

The experimental microgrid is predominantly powered by
RES connected to an external grid through a 200 kVA trans-
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former. The system is composed of the following components
(from left to right in Figure 3): external grid connection,
transformer, 5 kW PV system, 20 kW emulated PV, 10 kW
Aircon wind turbine, controllable load, PCC with two three-
phase chargers (C1 and C2). Each charger has 2 plugs: C1 has
Plug 1 (P1) and Plug 2 (P2); C2 has Plug 3 (P3) and Plug 4
(P4).

External grid

Point of cluster
connection 

LEAF 1

LEAF 2

ZOE 1

ZOE 2

Chargers

Plugs

C1

P1

P2

Plim= 22 kW

C2

P3

P4

Fuse limit = 36.6 kW

Aircon
wind turbine

Pnom = 10 kW
PV 

Pnom = 5 kW

Emulated PV 
Pnom = 20 kW

Transformer 
Snom = 200 kVA

Controllable load

Fig. 3: Electrical system setup

The emulated PV is established using an external trans-
former to the system and a controllable back-to-back inverter.
This is used to reproduce the PV power production in case
RES during the testing day are absent or very limited. The
controllable load simulates varying grid loading to test the
smart charging logic’s capabilities under varying conditions.

The maximum charging power is 22 kW (32 A) per charger.
This means that if two vehicles are connected to the same
charger, each EV can charge with maximum 11 kW. The fuse
limit at the PCC is set to 36.6 kW (53 A). This means that if
four cars are connected to the chargers (two per charger) the
total maximum charging power is 36.6 kW and not 44 kW.

During the experiments, four electric vehicles (EVs) are
considered - one for each plug of the chargers. To create
more variability, two Renault ZOE with three-phase charging
capability and two Nissan LEAF with single-phase charging
capability are chosen. The allocation of the EVs to their
respective plugs is shown in Figure 3 and their charging
characteristics are displayed in Table I.

TABLE I: EVs charging parameters
Parameter / EV Renault ZOE Nissan LEAF

Battery
capacity, kWh 41 62

Charging
power capacity, kW 22 (7.36 per phase) 7.36

Maximum
charging current, A 32 32

Number of possible
phases for charging 3 1

IV. LIMITATIONS OF THE SETUP

Some features of the current implementation of chargers
require further development and thereby pose limitations on
the demonstration installation.

A. Ghost phases limitation:
Due to the absence of an internal electrical meter, the charg-

ers do not yet recognize single-phase cars and therefore treat

all connected cars as three-phase ones. Indeed, the chargers are
still prototypes and their PI controllers dispatch the set point
current to all three phases of the plugs, even if the connected
car is one phase. The power consumed by a single-phase car
is only one-third of the power set point of the charger.

B. Reactive power limitation:

The actual control signal is a current, not an active power.
The part of the current goes to the system elements’ mag-
netization, and therefore to the reactive power, which is not
measurable yet. The choice to utilize active power in this
article is based on its convenience regarding comprehension
and visualization.

Also, in cases where the setpoint current for three-phase
ZOE decreases, the share of reactive power in it increases. As a
result, the decrease in the current setpoint is not proportionate
to the decrease in active power. Therefore, in demonstration
modes with small or zero setpoints, the single-phase LEAFs
were used, where this issue does not appear.

V. DEFINITION OF CONTROL OBJECTIVES

Smart charging can be designed to achieve various control
objectives aimed at enhancing grid stability, lowering charging
expenses, facilitating renewable energy integration, extending
battery lifespan, and improving user convenience. Those ob-
jectives can be applied independently or in combination as
long as they do not con�ict with each other. In the following
sections, the implemented control objectives are described
by providing �rst the concept and then the demonstration
methodology.

A. Power sharing mode

Power sharing is the ability of smart chargers to distribute
limited available power (station connection limit, fuse limit or
other) proportionally between the outlets and chargers (if there
are several) and thus between the EVs at the charging station.

Maximizing the number of EVs charging at a single con-
nection point is crucial. Charging station operators can bene�t
from charging more EVs within the available power limit to
reduce the need for grid expansion capital expenditure, prolong
the lifespan of existing infrastructure, and increase revenue
by accommodating more customers. Although power sharing
results in a lower charging power per EV, this may not pose
an issue during extended EV connection periods, such as at
workplace parking lots or overnight at homes. In this way, it
can be ensured that in those hours all EVs will be charged
with the desired energy even with lower charging power.

Both chargers and all four cars are used to demonstrate
power sharing. Firstly, ZOE 1 is connected to C1, then ZOE 2
to C2 to show power sharing between chargers. Afterwards,
the remaining LEAF 1 and LEAF 2 are sequentially connected
to C1 and C2 allowing observation of the chargers’ ability to
distribute power within one charger and keep power sharing
between chargers.
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B. RES following mode

This test demonstrates the architecture’s capability to match
charging power according to RES power production.

EV charging coordinated with local RES production offers
several advantages depending on the intended goals and the
power supplied by RES such as increased self-suf�ciency of
the system with local RES, mitigation of RES variability, and
avoidance of RES curtailment, among others.

In order to match EV charging power with the RES
production test two EVs were used (only ZOEs due to the
Ghost phases limitation), and each of them was connected
to a separate charger. Moreover, an additional emulated PV
production of 20 kW was added due to weather conditions
affecting real PV panel capacity. This in turn improved the
demonstration proof of concept as created more variable RES
output power which the chargers had to adjust to.

C. TRAFO protection mode

The TRAFO protection mode is aiming at adjusting the
charging power of the chargers to avoid transformer overload-
ing.

The transformer is usually considered a bottleneck in future
smart grids, where the electricity demand and the penetration
of renewables are forecasted to increase. The increase in power
�owing and production volatility could in the future overload
the transformers, resulting in damages, shorter life spans and
overall increased costs.

During the TRAFO protection test, the transformer limit
was set manually using the AWS cloud system and two EVs
connected to both chargers were used (only LEAFs due to the
Reactive power limitation). Then local system consumption
was increased applying the auxiliary load of the laboratory to
see the system reaction to this demand spike.

D. Cloud aggregator (AWS) communication failure mode

The last test was performed to investigate the chargers’
capability to remain operational in case of communication loss
with the cloud aggregator.

The ability to remain up and running despite various disrup-
tions (cyber-attacks, equipment failure, or just a short-term loss
of communication) is essential for maintaining the stability of
the power system. After all, when charging stops, an imbalance
will be created in the network, which will increase the risk
of even greater consequences, such as protection tripping,
cascade failure, and over-voltages, among others.

In this test, only one EV (LEAF 1) connected to C1 was
used. To reproduce the communication failure simulation the
SIM card with mobile 3G Internet was physically removed.

VI. RESULTS

In this section, the results of the demonstration experiment
are presented in chronological order. In total, the tests ran for
55 minutes, which is displayed on the x-axis of the results
graphs in seconds.

A. Power sharing test
The test performance can be seen from Figure 4 with the

following test description. A colour difference on the graph
corresponds to different chargers (blue - C1; red - C2) and a
line style - to car brand (solid - ZOE; dashed - LEAF).
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Fig. 4: Power sharing test: active power of EVs

The �rst EV � three-phase Renault ZOE 1 - plugged to C1
at 440 s and started charging with three phases with almost
maximum power of 21 kW. At 560 s a second EV � ZOE 2
- is connected to C2 and the ZOE 1 started to decrease its
consumption to give space for power to the second EV to
avoid overshooting the PCC limit. 10 s later (570 s) both cars
were charging at the same power of 17 kW which is almost the
Pmax of PCC � they are sharing the limited power between
chargers.

At 690 s, a third EV � Nissan LEAF 1 capable of charging
with single-phase - is connected to C1, in response, both ZOEs
decreased their consumption, and after 5 s LEAF 1 started
charging 4 kW on one phase. Then, at 750 s the fourth EV
� LEAF 2 connected and started to charge. It is clear that the
cars were not charging with their maximum power. This is
due to the ghost phases limitation. If the charging power of
single-phase cars is multiplied by 3 the charging power of all
EVs is actually close to the Pmax limit of PCC (36.6 kW):

PEV s = 3 kW � 3 phases � 2 EVs (LEAFs)+
+8 kW � 2 EVs (ZOEs) = 34 kW

The output power is less than the maximum due to the
reactive power limitation.

Moreover, the power consumption of each charger is not
greater than 17 kW � the chargers limit is also respected. With
this knowledge, there is a clear observation of power sharing
between chargers’ plugs and between chargers themselves.

B. RES following test
A demonstration of the architecture capability to match the

charging power according to RES power production is shown
in Figure 5.

The �rst EV - ZOE 1 is connected to C1 at 1380 s and
started to charge with maximum power. The RES production
is above the Pmax limit of the charger and that is why the
consumption of the EV is constant. The second EV - ZOE 2
is plugged in at 1425 s and started to charge after the power
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Fig. 5: RES following test: total EVs active power and RES
production

sharing procedure with the �rst EV. The charging power of
the EVs follows the RES production with a small time delay
of 5-7 s. A small discrepancy of 1.0-2.5 kW between RES
production and EVs’ total power consumption is again due
to reactive power consumption, which increases as the power
curtailment of the car increases. At 1550 s there is a steep
decline in RES power production from 25 to 14 kW. The
EVs reacted to that change with the above-mentioned delay
within which the system was importing power from the grid
to support the power balance. At 1625 s RES power again
declined to 4 kW, which is now not enough to charge EVs with
minimum power. So, both cars have reduced their consumption
to a minimum and remained in a state of waiting for better
conditions of RES production. The time sensitivity of the
charger communication and control was not enough to detect
and follow the RES production spike at 1675 s. At 1960 s the
EVs are disconnected.

C. TRAFO protection test

A demonstration of the capability of the architecture to
adjust its charging power in order to avoid transformer over-
loading is presented in Figure 6.

The transformer loading limit is set to 10 kW. At 2100 s
RES production was shut down and led to an interruption of
power export (no negative values of PT rafo) in Figure 6. The
LEAF 1 is connected and started to charge at around 2200 s. At
2300 s LEAF 2 is connected and since the chargers consider
the EVs to charge with three phases, the �rst LEAF leaves
space for the second diminishing the charging power. Then
they both are charging at 5 kW � sharing power and without
exceeding the established transformer limit.

At 2370 s an external controllable load of 40 kW is con-
nected. The transformer has a power import spike of 50 kW.
After a few seconds, the TRAFO protection mode was de-
ployed: the EVs reacted to the transformer overloading and
stopped charging to mitigate the power congestion (shown in
purple circles in Figure 6).

At 2410 s the external load is disconnected, thus relieving
congestion of the transformer and, with an 8 s delay, the EVs
started to charge again, reaching the transformer limit.
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Fig. 6: Active power of EVs (top plot) and at transformer
(bottom plot) in the TRAFO protection test

D. Cloud aggregator (AWS) communication failure test
In this last demonstration phase, the SIM card from C1 was

removed, in order to demonstrate the capability of the charger
to remain operational in the absence of communication. The
SIM card was responsible for communicating with the cloud
aggregator via mobile Internet. The LEAF 1, still connected
to C1 from the previous test, was charging with 6.5 kW
(Figure 7). After removing the SIM card the LEAF 1 is
charging with the same power, while the charger is waiting
to reconnect.
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Fig. 7: Active power of EVs (top plot) and at transformer
(bottom plot) in the AWS failure test
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In order to show that now the charger does not have
communication, the TRAFO protection mode was repeated.
At 2870 s an external load of 45 kW was connected and
overloaded the transformer by around 40 kW. However, this
time the EV did not react to the transformer overload and did
not decrease its consumption. The EV kept charging at 6.5 kW
until it was plugged out at 3200 s.

Thereby, the charger demonstrated the ability to charge the
EV even in the absence of communication, prioritizing the EV
charging needs.

VII. CONCLUSIONS

This paper describes the experimental performance of two
smart charger prototypes towards several �exibility services.
The experimental system was built in DTU SYSLAB, a grid-
tied microgrid laboratory, for the public demonstration of the
ACDC project. The communication and control architectures
have a distributed approach and are implemented in an AWS
cloud with a 3G mobile Internet connection. The setup con-
sisted of different RES, a grid connecting transformer, an
auxiliary load, and two smart chargers connecting four EVs.
Four smart charging control objectives (modes) are illustrated
in detail: power sharing capability, RES following mode,
TRAFO protection deployment, and cloud aggregator (AWS)
communication failure. In the �rst mode, smart chargers
ef�ciently distribute power among connected cars, consider-
ing both charger-to-charger and plug-to-plug scenarios. They
adjust the charging power of already connected EVs when
another vehicle is plugged in to avoid exceeding the limit.
This solution optimizes the use of existing grid infrastruc-
ture and facilitates greater EV adoption by accommodating
more vehicles. In the second mode, chargers demonstrate
their ability to follow the RES power production, aligning
the EVs’ charging power with the RES curve. When RES
production is insuf�cient, EVs charge at minimal power to
minimize energy import from the grid. This mode offers mul-
tiple bene�ts, including reduced grid feeder load, optimized
RES utilization, and RES variability mitigation. Enhancing
the system architecture’s communication bottlenecks analysis
can further improve response time. The third mode aims
to protect the transformer from overloading. The chargers
react to the exceeded transformer loading limit and stop the
charging. After the overload is removed, they return to normal
operation. The �nal mode showcases chargers’ capability to
remain operational during communication loss by maintaining
the last power set point. This mode enables the system
to handle unforeseen circumstances and maintain consistent
performance. In summary, the experimental tests con�rmed
the viability of coordinated smart charging among multiple
chargers with varied control objectives.

Future work aims to address the setup limitations by in-
stalling an electrical meter in each charging station. This will
enable the distinction between three-phase and single-phase
EVs and the measurement of reactive power to ensure correct
control independent of EV performance. Additionally, the

control logic will be expanded to incorporate user preferences,
prioritization, and charging scheduling.
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Abstract�Distributed load management systems can become
a crucial enabler for the widespread adoption of electric vehicles
(EVs). The present paper experimentally demonstrates a priority-
based scheduling algorithm that enables all chargers of an EV
parking lot to coordinate their charging processes in a distributed
manner. The distributed approach reduces control delays and
maintains consistent management complexity, regardless of the
number of chargers. A system is developed in which each electric
vehicle supply equipment (EVSE) makes local decisions individ-
ually, sharing only their priorities with the other EVSEs of the
cluster. The approach controls the total cluster consumption to a
connection capacity while prioritizing the charging of EVs with
the highest urgency. The scheduling algorithm is implemented
in a real-life charging cluster, and its working principle is
demonstrated through �eld tests. The system successfully shows
the scheduling of two EVs to charge on a shared connection of
9 kW. The common capacity of the cluster showed a utilization
ratio of 0.86 without critically overloading the grid connection.

Index Terms�charging clusters, electric vehicles, experimental
validation, load management, user-centric.

I. INTRODUCTION

The worldwide adoption of electric vehicles (EVs) contin-
ues at an unprecedented rate [1], generating a need for a
robust and futureproof charging infrastructure [2]. Most EV
charging will occur in residential areas and workplaces, where
each cluster has similar user behavior [3]. With no control
of the charging, power consumption will eventually exceed
the installed grid capacity, as the areas have high arrival
coincidence [4]. Accommodating the added loading without
expensive grid reinforcements requires load management, such
as smart charging. On the other hand, user behaviour at
workplaces and homes is also signi�cant as destination charg-
ers [5], where parking time exceeds the necessary charging
time, generating �exibility. An opportunity to perform load
management without compromising the users arises with the
�exibility, allowing time-shifting of the power consumption of
individual EVs.

This paper will address the control of multiple electric
vehicle supply equipment (EVSE) installed in a cluster with
the same point of common coupling (PCC) at the grid con-
nection. This paper introduces a novel distributed schedul-
ing approach, where the charging processes are scheduled
alternatingly in case the available cluster power capacity is

reached. As opposed to common power-sharing approaches,
scheduling promises higher ef�ciencies since the converter
technology in EVs shows increasing ef�ciency for higher
power values [6]. Moreover, the proposed distributed control is
inherently different from common smart charging approaches,
which employ principal/agent [7] or central architectures [8].
While such approaches have been predominantly used in the
past years, they rely on increased data traf�c, are prone to
single-point failure, and may have scaling challenges as EVs
increase rapidly [9]�[11].

The paper presents a fully implemented distributed energy
resource control system where the main contributions are:

� Development of a scalable distributed control architecture
tailored for managing large-scale clusters of EVSEs

� Design and implementation of an EVSE state machine for
scheduling EV charging sessions for improved ef�ciency

� Experimental validation through �eld testing, demonstrat-
ing the effectiveness of the proposed system in dynami-
cally managing EV charging infrastructure

This paper is organised as follows: Section II describes the
generic architecture of communication and decision-making;
Section III presents the implementation of the architecture in
terms of equipment and test procedures; Section IV presents
and discusses the test results; Finally, Section V offers con-
clusions derived from the test, limitations, and future work.

II. METHODOLOGY

This paper uses a distributed decision-making approach
to include the user inputs in the control architecture. The
design of the developed system is �rst described in terms of
the entities and their communications signals and, later, the
speci�c decision-making process done at each EVSE.

A. Control architecture
The developed distributed control architecture is described

in Fig. 1, where two layers of decision-making entities control
the cluster consumption.

A virtual aggregator (VA) is introduced directly into the
EVSE hardware to ensure fast and reliable reactions. Each
VAi (i 2 2 � N ) aggregates information and takes decisions
for EVSEi, serving a maximum of one EV (EVi) at a time.
The primary output of each VA is the maximum power
consumption reference sent to the connected EV, Pi;ref .979-8-3503-9042-1/24/$31.00 '2024 IEEE
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Fig. 1: Architecture of the control. Each VA controls a single
EVSE charging outlet based on the data gathered in the shared
local database.

To enable collaborative decision-making, the VAs require
data inputs from other entities and horizontal communication
among the VAs of the cluster. By realizing that �exibility
arises from a gap between the user’s needs and the individual
power capacity (Pi;max), we introduce the novel approach.
The architecture, therefore, relies on user requests in the form
of energy (Ei;desired) and expected departure time (ti;dep)
communicated directly to VAi at the start of a session. The
control assumes that the user request is negotiated with
a hereby dependent variable energy price. The dependency
should re�ect possible congestions at the PCC or EVSE level
to ensure that the cluster can meet the demand of all users [12].
Based on the user inputs, the VA continuously computes the
concealed priority to charge �c:

�c =
Ei;desired � Ei;charged

(ti;dep � tnow) � Pi;max
2 [0; 1) (1)

�c is normalized with (Pi;max), providing higher priority if
power capabilities are low. This value is shared with the other
VAs as the broadcasted �i for each VAi to facilitate horizontal
communication:

�i =

8
><

>:

1 when initiating charging
�c when steadily charging
0 otherwise

(2)

Three distinct values of � bear signi�cance as information
for all VAs of the cluster.

� � = 1 when a VA needs to initiate charging, requesting
other VAs to allocate capacity and avoiding PCC over-
loading.

� �m the lowest non-zero � in the cluster. �m is thus
the priority marginally justifying charging during PCC
congestions.

� � = 0 when a VA has no urge to participate in consuming
power, either as no EV needs power or the PCC is
congested, and it’s �c < �m.

Further inputs of PCC reference and measured power are
necessary for the VA. The measurement of power Ppcc;meas
is local and broadcasted through the shared database to the
VAs. The Cloud Aggregator (CA) is the higher level of
decision-making, taking decisions based on outside signals,
and provides the cluster reference power Ppcc;ref , which is
�xed at the cluster limit for this paper.

B. State machine of virtual aggregator
Based on the data inputs outlined for the architecture and

speci�c local measurements at the charger, each VA will transit
through the state machine in Fig. 2, where the following
section will reference the states by their number as fxg.

Each VA will transit from Idle f0g to the Starting point
f1g whenever a user has provided the user inputs for an
already connected EV. At this point, it will evaluate whether
the cluster’s current state allows for entry, in which case it will
proceed to the initiation sequence f4-6g. Otherwise, it will
transit to the Queue f2-3g where it will wait for a prede�ned
time interval twait after �c has increased above �m. In the
initiation sequence, the VA awaits a drop in the PCC power
measurements f4g before it allows charging with the minimum
power f5g and increases steadily from there f6g. When the
single EV’s constant consumption is reached, it will steadily
charge f7-8g. When a VA already charging f7-8g �nds another
VA initiating f4-6g with � = 1, it will make space f9-10g.
Only the marginally charging VA with �m will be in f10g,
generating the necessary space for the entering VA. While
lowering power consumption, it will continuously evaluate if
the power level is considered inef�cient Pi;ref < Pi;max

2 , in
which case it will be queuing itself.

For all the states where charging occurs, the charging will
naturally arrive at Session ended f11g whenever the user’s
desired energy Edesired is reached.

The state of the VA is the primary factor for de�ning
the power reference Pi;ref . For the states where charging
is not allowed f0-4g and f11g Pi;ref = 0. The charging
will always initiate in f5g with minimum power Pmin and
gradually increase as more power becomes available in the
PCC f6g. In the steady control states, the VAs will either
singlehandedly f8g or as a function of its relative share of �
f7g perform PI-control of the Ppcc;meas towards Ppcc;ref for
the most congested of the three phases.

While making space as the marginal consumer f8g the
control setpoint will be with a margin of Pmin towards
Ppcc;ref , while those in f9g will keep Pi;ref constant.

III. CASE STUDY

The control architecture described above is tested in a real-
life application with EVs and the European AC charging
protocol for communication with the EV. The equipment used
and test procedure will now be described before the results of
the tests are discussed.
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Fig. 2: State machine for the VAs. Subscript i refers to the speci�c VAi, and j evaluates all VAs of the cluster. Ppcc;e =
Ppcc;ref � Ppcc;meas.

A. Laboratory equipment

A fully distributed real-time power control loop has been
implemented where measurements, decisions and actuation
have been made with physically distinct nodes according to
Fig. 1.

The chargers, developed for the ACDC project [13], utilize
the IEC 62196 Type 2 charging protocol described in IEC
61851-1:2019 [14], and have a 32 A 5-cord connection thus a
maximum of 7.3 kW on each three phases. The control range
of the charger to each EV is lower bound by the protocol to
Pmin = 1:38kW and upper bound by equally sharing its grid
connection capacity of 7:3

2plugs = 3:66kW per plug per phase.
Each EVSE is externally controlled with a single datapoint
of allowed power (Pi;ref ) [W] per phase, which the EVSE
relays to the EV through the type 2 protocol pilot signal. When
using this hardware and protocol, the reference is limited to
Pi;ref 2 f0g [ [1:38; 3:66]kW .

Connected to the chargers are two Renault Zoes, each
eqipped with a 22 kW onboard charger and a 41 kW h battery.

The chargers connect to the main grid through the PCC
equipped with a smart meter (DEIF Multi-instrument MIC-
2 MKII) publishing the power consumption (Ppcc;meas) in
1-second intervals to the MQTT broker energydata.dk. A
separate script requests the data of the MQTT broker, which is
both logged and pushed to the local database. The local control
database is implemented with Whiteboard, a custom-made
local server accessible by all system entities. This database
contains parameter and value pair instances for all the inputs
of the VAs.

To implement the novel algorithms of the distributed con-

trol, the controller algorithms (VA and CA) are deployed on
three separate beaglebonefi black industrial microcontrollers.
The controllers have a wired ethernet connection to obtain
outside data and communicate Pi;ref setpoints to chargers and
�i to the local control database for the other VAs. The CA and
VA log the current state of all variables internally at the end
of each code scan.

To enable user interaction, the chargers have a publicly
available website. The website allows users to enter identi-
�cation and session-speci�c data: name, EV type, plug ID,
requested energy (Ei;desired) and time of departure (ti;dep).
The website stores the data in a database and makes the session
data of the last entry for each plug available on the local
control database.

B. Test procedure
A test is set up to demonstrate the scheduling of two

EVs. The test was part of the live demonstration of the
EV4EU [15] and ACDC [13], [16] projects in Risł September
2023 showcasing multiple features.

To demonstrate the scheduling, the CA broadcasts a constant
Ppcc;ref = 9 kW, as this enables a single EV to occupy the
total PCC capacity. During the demonstration, the queuing
time of the VA was set as twait = 30 s. This design parameter
was set to demonstrate the switching functionality and should
be considered more prolonged for actual implementations to
avoid too frequent switches. The EVs are connected with an
initial state of charge (SOC) = 40 % to 50 % and the user
inputs of Table I.

The inputs have been chosen to provide a similar priority
of � � 0:5 for both, demonstrating scheduling.



TABLE I: Input data from the users.

Entry time Plug
number

Edesired
[kWh]

tarr
[HH:mm]

tdep
[HH:mm]

13:23:15 1 20 13:23 17:23
13:25:28 2 20 13:25 17:24

C. Key performance indicators
The control of a cluster seeks to meet the user needs

under the grid limitations. A set of key performance indicators
(KPIs) is de�ned to assess the system’s utilization of the PCC
power capacity whilst minimizing implications of potential
overloadings.

1) PCC energy utilization ratio: A KPI for the system
is the ability to utilize the available power when the PCC
is congested. The energy utilization ratio (UR) evaluates the
ability to utilize the power over a period of time [17]. It
evaluates the energy delivered to EVs relative to the potential
common energy �ow Ppcc;ref . For the cluster, it is found as
follows:

URpcc =
R

min [Ppcc(t) ; Ppcc;ref ] dtR
Ppcc;refdt

(3)

Ppcc;ref is included as a minimum boundary in the calcu-
lation not to reward overloading.

2) PCC overloading: Any overloadings should be further
quanti�ed as the system controls consumption towards the
upper limit of Ppcc;ref . For the PCC of a cluster, a type C
circuit breaker applies, and KPIs are inherited. The analytical
parameters of an overload are comprised of Iol, the peak
normalized current, and tol, the total period with current over
nominal. The current overloading can be converted to a power
for each phase as Pol = Iol � Vnom;LN , by assuming unity
power factor and nominal voltage. A controller of currents
could be implemented with the same algorithm to comply
strictly with the current limitations.

IV. RESULTS AND DISCUSSION

The results of the scheduling demonstration as described in
Section III-B will be presented.

In Fig. 3, a time-history of 7 min of the public priority and
power consumption of each EVSE is visualized. Within this
period, three switches occur, initiated by the non-charging VA
when it sets � = 1. The VA starts consuming power only after
it has observed enough capacity at PCC to begin charging.
After it has taken over the power, the priority stabilizes at
� � 0:5 and is thus the new marginally charging VA.

The URpcc is found over the 7 min to be 0.858. The blue and
orange area of Fig. 4 indicates the steady state and switching
’non-utilized energy’ accounting for 0.017 and 0.132 each.
The system-integrated steady state margin for the PI controller
affects the steady state, ensuring steady powers with the 1 A
resolution of setpoints to the EVs. On the other hand, the
switching impact is affected by three parameters. First, the
magnitude of the margin Pmin generated by the marginal VA
and is directly related to the type 2 plug protocol of minimum
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6 A. Secondly, there are delays in the control system, including
the reaction time of the EVs, as one VA cannot allow charging
before it has been observed that capacity has been made
available for it. Thirdly, the design parameter of twait impacts
the time ratio between steady charging and switching and can
allow longer charging periods with priorities drifting further
apart.

An advantage of the distributed architecture is the short
control path from PCC measurement to reactions of the EV.
For this experiment, this advantage is obscured by the inherent
delays of the proprietary implementation, as the switches have
a 15 s interval from the charging EV modulates down until
the new VA starts to consume power. Indeed, the EV down-
regulating reaction time of 0 s to 5 s and non-standard de�ned



startup time is part of this delay and is inherent in the startup
of the onboard charger. Further, the VA is implemented with
a 5 s �xed asynchronous update frequency, which impedes its
reaction time. The mentioned delays generate a nondetermin-
istic behaviour, which is apparent in the analysis of the two
�rst switches of Fig. 3, The �rst switch (13:25:40) makes a
complete stop of power consumption, whereas the switch back
from VA2 to VA1 (13:28:15) has a smoother cluster power
consumption.

With the given delays of a proprietary installation, the URpcc
thus shows quite good for a control architecture where the
down-modulation of one VA should be observed on the PCC
measurements before another VA can communicate a start. On
the other hand, the requirement to immediately ramp up the
reference to 6 A will inevitably impact the URpcc negatively.

During the experiment, the cluster overloaded the PCC
during two switching events. As shown in Fig. 4 (highlighted
in red), this overloading occurred when a new EV initiated
charging simultaneous to the already charging EV overcom-
pensating the low overall power consumption. The observed
overload peaks of 1.1 and 1.2 times the rated 9 kW, lasting
1.05 s and 5.25 s respectively, fall well within type C breaker
standards, demonstrating the system’s ability to schedule the
two EVs within PCC limitations.

Future work on the control system should address the
database as a critical single point of failure. Either bypassing
the database with individual distributed communication or in-
corporating a fallback state in Fig. 2 to handle communication
failures.

V. CONCLUSION

This paper proposed a distributed control architecture for
coordinating EV charging based on user needs. The system
facilitates higher charging ef�ciency by alternately allocating
available cluster power to individual chargers.

The method was implemented in an EV charging cluster and
experimentally demonstrated, achieving an utilization rate of
0.86 of the cluster power capacity, while managing occasional
overloads within acceptable limits. The distributed control
demonstrated strong potential for further research in schedul-
ing control schemes, especially with larger �eets over extended
periods. While dependent on pricing models, the system also
offers an underlying technical framework for future pricing
studies. These studies could explore users’ willingness to be
�exible and investigate the relationship between departure
time, energy requests, and session pricing.

On the technical side, future enhancements may require
communication from VAs in the queue to express priority in a
separate range, ensuring priorities are followed for reinitiation
of charging. The next steps include scaling the system to larger
EVSE clusters and extending the testing period, positioning
this approach as a signi�cant advancement toward ef�cient
and scalable EV charging solutions.
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Abstract: The demand for electric vehicle supply equipment (EVSE) is increasing because of the
rapid shift toward electric transport. Introducing EVSE on a large scale into the power grid can
increase power demand volatility, negatively affecting frequency stability. A viable solution to
this challenge is the development of smart charging technologies capable of performing frequency
regulation. This paper presents an experimental proof of concept for a new frequency regulation
method for EVSE utilizing a distributed control architecture. The architecture dynamically adjusts
the contribution of electric vehicles (EVs) to frequency regulation response based on the charging
urgency assigned by the EV users. The method is demonstrated with two Renault ZOEs responding
to frequency �uctuation with a combined power range of 6 kW in the frequency range of 50.1 to 49.9
Hz. The results con�rm consistent power sharing and effective frequency regulation, with the system
controlling the engagement of the EVs in frequency regulation based on priority. The delay and
accuracy analyses reveal a fast and accurate response, with the cross-correlation indicating an 8.48
s delay and an average undershoot of 0.17 kW. In the conclusions, the paper discusses prospective
improvements and outlines future research directions for integrating EVs as service providers.

Keywords: electric vehicle supply equipment; smart charging; frequency regulation; ancillary
services; experimental validation; distributed control

1. Introduction
Smart EV charging technologies leverage the storage capabilities of EVs to make them

controllable demand-side resources, crucial for the development of smart grids [1]. These
technologies offer �exibility services bene�cial to distribution and transmission system
operators [2] and delay expensive grid upgrades required because of the growing demand
from electric transportation [3]. Moreover, EVs can contribute to grid stability by offsetting
power �uctuations from renewable energy sources [4]. This study presents an experimental
demonstration for frequency regulation using smart chargers under a distributed control
system, where each EV adjusts its charging power in response to grid frequency changes
based on user input. Traditionally, frequency stability has relied on conventional power
plants known for their quick responsiveness and high inertia [5]. However, the rise of
renewable energy sources challenges this stability by reducing overall system inertia [6].
Commercializing frequency regulation through frequency �exibility markets allows power
producers and consumers to offer balancing power services [7]. With their substantial
storage capacity, EV �eets can signi�cantly contribute to frequency regulation [8], offering
bene�ts to the transmission system, charging point operators, and EV users [9]. These
advantages include enhanced grid stability, potential revenue, and reduced charging
costs [10].

Distributed architectures are mostly unexplored for smart charging applications. Pre-
vious research in EV charging infrastructure has predominantly focused on centralized
control architectures involving a single central unit managing each charger. Centralized con-
trol offers operational transparency and optimal performance, yet it faces challenges with
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scalability, vulnerability to cyber-attacks, and privacy issues [11]. Decentralized control op-
erates through local units, offering scalability and robustness with simpler communication
and direct user control, but it lacks optimal performance because of the absence of global
coordination [12]. Distributed control systems integrate centralized and decentralized
approaches, using central and local components for comprehensive grid management.
This hybrid approach harnesses the strengths of both systems, providing precise, scalable,
and robust control solutions [13,14].

The experimental evidence of the technical feasibility of frequency regulation via
EVSE provided in this study contributes to the research literature on the topic, where
most existing studies rely on computational analyses and focus on its economic potential.
In addition, current research on frequency regulation focuses on centralized and decentral-
ized systems, often via vehicle-to-grid (V2G) approaches [15], despite most existing EVs
only being capable of unidirectional charging. Indeed, although V2G technology has high
economic potential, there remains a lack of standardization [16], as well as technological
and regulatory readiness, for its full deployment [17]. Thingvad et al. [18] analyzed the
economic viability of employing a �eet of 10 EVs for frequency regulation in the Danish
grid, comparing the potential of unidirectional and V2G systems. Their �ndings indicated
that while bidirectional systems can generate higher revenue for aggregators and EV own-
ers, they also incur more signi�cant energy losses and necessitate additional equipment.
The authors proposed a novel scheduling strategy leveraging historical frequency data to
optimize capacity and revenue for market actors. Regarding computational analysis, the
research literature presents different methods for frequency regulation. Yao et al. [19] pro-
posed a robust optimization framework for scheduling EV frequency regulation capacity
under a performance-based compensation scheme to maximize user revenue. The study
in [20] introduced a fuzzy control-based smart charging method for EVs, demonstrating
its effectiveness in reducing frequency deviations in simulation tests. Orihara et al. [21]
explored a decentralized V2G system contributing to frequency regulation and battery
state-of-charge (SOC) synchronization, highlighting its potential for future research com-
paring it with centralized systems. Other authors explored the coordination of EV charging
with large-scale heat pumps [22] or with local energy storage [23] for frequency regulation,
both addressing battery degradation issues. Meng et al. [24] developed a strategy for
dynamic frequency control using EV clusters, taking into account the travel behavior of
EVs, focusing on stabilizing frequency �uctuations and improving economic operation.
Experimental studies primarily conducted by the Technical University of Denmark with
a centralized control architecture have provided insights into the practical application of
frequency regulation. Marinelli et al. [25] tested the performance of commercial EVs in pri-
mary frequency control with a centralized control architecture, suggesting improvements
for system response. A �eld test with a V2G EV �eet performing frequency normal reserve
under a centralized control scheme was proposed in [26]. The experimental investigation,
conducted over �ve years, provided signi�cant insights into battery degradation. The study
concluded that battery degradation from power cycling of the EVs is minimal compared to
the calendar degradation.

This paper contributes to research on frequency regulation via EVSE with the follow-
ing key innovations: Firstly, the paper introduces a distributed architecture approach to
smart EV charging, offering a promising alternative to the commonly studied centralized
and decentralized systems. Secondly, the designed system allows individual users to
engage in frequency regulation to varying degrees based on their charging needs. Charging
prioritization is unavailable in deployed chargers and is fundamental to smart charging
development. Lastly, the paper provides a proof-of-concept demonstrating the technical
feasibility of frequency regulation using EV chargers. This contribution is of utmost im-
portance in the absence of literature presenting empirical evidence of frequency regulation
using unidirectional EV chargers with distributed control architecture. Overall, this paper
proves the technical feasibility of frequency regulation through an EV charging system
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with a lean yet robust system architecture, a �rst step toward integrating unidirectional EV
clusters in frequency markets.

The remainder of this paper is organized as follows: Section 2 presents a theoretical
overview of the control concept, including the control and communication system design.
Section 3 details the physical implementation of the control concept, providing a clear guide
for other researchers who wish to replicate the results. Section 4 presents and discusses the
key �ndings. Finally, Section 5 offers conclusions and outlines perspectives on future work.

2. Methods
This chapter outlines the control concept deployed in this study. Section 2.1 presents a

general introduction to the system components and the computational intelligence in the
cloud server, named cloud aggregator (CA), and in the charger, named virtual aggregator
(VA). This section then provides a mathematical description of CA control in Section 2.2
and VA control in Section 2.3.

2.1. Description of the Control Concept: CA, VA, and Priority
The distributed control concept includes double-layer control: The control of the cluster

as a whole is performed by the CA, a computational intelligence located in a cloud server.
The autonomous control of each charger is managed by the VA embedded within each
charger [27]. Figure 1 illustrates the communication architecture with a simpli�ed block
diagram. The cluster of chargers connects to the grid at the point of common coupling
(PCC), where a smart meter reads their consumption and grid conditions. The meter
provides frequency and consumed power measurements at the PCC and sends them to
the CA and the VAs. A user interface allows users to input the energy requested and the
departure time for the charging session. The inputs are directly communicated to the VA of
the respective charger and are fundamental for the power-sharing among the VAs.

Figure 1. Simpli�ed block diagram of the proposed distributed control architecture applied to a
general parking lot with a number "n" of chargers.

2.2. Controller in the CA
The CA is the global intelligence, and it has three main functions. Firstly, it receives

frequency measurements fmeas from the meter. Secondly, it translates these inputs into
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power set points (Pre f
CA) based on the droop control characteristic. Thirdly, it broadcasts the

power set points to the VAs of the cluster. The droop control in the CA is de�ned as

Pre f
CA = P0 + kdroop � ( f0 � fmeasured) (1)

The power range allocated to frequency regulation, denoted as Pbid, is set to �3 kW
in our demonstration. Pbid de�nes Pmax and Pmin, where P0 is the power set point at 50 Hz
( f0). Pmax and Pmin determine the controllable range of Pre f

CA. The droop control coef�cient
kdroop is calculated as (Pmax � Pmin)/D f . Each iteration of the CA ends with the broadcast

of Pre f
CA to the VAs.

2.3. Controller in the VA

The Pre f
CA is retrieved by the VAs together with the power measurement Pmeas from

the meter at the PCC. Each VA also stores the user inputs received by the user interface.
The user inputs are the energy requested by the user Ereq and the departure time tdep.
The inputs are used to calculate the internal priority rint of each VA as

rint =
Ereq � Echarged

(tdep � t0) � Prated,EVSE
(2)

In the formula, Echarged is the energy charged by the EV, measured by the plug during
the charging session, t0 is the current time, and Prated,EVSE is the rated power of the plug.
rint is a value between 0 and 1.

rint is an intermediate step for the calculation of the relative priority rr, which is a
control parameter of the VA. Indeed, each VA shares its rint with all the VAs through the
CA. Then, each VA calculates its relative priority rr as:

rr =
rint

åNEVs
i=1 rint,i

(3)

where åNEVs
i=1 rint,i (denoted as rint,abs in the �gure) represents the summation of the internal

priorities of all the chargers. While rint is shared among the VAs, rr is not shared among
the chargers.

Knowing the power error for the whole cluster (Perror,PCC = Pre f
CA � Pmeas) and rr, each

VA can calculate the power reference as

Pre f ,i =

(
Pre f ,i�1 + Perror,PCC � rr Perror,PCC > 0
Pre f ,i�1 + Perror,PCC � (1 � rr) Perror,PCC < 0

(4)

In the formula, i corresponds to the current iteration of the controller, and i � 1
corresponds to the previous iteration. Equation (4), applied in two different scenarios based
on the sign of Perror,PCC, outlines the operation of a PI controller with integral gain Ki set to
1. The proportional gain Kp varies, being directly proportional to rr when Perror,PCC > 0
and to (1 � rr) when Perror,PCC < 0. This control approach ensures that EVs with higher
priority will more readily increase their power demand in response to positive errors
while reducing it less when the error is negative. In contrast, lower-priority EVs will
have a smaller increase in power demand for positive errors and a larger decrease for
negative errors. This strategy guarantees that EVs maintain their allocated share of power
consumption dynamically, adapting to continuous changes in error, which may result from
frequency �uctuations. Each VA calculates its power reference Pre f ,i and communicates it
to its charging plug. The control loop completes with feedback on power and frequency
measurements provided by the meter at the PCC to the VAs and the CA.
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3. Physical Implementation
This subsection describes the physical implementation of the architecture concept.

Section 3.1 details the hardware and software used in the test. Section 3.2 describes the test
case chosen for the demonstration. This chapter provides a clear guide for other researchers
who wish to replicate the results.

3.1. Hardware and Software Used
The VAs and the CA reside in �Beaglebonefi black industrial� microcontrollers, shown

in Figure 2. The microcontrollers have an ARM Cortex-A8 1 GHz processor with a RAM
of 512 MB and an embedded �ash memory of 4 GB. The microcontrollers run on Debian
OS, and all the control algorithms are built in Python 3.8. Each charger has a dedicated
external microcontroller, where the control algorithm is executed. This arrangement is due
to a non-disclosure agreement with Circle Consult, the manufacturer and operator of the
chargers, limiting direct control integration. Consequently, only the �nal power set points
can be communicated to the chargers. The CA also has a dedicated microcontroller. These
microcontrollers run on Debian OS and are connected to the network via wired Ethernet to
facilitate data exchange. During the tests, the CA and the VA operate with an update rate
of 4 and 2 s, respectively. Therefore, they execute their scripts (which consist of reading
inputs, computing outputs, and sending outputs) at their respective intervals. Regarding
network connectivity, the chargers are linked to the internet through a 4G connection, while
other devices utilize the university Wi-Fi, which is secured by a �rewall. The �rewall
restrictions on direct communication necessitate a server database as a mediator for data
exchange across the two network interfaces. This server, acting as a central hub, facilitates
the �ow of information among devices without retaining a historical record of data values,
only storing the most recent updates. In other words, the server database mediates all the
communication paths in Figure 1.

The charging system incorporates a web interface, which allows for the input and
management of user data and session-related parameters Ereq, tdep.

The VAs on the Beaglebone microcontrollers use Amazon Web Services as an interface
to transmit their �nal power set point to the microcontrollers integrated with the chargers.

Figure 2. Beaglebonefi black industrial microcontrollers used for testing the control architecture.

The microcontrollers integrated with the chargers convert the power set point received
from the external microcontrollers into a current set point, which they then relay to the
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charger actuators. The PCC is equipped with a smart meter (DEIF Multi-instrument MIC-2
MKII), which publishes, among other parameters, the power consumption and frequency
measured in 1 s intervals to the MQTT data broker energidata.dk. The charger utilizes
type 2 charging protocol as outlined in IEC 61851-1:2019 [28], featuring a 32 A 5-wire
connection capable of delivering up to 22 kW of 3-phase power. However, the maximum
power consumption per plug is limited to 11 kW, setting the operational control range
between 3.68 kW and 11 kW for charging electric vehicles.

3.2. Test Case
In the tests, two Renault Zoes were employed for the frequency regulation, as shown in

Figure 3. These Renault Zoes have a 22 kW onboard charger and a 41 kWh battery. For both
EVs, the user inputs are assumed to be 8.1 kWh for EV1 and 19 kWh for EV2, resulting
in internal priorities rint of 0.7 and 0.3, respectively. The length of the charging session
inputted is 3 h for both vehicles. It is important to note that ful�lling the energy request
and respecting the duration of the charging session are not the focus of the investigation.
The user inputs are chosen to establish the priorities mentioned above. The expected
results are that the high-priority EV charges more than the EV with lower priority while
performing frequency regulation. The Pbid is chosen to be �3 kW, meaning that the power
that can be used for regulation is 6 kW. The droop control is set up to be in the range of 13
kW to 19 kW for a frequency range of 49.9 Hz to 50.1 Hz.

Figure 3. Experimental setup implemented: The �gure shows the two Renault Zoes and the charger
used in the test. The test is conducted in the DTU Energy System Integration Lab (SYSLAB).

4. Results and Discussion
This chapter details the performance of the distributed architecture observed dur-

ing the test. Section 4.1 delves into the time history of frequency, power consumption,
SOC, and priority (rint), aiming to illustrate the general trends and behaviors observed.
Section 4.2 presents the analysis of the system’s delay and accuracy in responding to fre-
quency changes. Section 4.3 describes the bene�ts of the system for the transmission system
operators, charging point operators, and users. Finally, Section 4.4 discusses some identi�ed
limitations affecting the system’s reaction time.
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4.1. System Behavior Observed
In Figure 4, the time history of the frequency regulation performances is provided.

The top graph shows the time history of the frequency measurements and the power
consumed by the cluster; the graph has a double y-axis showing the frequency range
on the left side and the power measured range on the right side. The scales of the dual
y-axis are calibrated to highlight any potential overshoots or undershoots in the measured
cluster power compared to the expected power from the droop controller. The graph
shows a correct match of power and frequency, with some additional oscillation and a
general undershoot of the power measured at the PCC compared to the expected power.
Such oscillations around the power set point might be due to non-optimal interaction
between the control tuning, the VAs set point update rate, and the reaction time of the EVs.
The undershoot of the power adjustment could be related to the production of reactive
power of the EVs at low charging power. In detail, because the charger output is the
maximum allowed current for the EVs, the active power consumed by the EVs depends
on the power factor characteristic of the onboard charger. This phenomenon has been
reported in previous studies on the modulation of EVs [29]. The Renault Zoe is optimized
to charge at its rated power (22 kW), while the reactive power increases when charging
at low active power. Both phenomena�the oscillations and the undershoot of the power
measured�should be further analyzed in future work. The bottom graph shows the
individual dynamic power consumed by each EV during the test. The graph shows that
EV1 charges at higher power because of the higher priority. EV2 has lower priority and,
therefore, lower charging power. Furthermore, the charging power of EV1 saturates at
an upper limit. As a result, the aggregated cluster response in the upper direction in case
of frequency increases can only be provided by EV2. This behavior can potentially slow
down the reaction time in this direction of service provision since only EV2 is reacting to
frequency increases. This is particularly true because the design of the PI control, de�ned
in the Equation (4), allocates a smaller share of the up-regulation power to the low-priority
EV. Future work will address this behavior by adjusting the PI control near the upper and
lower power limits of the plug.

Figure 4. Representative time window of the experimental validation of frequency regulation using
distributed control architecture: frequency and power measured (top); power dispatched to each EV
(bottom).

Figure 5 illustrates the development of the SOC in the top graph and their priorities
over time for two EVs in the bottom graph. At the start of the test, the SOCs for EV1 and
EV2 were 17 % and 14 %, respectively. The SOC of EV1 increased faster because of its
higher power allocation than EV2. At the end of the test, the SOCs were 48 % and 33 % for
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EV1 and EV2, respectively. The priority trends for both EVs ran nearly parallel throughout
the charging session, with their priorities decreasing as they approached the completion of
their requested energy.

Figure 5. Trends of SOC (top) and internal priority (bottom) for the two EVs during the experimen-
tal validation.

A comparison of the bottom graph in Figure 4 and the graphs in Figure 5 reveals
the impact of the longer period of underfrequency occurring from 10:50 until the end of
the test. Because of its lower priority, EV2 reduced its power consumption, while EV1
maintained charging at maximum power. Consequently, the rate of SOC increase and the
rate of priority decrease for EV2 slowed down. In contrast, the priority and SOC trends for
EV1 remained unaffected, as EV1 maintained constant power.

4.2. Response Delay and Accuracy
Figure 6 shows a normalized cross-correlation of the power measured at the PCC

(Pmeas) and power expected from the droop control (Pexp) to visualize the delays. The nor-
malized cross-correlation is computed using the Pearson formula for each value of lag
between the two curves:

r(k) =
åi(Pmeasi � Pavg

measi) � (Pexp,i+k � Pavg
exp,i+k)

sPmeas � sPexp � N
(5)

In the formula, k is the value of lag, and sPmeas and sPexp are the standard deviations of
the power measurement and expected power, respectively. N is the length of the time series.
In the graph, the y-axis shows the normalized cross-correlation coef�cient, and the x-axis
shows the lag in seconds. The lag represents the displacement between the two time series
for which each cross-correlation coef�cient is calculated. The normalized cross-correlation
peaks at 0.98 at a lag value of 8.48 s of the measured power curve with the expected power
curve. Such a result, although semi-quantitative, tells us that the two curves have a very
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high degree of similarity. The delay depends on different factors. Together with the delays
in communication and actuation of the control signals, an important factor is the reaction
time of the EVs. In our case, the two car models are identical. However, reaction time can
be drastically different depending on brand and model.

Figure 6. Normalized cross-correlation of the frequency with the power measured during the
experimental validation.

Finally, Figure 7 illustrates a histogram of the error distribution between the measured
power and the expected power during the test. For this analysis, the measured power was
shifted by approximately 8.48 s to highlight the controller’s precision and minimize the
influence of the controller delay on the calculation. The analysis confirms the previously
identified undershoot of the measured power in response to the frequency signal in Figure 4,
with an average undershoot of 0.17 kW during the test. Additionally, the error ranges from
�1.08 kW to 0.48 kW. The error values fall within the range of �0.73 kW to 0.29 kW for the 98th
percentile, indicating a 2 % probability of an error exceeding 0.29 kW or subceeding �0.73 kW.

Figure 7. Histogram of the error distribution between expected and measured power during the
experimental validation.
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4.3. Discussion of the Results
The results demonstrate a fast and accurate system response to frequency changes,

including effective coordination among individual EVs based on their priority. Large-scale
adoption of this system by charging point operators can generate signi�cant value for all
stakeholders in the EVSE business, as well as for EV users. The transmission system opera-
tor can purchase �exibility services from charging point operators, improving grid stability.
Charging point operators will pro�t from trading frequency services and can develop busi-
ness models incentivizing users to participate in frequency regulation by offering cheaper
charging prices. Thanks to the robust prioritization mechanism, users can lower their
charging costs without compromising their charging requirements. The additional power
cycling incurred by the EVs is not expected to increase battery degradation signi�cantly [26].
Lowering charging prices will, in turn, incentivize the purchase of more EVs.

4.4. Limitations of the Results
In our physical implementation, we identi�ed several limiting factors that contribute to

additional delays in the control action, offering areas for improvement: Firstly, the database
server, necessitated by �rewall constraints, is an intermediary node in most control com-
munications, thereby adding delays in communicating set points. Bypassing this node
can potentially streamline the communication process. Similarly, compliance with the non-
disclosure agreement necessitated locating the VAs externally from the chargers, creating
an additional intermediate node for all control communication. Incorporating the control
logic of the VAs directly into the chargers can shorten the control communication pathway.
Lastly, improving the current one-second sampling rate of the DEIF meter can accelerate
system response to new set points and decrease reaction times.

5. Conclusions
This paper presents an experimental demonstration of frequency regulation provided

by an EV charging infrastructure with a novel distributed control architecture. This ar-
chitecture integrates global intelligence for cluster control and local intelligence within
each charger’s microcontroller for autonomous localized control. The control concept
combines power modulation of EVs in response to frequency �uctuations and prioritization
of charging sessions according to charging urgency. The proof of concept is conducted
using two Renault ZOEs with different priorities. During the experimental demonstration,
the EV charging power and engagement in frequency regulation varied according to their
priorities, while the system as a whole responded accurately to frequency �uctuations.
A cross-correlation analysis revealed a peak of similarity between the expected power and
power measured at 8.48 s. The error between expected and measured power ranged from
�1.08 kW to 0.48 kW, with an average system undershoot of 0.17 kW. The accuracy and
delay analysis show potential suitability for frequency services, although further studies
are needed. Consistent with previous studies, the paper identi�es the EVs as the likely
cause of undershooting power set points and suggests future investigations to enhance the
reliability of EVs as service providers. Finally, the study outlines system improvements
and future research directions for integrating EVs into the power system.
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