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Abstract

The continuous growth of electric vehicles (EVs) has been boosted by the need to achieve society’s decarbonization
targets. The mass adoption of EVs introduces new challenges in the power systems planning and operation, mainly
due to the uncertainty related to EV users’ behavior and charging needs. Some of the difficulties motivated by the
uncoordinated behavior of EVs are the occurrence of voltage instabilities, system overcurrents, and harmonic distor-
tion. In this context, clustering can help better understand and categorize the behavior of EVs and electric vehicle
supply equipment (EVSE) usage, with multiple research studies devoted to the study of clustering methods to offer
solutions for these problems. This manuscript comprehensively presents a review of clustering methods applications
for electric mobility that focus on the possibility of identifying different groups of EV charging processes, through
clustering, to provide support in characterizing EV charging profiles, EV user behavior, and EVSE accessibility and
location. For that, we present a roadmap that starts with cluster analysis, in which the most utilized mathematical
clustering and validation techniques are detailed. Then, several EV charging datasets are described, followed by a
review of research works focusing on clustering applications in EV data, considering three main categories, namely
EV charging profiles, EV user behavior, and EVSE accessibility and location.
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1. Introduction

The adoption of electric vehicles (EVs) has experienced rapid growth in the 21st century, driven by the pressing
need to transition global energy demand away from fossil fuels, particularly within the past decade [30]. People are
facing a dramatic transformation in their lifestyle to become carbon neutral, with the United Nations (UN) placing
the fight against climate change under one of the goals of Sustainable Development [1]. At the 2015 United Nations
Climate Change Conference (COP 21), 196 countries reached the first-ever universal and legally binding climate
change agreement. This agreement sets out a worldwide action plan to “limit global warming to well below 2 ◦C,
preferably to 1.5 ◦C, compared to pre-industrial levels” [2]. This ambitious plan requires a significant reduction in
greenhouse gas (GHG) emissions.

Considering the concerns related to climate change, the European Union (EU) aims to be carbon-neutral by 2050.
This objective is the heart of the European Green Deal and in line with the EU’s commitment to global climate
action under the Paris Agreement [3], since Transport is the only sector where greenhouse gas (GHG) emissions
have increased in the past three decades [4]. This sector was responsible for more than a quarter of Europe’s energy
consumption in 2019, of which approximately 71% came from road transportation, increasing 33% between 1990
and 2019, according to a 2022 report by the European Environment Agency [5]. In addition to GHG, burning fossil
fuels, whether in power plants or in internal combustion engine vehicles (ICEVs), releases harmful pollutants that can
significantly degrade air quality.

To achieve carbon neutrality, in 2022 the EU’s environment ministers approved the “Fit for 55 in 2030” package
[6], which orders that only zero-emission vehicles can be sold in Europe from 2035. The United States of America
(USA) and the United Kingdom (UK) are also targeting net-zero emissions by 2050, China and Russia by 2060, and
India by 2070 [7], together with the EU, the biggest polluters in the world.

With that in mind, car manufacturers and governments have been investing in new models and tax incentives for
the adoption of EVs [8], whose popularity has significantly increased over the past five years [9].

Even though the production and disposal of EVs are currently less eco-friendly than those of an ICEV (mainly
due to the production of its batteries [10]), an analysis of the entire life cycle of an EV shows that it is still cleaner
than an ICEV, as revealed by Zhang et al. [11]. Their study demonstrates that EVs could potentially provide a 45%
reduction in GHG emissions compared to ICEVs, considering the energy cost of production, assembly, transportation,
and usage (the authors assumed 300 000 km as the average lifetime of a passenger vehicle). As the share of electricity
from renewable energy sources (RES) is set to increase in the future, as well as making batteries more sustainable,
EVs should become even less harmful to the environment [12]. According to the World Energy Transitions Outlook
2023 [13], the share of RES in electricity generation should increase from 28% in 2020 to 91% in 2050.

Due to all these factors, the number of EVs will certainly increase in the upcoming years. Therefore, reliable
control and understanding of the charging process of an EV will be essential for its successful penetration into the
power system [14, 15]. There is a broad consensus that the crucial factor is not the increased energy demand but rather
the potential load peaks resulting from many simultaneous EV charging processes. Uncoordinated EV charging has
negative impacts on the existing power grid, including high load peaks, higher energy use, and degradation of power
quality [16, 18, 19].

Energy system modelers (ESMs), distribution system operators (DSOs), utilities, and urban planners need to
quantify the impacts on grid infrastructure and network reinforcement demands to address future challenges and
opportunities associated with EV mass adoption [20]. The identification of charging profiles is of great importance
if these entities are to realize the intelligent and successful integration of EVs into the energy system. Clustering
methods represent one of the most effective approaches for identifying these profiles, but there is limited coverage of
these techniques in existing literature.

Most existing review papers do not focus on charging behavior from a data-driven approach, which hinders prompt
identification and comparison of different methodologies. For example, Shafiei and Ghasemi-Marzbali [21] give a
comprehensive review of fast charging stations for EVs and the challenges related to them, such as locating and deter-
mining their optimal capacity, the problem of energy storage, and the overall management system. Al-Ogaili et al. [22]
review scheduling, clustering, and forecasting strategies for EV charging. They also present a review of data-driven
and other approaches, such as optimization, and how they have been used for EV charging strategies in the literature.
Shahriar et al. [23], on the other hand, solely focused on reviewing the existing machine learning (ML) approaches,
including supervised, unsupervised (namely clustering studies), and deep learning, used in the analysis and predic-
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tion of EV charging behavior currently in the literature. Andrenacci and Valentini [24] review the factors influencing
EV charging behavior, emphasizing the importance of understanding these behaviors for infrastructure planning and
energy demand forecasting. Despite mentioning key influences already identified in the literature, including mobility
patterns, socio-economic factors, and infrastructure availability, the paper does not focus on comparing methodolo-
gies to obtain this charging behavior information. Furthermore, while clustering methods are mentioned as helpful in
determining charging patterns, it lacks a detailed analysis of these techniques for EV charging data. Perhaps the most
related work to the one proposed in this article is presented in [25], where Nazari et al. suggest that clustering can
be used to address the problem of uncertain introduction of EV load in the power system. The authors review recent
literature on the application of clustering methods based on the user’s behavior, driving cycle, batteries, and charging
stations.

The main objective of this study differs from the previously mentioned ones as it aims to analyze the current liter-
ature on the application of clustering methods for EVs that focus on the possibility of identifying different groups of
EV charging processes, through clustering, to provide support in characterizing EV charging profiles, EV user behav-
ior, and EVSE accessibility and optimal location. The studies referenced and presented in the following subsections
result from a complex research work where priority was given to the most recent, relevant, and accurate studies on
each topic. The Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines [26] were
adopted to conduct the present systematic review. The majority of papers reviewed were discovered using advanced
online article search tools, namely Google Scholar, IEEE Xplore, and Science Direct, by combining the keywords
“EV charging profiles”, “EV user behavior profiles”, “Electric mobility profiles”, “EVSE optimal location”, and
“EVSE accessibility”, with “Clustering”. Some studies have also been found through citations in the aforementioned
analyses [21, 22, 23, 25]. Considering the number of papers discovered using the mentioned keywords, no selection
process was required. The present study will help answer the research questions: What are the most appropriate clus-
tering methodologies to characterize EVs and EVSEs? Do EV-related public datasets exist that allow benchmarking
clustering methodologies? What are the most interesting applications of clustering in the EV domain?

The paper is organized as follows. Section 2 provides an overview of the history and present state of EVs and
the EV charging process. Section 3 reviews the most commonly applied clustering techniques in the literature in
the context of EV charging, and Section 4 describes the characteristics of the most well-known EV open datasets.
Section 5 reviews the applications of clustering techniques on EV data. Finally, Section 6 discusses the shortcomings
of existing studies, and future research recommendations are presented.

2. Background

2.1. History & Current State of EVs
It is hard to pinpoint the invention of the electric car to one inventor or country. Instead, a series of 19th-century

breakthroughs in batteries and motors led to the first EV on the road. Around 1881, French engineer Gustave Trouve
reportedly created the first battery-powered EV, a 160 kg tricycle [27]. The taxi “Electroboat” was the first EV in
the USA, introduced by William Morris in 1889. By 1900, 38% of vehicles sold in the USA were electric [28], but
their popularity declined with the mass production of the accessible gasoline-powered Model T by Henry Ford in
1908. Renewed interest in EVs emerged after the 1973 Arab oil crisis encouraged the search for alternative energy
sources [29]. Since then, automakers have been developing prototypes in response to new transportation emissions
restrictions. With the Paris Agreement in 2015, reducing GHG emissions has been a priority, and EVs became part of
the solution. Today, almost all automakers offer at least one EV model.

Recent EV sales reports – including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs)
– reveal that the EV stock has increased exponentially in recent years [30], especially BEVs. In 2024, global EV
sales achieved 17.5 million units (up 25% relative to 2023), representing around 20% of the market share, and the EV
car stock represented 4% of the global fleet [30]. EV sales in Europe stagnated in 2024, with 3.3 million EVs sold,
as political subsidies have decreased in the main car markets, such as Germany and France. The European market
for EVs represents 24% (14.1 million) of the global EV stock [30]. In Stated Policies Scenario (STEPS) [31], it is
foreseen a high growth in global EV sales, possibly reaching a 58% sales share and 15% stock market share in 2030
[30].

Although there are different technologies available to power electric motors, battery packs are the primary power
source for these new EVs [28]. Nowadays, BEVs can travel up to 700 km on a single charge, unlike early models that
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would often last less than 100 km due to battery constraints. The capacity of the batteries, the overall efficiency of
the EV, and the management strategies directly impact the range [32]. There is an urgent demand to build charging
stations to meet the needs of drivers. According to [30], the number of public EVSEs reached more than 5.45 million
in 2024, of which around one-third were fast chargers.

The “Fit for 55” package [6] introduced a regulation to set mandatory national targets for EU member states to
deploy publicly accessible alternative fuels infrastructure, the Alternative Fuels Infrastructure Regulation (AFIR) [33].
Article 3 mandates 1.3 kW of publicly available charger per BEV and 0.8 kW per PHEV starting in 2024, a target
already met by the EU average, since the member states combined had 2.6 kW/EV at the end of 2024. However, there
is still a scarcity of charging ports, as demand has been increasing every year [30]. These advancements in smart
charging technologies have enabled the exploration of previously inaccessible topics. EVSEs generate a wide range
of charging data, allowing for detailed user behavior analysis and the development of charging management programs
for various applications. Specifically, clustering techniques applied to empirical charging data have identified distinct
usage patterns, contributing to more accurate demand modeling and more efficient infrastructure planning [22].

In addition to light-duty personal vehicles, electrification is reaching other categories, including two or three-
wheelers, commercial, and heavy-duty vehicles [35]. In fact, 27 nations (including the USA and EU) have committed
to achieving 100% sales of zero-emission buses and trucks by 2040 [36].

2.2. Negative Impacts of Uncoordinated EV Charging

As mentioned, the accelerated adoption of EVs represents a significant shift towards sustainable transportation.
However, without effective management, uncoordinated EV charging (where the charging process occurs without
considering the grid capacity or renewable energy availability) can severely impact the electrical grid, economic
stability, and environmental goals [16, 17]. Identifying these aspects is essential for understanding the need for
clustering methods and their applications in real-world operational scenarios.

2.2.1. Grid Stress and Increased Peak Demand
Uncoordinated EV charging often aligns with peak residential electricity demand, typically when drivers return

home in the evening. This circumstance can lead to a dramatic increase in peak load, deepening grid stress, and
potentially leading to infrastructure overloads, voltage instability, and an increased probability of blackouts. As EV
adoption rises, these issues could require costly grid upgrades to prevent disruptions.

A study by Jones et al. [16] examined the impacts of uncontrolled EV charging on various types of distribution
feeders, including residential, commercial, and industrial, using real-world data and simulations. The study found
that in a home-dominant charging scenario, where most EVs recharge during evening hours, peak loads on residential
feeders increased significantly, leading to thermal overloading of power lines by as much as 15%. The study ends
by emphasizing the need for smart-charging strategies to distribute the load more evenly and reduce the risk of grid
overload.

2.2.2. Increased Greenhouse Gas Emissions
Uncoordinated charging can result in increased GHG emissions when the process occurs during peak hours, which

often require the grid to rely on fossil fuel-based power generation. The higher carbon intensity of the grid during
these times can offset some of the environmental benefits of EVs.

A study by Kang et al. [37] highlights the delicate balance between reducing CO2 emissions and managing peak
power demand in EV charging coordination. The study found that while coordinated charging can reduce annual
CO2 emissions by up to 18%, it may also create new peaks in power demand. This underscores the potential for
increased greenhouse gas emissions if charging is not strategically managed, particularly given the prevalence of
higher-emission sources in the energy mix during peak periods.

These findings reveal the importance of smart-charging strategies that consider both the grid’s carbon intensity
and demand patterns to maximize the environmental benefits of EV adoption. These demand patterns can be obtained
through clustering methods, specifically EV charging and EV behavior profiles.

4



2.2.3. Economic Costs and Market Disruption
The economic implications of uncontrolled EV charging are significant, as they can lead to higher consumer

electricity prices. This is mainly due to the need for utilities to activate peaker plants during periods of high demand,
which are expensive to operate and typically produce higher carbon emissions [38].

The study by von Bonin et al. [39] analyzed the effects of dynamic tariffs and photovoltaic (PV) incentives on EV
charging behavior. Optimized charging strategies, including dynamic tariffs and PV-based incentives, demonstrated
cost reductions of up to 33.7% for households. Similarly, the EV4EU D4.5 report [40] evaluated various demand
response (DR) programs across Greece, Portugal, and Slovenia. Programs incorporating real-time pricing and time-
of-use tariffs revealed substantial cost savings for EV users.

Both studies indicated that uncoordinated user responses to price signals could still result in local peaks and
potential market disruptions, as synchronized charging behaviors could exacerbate peak loads, driving up electricity
prices and contributing to market volatility. In addition, both studies required charging and behavior profiles that
served as the basis for defining dynamic tariffs, proving the necessity and applicability of these types of profiles.

2.2.4. Challenges in Renewable Energy Integration
One of the potential benefits of EVs is their ability to support the integration of RES by acting as a flexible load

that can absorb excess generation [18]. However, uncontrolled EV charging can exacerbate issues of renewable energy
curtailment, where excess generation cannot be effectively used or stored due to mismatched demand.

Amiruddin et al. [41] found that optimized EV charging patterns could further enhance renewable integration, re-
ducing the need for battery storage by 84%, cutting emissions by 23.7%, and increasing renewable energy penetration
by 10%. These findings underscore the critical importance of developing smart charging strategies and V2G capabili-
ties to align EV demand with renewable generation, mitigating integration challenges, and maximizing environmental
and economic benefits. Once again, typical charging and user behavior profiles play a pivotal role in these strategies,
with clustering allowing for straightforward and comprehensive obtaining of these profiles.

3. Cluster Analysis

In the literature, cluster analysis has received a lot of attention and has been researched extensively. There are
papers such as [42], published in 1969, that helped to investigate and develop various mathematical clustering and
classification techniques. Nevertheless, it is important to first give a brief introduction.

Cluster analysis, often known as clustering, is not a specific algorithm, but rather the general problem of parti-
tioning a dataset into natural subgroups called clusters [43]. Objects within the same group should be as similar as
possible (based on a similarity measure), while objects between different groups should be as dissimilar as possible.
Clustering uses almost no information to evaluate the data and does not require a separate training dataset to deter-
mine the model parameters (unsupervised learning approach). It is the main objective of exploratory data analysis,
a popular statistical analysis technique that is applied in a variety of domains, including pattern recognition, image
analysis, bioinformatics, data dimensionality reduction, and machine learning [44]. Figure 1 provides an illustration
of clustering.

Figure 1: Simple illustration of clustering in two dimensions (Adapted from [45]).
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The term “cluster” does not have a universally accepted definition, since various interpretations are used for dif-
ferent analytical purposes and reflect the diverse structures of data, contexts of problems, and application areas. Con-
sequently, numerous clustering methods have been developed, including representative-based, hierarchical, density-
based, and spectral (or graph) clustering. In this paper, the notation and nomenclature follow the ones defined by
Zaki and Meira [43], presented in Figure 2. In the following subsections, the most commonly employed methods for
finding EV charging profiles, EV user behavior profiles, and EVSE accessibility and location are comprehensively
described, providing a basis for understanding the methodologies defined by the studies discussed in Section 5.

Figure 2: A summary of clustering methods (Based on [43]).

3.1. Representative-based clustering

Representative-based clustering aims to divide a dataset into k clusters. Each cluster is characterized by a represen-
tative point (called centroid), commonly chosen as the mean of within-cluster points. The K-means and Expectation-
Maximization (EM) algorithms are examples of representative-based clustering approaches:

• K-means [46] is a greedy technique that minimizes the squared distance between points and their corresponding
cluster means. It also conducts hard clustering, meaning that each point is assigned to only one cluster;

• EM [47] generalizes K-means by modeling the data as a mixture of normal distributions (Gaussian Mixture
Model (GMM)) and maximizing the likelihood of the data to discover the cluster parameters (the mean and
covariance matrix). It is a soft clustering approach since it returns the probability of a point belonging to each
cluster.

3.1.1. K-means Clustering
The goal of K-means (Algorithm 1) is to find a clustering that minimizes the Sum of Squared Errors (SSE) score,

which measures the accuracy or goodness of the clustering, defined as

S S E(C) =
k∑

i=1

∑
x j∈Ci

∥x j − µi∥
2, (1)

where x j ∈ Rd is a point from a given dataset Dn×d and µi ∈ Rd is the centroid of the cluster Ci.
As stated in the pseudo-code Algorithm 1, the points are initially assigned to the clusters at random, with the

integer k being the number of clusters. The elbow method is typically used to determine the optimal k [48]. The
points are then iteratively assigned to new centroids based on how close they are (line 4). In each iteration, the
centroids are updated based on the mean of the assigned points (line 7). The process repeats until the centroids stop
changing (defined by a threshold), and the algorithm converges.

K-means is typically run multiple times, with the run with the lowest SSE value being selected to report the
final clustering. This happens because the method begins with a random guess for the initial centroids. In terms
of computational complexity, from Algorithm 1 and assuming t iterations, the total time for K-means is given as
O(tnkd).
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Algorithm 1: K-means
Input: (D, k, ϵ)

1 Initialize the cluster centroids µ1,µ2, . . . ,µk ∈ Rd randomly
2 repeat
3 foreach data point x j do
4 calculate distance and assign each x j to the closest µi:

Ci := arg min
i
∥x j − µi∥

2

5 end
6 foreach cluster Ci do
7 compute and update centroids for each cluster:

µi :=
1
|Ci|

∑
x j ∈Ci

x j

8 end

9 until
∑k

i=1∥µ
t
i − µ

t−1
i ∥

2 ≤ ϵ ;

3.1.2. Expectation-Maximization Clustering
Given n points x j in a d−dimensional space, let X, X = (X1, X2, . . . , Xd), be the vector random variable across the

d−attributes. EM (Algorithm 2) assumes that each cluster Ci is characterized by a multivariate normal distribution

f (x |µi,Σi) =
1

(2π)(d/2)|Σi|1/2
· exp

{
−

1
2

(x − µi)T Σi
−1 (x − µi)

}
, (2)

where the cluster Ci centroid µi ∈ Rd and the covariance Σi ∈ Rd×d are both unknown parameters and f (x |µi,Σi) is
the probability density at x attributable to cluster Ci.

A Gaussian Mixture Model over all the k clusters defines the probability density function of X, given as

f (x) =
k∑

i=1

f (x |µi,Σi)P(Ci), (3)

where the prior probabilities P(Ci) satisfy
∑k

i=1 P(Ci) = 1.
Thus, the Gaussian Mixture Model is characterized by the mean µi, the covariance Σi, and the mixture parameters

for each of the k clusters, written compactly as

θ = {µ1,Σ1, P(Ci), . . . ,µk,Σk, P(Ck)}. (4)

After all the key points described, moving forward is thus doable. The goal of EM is to find the maximum
likelihood estimates for the parameters θ. To achieve that, EM executes a two-step iterative algorithm that starts from
an initial guess for the parameters θ.

In the Expectation Step, given the current estimates for θ, EM computes the cluster posterior probabilities through
the Bayes theorem

wi j = P(Ci|x j) =
P(x j|Ci)P(Ci)∑k

a=1 P(x j|Ca)P(Ca)

=
fi(x j)P(Ci)∑k

a=1 fa(x j)P(Ca)
,

(5)

since each cluster is modeled as a multivariate normal distribution [43]. Therefore, P(Ci|x j) can be considered the
weight contribution of x j to cluster Ci.

Next, in the Maximization Step, EM recalculates θ using the weights wi j, as can be seen in Algorithm 2. The
algorithm ends when

∑k
i=1∥µ

t
i − µ

t−1
i ∥

2 ≤ ϵ, where ϵ is the convergence threshold, and t denotes the iteration.
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Algorithm 2: Expectation-Maximization
Input: (D, k, ϵ)

1 Initialise centroids µ1, µ2, . . . , µk ∈ Rd randomly
2 Σi ← I, P(Ci)← 1

k , ∀i = 1, . . . , k
3 repeat
4 for i = 1, . . . , k and j = 1, . . . , n do
5 Expectation Step (calculate posterior probability):

wi j :=
fi(x j)P(Ci)∑k

a=1 fa(x j)P(Ca)
6 end
7 for i = 1, . . . , k do
8 Maximization Step (recalculate θ):

µi :=

∑n
j=1 wi j · x j∑k

j=1 wi j

Σi :=

∑n
j=1 wi j(x j − µi)(x j − µi)T∑k

j=1 wi j

P(Ci) :=

∑n
j=1 wi j

n
9 end

10 until
∑k

i=1∥µ
t
i − µ

t−1
i ∥

2 ≤ ϵ ;

For the Expectation Step, inverting Σi and computing its determinant takes O(kd3), and evaluating the density
fi(x) takes O(nkd2). For the Maximization Step, the time is dominated by the Σi update. Assuming t iterations, the
computational complexity of the EM method is O(t(kd3 + nkd2)).

3.2. Hierarchical Clustering
Hierarchical Clustering techniques create a sequence of nested partitions, which can be visualized as a tree, also

called dendrogram, indicating the merging process and the intermediate clusters. The highest level (root) of the tree
consists of all points in one single cluster, whereas the lowest level (leaves) consists of clusters of individual points,
each point in its own cluster. If the desired number of clusters is known, one can graphically see the level at which k
clusters exist. There are two algorithmic approaches to get Hierarchical clusters [49]:

• Agglomerative: Start with the points as individual clusters and, at each step, merge (or agglomerate) the most
similar or closest pair of clusters until the desired number of clusters has been found. This requires a definition
of cluster similarity or distance. Chameleon is a well-known example [50];

• Divisive: Start with one cluster (all points), and at each step, divide a cluster until only clusters of individual
points remain. In this case, it is required to decide, at each stage, which cluster to split and how to perform it. It
works just the opposite of the Agglomerative approach.

The Agglomerative approach is by far the most widely used in the literature. Thus, it will be examined in greater
depth next.

3.2.1. Agglomerative Hierarchical Clustering
Agglomerative Hierarchical Clustering starts with each of the n points in a separate cluster. Then, the two closest

clusters are repeatedly merged until all points are members of the same cluster, as shown in the pseudo-code given in
Algorithm 3. Given a set of clusters C = {C1,C2, . . . ,Cm}, first, the closest pair of clusters Ci and C j are found and
merged into a new cluster, Ci j. Next, the set of clusters is updated, removing Ci and C j and adding Ci j. This process
is repeated until C contains exactly k clusters.
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Algorithm 3: Agglomerative H. Clustering
Input: (D, k)

1 Initialize each cluster with a single point C ← Ci = {xi},∀i = 1, . . . , n
2 Compute the distance matrix ∆← ∥xi − x j∥,∀i = 1, . . . , n ; ∀ j = 1, . . . , n
3 repeat
4 Find the closest pair of clusters: Ci,C j ∈ C

5 Merge clusters Ci j ← Ci ∪C j

6 Update C ← (C \ {Ci,C j} ∪ {Ci j} and ∆ to reflect new clustering
7 until |C| = k;

Finding the closest pair of clusters is the algorithm’s key step. For this, a variety of distance measures can be
employed [51] (see Figure 3), including:

• Single link: The distance between two clusters is defined as the minimum distance between a point in Ci and a
point in C j. First developed by Florek et al. [52] and then independently by McQuitty (1957) and Sneath (1957)
[53];

• Complete link: The distance between two clusters is defined as the maximum distance between a point in Ci

and a point in C j. Developed by Sørenson in 1948 [54];

• Average link: The distance between two clusters is defined as the average pairwise distance between points in
Ci and C j. Developed by Sokal and Michener (1958) [55] to avoid the extremes introduced by either single or
complete link;

• Mean distance: The distance between two clusters is defined as the distance between the centroids of the two
clusters. The earliest use known of this strategy is that of Sokal and Michener (1958) [55].

But possibly the most employed measure is Ward’s Method, introduced by Joe H. Ward, Jr. in 1963 [56]. The
distance between two clusters is defined as the increase in the sum of squared errors when the two clusters are merged.
The objective is to minimize the total within-cluster variance. It can be seen as a weighted version of the mean distance
measure, as it weights the distance between centroids by half of the harmonic mean of the cluster size.

Figure 3: Different distance measures (Adapted from [57]).

When two clusters Ci and C j combine to form Ci j, the distances between Ci j and each of the remaining clusters
Cr(r , i, r , j) must be updated in the matrix ∆. For all of the cluster proximity measures, the Lance-Williams [58]
formula offers a general equation to recompute the distances:

δ(Ci j,Cr) = αi · δ(Ci,Cr) + α j · δ(C j,Cr) + β · δ(Ci,C j) + γ · |δ(Ci,Cr) − δ(C j,Cr)|, (6)

where the parameters αi, α j, β and γ differ from one measure to another [58].
In terms of computational complexity, Agglomerative clustering initially takes O(n2) time to create the dis-

tance matrix ∆, and updating/deleting distances from it takes O(log(n)) time for each operation, leading to a total
of O(n2 log(n)).
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3.3. Density-based clustering

Density-based clustering methods use the density or connectedness properties to find nonconvex clusters. This
type of clustering employs the local density of points to determine the clusters rather than using only the distance
between points, such as in K-means or EM. The most popular method is Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) [59], analyzed in greater depth next.

3.3.1. DBSCAN
Unlike representative-based clustering that can only discover ellipsoid-shaped or convex clusters, DBSCAN [59]

is a density-based clustering method, therefore can find nonconvex clusters. It uses the local density of points rather
than using only the distance between points to determine the clusters. The neighborhood of x ∈ Rd is defined as

Nϵ(x) = δ(x, y) ≤ ϵ , (7)

where δ(x, y) represents the distance between points x and y (usually Euclidean distance, but might be other metrics).
The threshold ϵ needs to be specified.

In order to fully understand the algorithm, it is first necessary to define some important concepts. x is a core point
if there are at least minpts points in its ϵ-neighbourhood (Nϵ(x) ≥ minpts, with minpts a user-defined threshold). A
border point does not meet the minpts threshold, but it belongs to the ϵ-neighbourhood of another point z, x ∈ Nϵ(z).
Finally, a noise point is neither a core nor a border point (outlier). x is density reachable from y if there is a set of
core points leading from y to x. Two points x and y are density connected if there exists a core point z such that both
x and y are density reachable from z. The pseudo-code for the DBSCAN method is shown in Algorithm 4.

Algorithm 4: DBSCAN
1 DBSCAN (D, ϵ,minpts):
2 Core← ∅, k ← 0 // core points and cluster id

3 foreach xi ∈ D do // find core points

4 Compute Nϵ(xi)
5 id(xi)← ∅
6 if Nϵ(xi) ≥ minpts then Core← Core ∪{xi}

7 end
8 foreach xi ∈ Core, with id(xi) = ∅ do
9 k ← k + 1

10 id(xi)← k // assign xi to cluster id k
11 DENSITYCONNECTED(xi, k)
12 end
13 C ← {Ci}

k
i=1, Ci ← {x ∈ D | id(x) = i} // define clusters

14 Noise← {x ∈ D | id(x) = ∅}
15 Border ← D \ {Core ∪ Noise}

16 DENSITYCONNECTED (x, k):
17 foreach y ∈ Nϵ(x) do
18 id(y)← k // assign y to cluster k
19 if y ∈ Core then
20 DENSITYCONNECTED (y, k)
21 end

First, DBSCAN computes the ϵ-neighborhood for each point xi, checks if it is a core point (lines 3–7), and sets the
cluster id null for all points. Next, starting from each unassigned core point, the method finds all its density connected
points recursively, which are assigned to the same cluster (line 11). Some border points may be accessible from core
points in more than one cluster. As DBSCAN is a sequential algorithm, they will be arbitrarily assigned to the first
created cluster that can incorporate that specific border point.
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Regarding the computational complexity, it takes O(n2) to compute the neighborhood for each point when the
dimensionality is high. With Nϵ(x) computed, the algorithm needs only a single pass over all points to find the density
connected clusters, leading to the overall complexity O(n2).

3.4. Spectral/Graph clustering

The goal of Graph clustering is to cluster the nodes by using the edges and their weights, which represent the
similarity between the incident nodes. Graph clustering can be viewed as an optimization problem over a k-way cut
in a graph, with different objectives represented as spectral decompositions of various graph matrices, derived from
the original graph data or from the kernel matrix, such as the adjacency matrix and Laplacian matrix.

The concept of spectral clustering is based on spectral graph theory. It approaches the data clustering problem as
a graph partitioning problem, building an undirected weighted graph with each point in the dataset as a vertex and the
similarity value between any two points as the weight of the edge linking the two vertices [60]. The graph can then be
split into connected components using a specific graph cut method, and those components are referred to as clusters.

In the literature, at the time of writing, this method is not employed for the identification of EV user behavior and
charging profiles, although some studies for EVSE accessibility and location utilized this method.

Table 1 summarizes the advantages and disadvantages of the previously described clustering methods.

Table 1: Advantages and disadvantages of the aforementioned clustering methods.
Clustering Method Advantages Disadvantages

K-means [46]

Most widely used method since it is simple to implement,
highly flexible, easy to adapt to different types of data,
scales to large datasets, and generalizes to different shapes
and sizes of clusters

Requires specifying the number of clusters a priori; it can be
sensitive to outliers and as the number of dimensions increases,
its scalability decreases; favors spherical or round clusters;
sensitive to the choice of the initial cluster centers

EM [47]

It has a wide range of applications, but it is best recognized
in ML for its usage in unsupervised learning tasks such as
density estimation and clustering; the Expectation and
Maximization Steps are often easily implemented

It can be sensitive to initialization values; it converges to the
local optimum only, with slow convergence; as K-means, it can
be challenging to determine the number of clusters

Agglomerative H.
Clustering [49]

Dendrogram allows seeing the progressive grouping of the
data, presenting a visual illustration of the clustered data;
it is robust since it does not require, a priori, the number
of clusters that can be chosen later

Higher time complexity can be a problem in larger datasets,
therefore works better with small datasets; it is sensitive to noise
and outliers; it has a wide range of potential distance measures,
making its application less straightforward and simple

DBSCAN [59]
Suitable for handling big datasets with noise; able to
locate clusters of different densities and shapes; does not
require specifying the number of clusters a priori

Need to select additional parameters, such as minpts and ϵ, that
affect the outcomes; poor scalability, leading to inferior clustering
if the data density is not uniform; computationally expensive

Spectral/Graph
Clustering [60]

It can handle large datasets and high-dimensional data
with many features; does not make strong assumptions
about the shape of the clusters

It is computationally expensive and sensitive to the choice of
the similarity metric, just like Agglomerative H. Clustering;
requires the number of clusters a priori

3.5. Time Series clustering

The previously mentioned algorithms are the best known and typically used in the literature as they allow per-
forming analysis on static data, i.e., data that is not a function of time (which corresponds to most available datasets).
However, time series clustering has significant potential in the electric mobility domain, particularly for analyzing and
understanding patterns in EV usage, charging behavior, and mobility trends over time. By grouping similar temporal
data sequences, such as daily charging loads, driving patterns, or fleet utilization rates, time series clustering enables
more informed decision-making for infrastructure planning, demand forecasting, and energy management [61]. The
dynamic time warping (DTW) [62] metric is the most popular distance measure for clustering time series data since
it measures the similarity between two temporal sequences that do not align perfectly in time, speed, or length.

Time series data is increasingly attractive in data analytics due to the expanding deployment of smart meters [63],
but is not commonly explored in the literature in the context of EV charging data. Nevertheless, for more information,
see [64], where other techniques besides DTW are described.
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3.6. Clustering Validation Techniques

In the context of identifying charging behavior patterns of EV users and the optimal location of EVSEs, there is no
access to ground-truth partitioning, since the work consists precisely in finding these patterns from the data. Therefore,
internal validation should be used to quantify the performance of the clustering [43]. Some of the most extensively
applied methods in the literature, such as the Silhouette coefficient [65], the Davies-Bouldin index [66], and the
Calinski-Harabasz index [67], may be utilized to study EVSE location, EV user behavior, and charging profiles.

3.6.1. Silhouette Coefficient
For each point xi, the silhouette coefficient is

si =
µmin

out (xi) − µin(xi)
max{µmin

out (xi), µin(xi)}
, (8)

where µmin
out (xi) is the mean of the distances from xi to points in the closest cluster, and µin(xi) is the mean distance

from xi to point in its own cluster.
The total Silhouette coefficient [65] is defined as the mean si value across all points, given by (9), where a value

close to +1 denotes good clustering.

S C =
1
n

n∑
i=1

si (9)

3.6.2. Davies-Bouldin Index
The Davies-Bouldin index provides the average similarity between clusters, where similarity is a metric that

compares the distance between clusters with cluster size. The Davies-Bouldin measure for a pair of clusters Ci and
C j is defined as

DBi j =
σµi + σµ j

δ(µi, µ j)
, (10)

where µi denotes the centroid of cluster Ci, σµi =
√

var(Ci) represents the dispersion of the points around the respec-
tive centroid (square root of the total variance) and δ(µi, µ j) is the distance between the centroids.

The Davies-Bouldin index [66] is thus defined as

DB =
1
k
·

k∑
i=1

max
i, j
{DBi j}, (11)

meaning that for each cluster Ci it is chosen the cluster C j that returns the largest DBi j ratio. Therefore, smaller DB
values mean better clustering (clusters are well separated and each one is well represented by its centroid).

3.6.3. Calinski-Harabasz Index
The Calinski-Harabasz index [67] is defined as the ratio between the within-cluster dispersion and the between-

cluster dispersion. It is given by

CH(k) =
tr(SB)
tr(SW )

·
n − k
k − 1

, (12)

where tr(SB) is the trace of the within-cluster scatter matrix, tr(SW ) is the trace of the between-cluster scatter matrix.
For a good k (number of clusters), it should result in a high CH value. Thus, the Calinski-Harabasz index can also

help in selecting the k that maximizes CH(k), an alternative to the elbow method typically used for K-means [48].
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4. EV Charging Datasets

There is no cluster analysis without a dataset. Therefore, it is essential to have an adequate EV charging dataset.
Amara-Ouali et al. [68] perform an outstanding study of the best EV open data available, providing the community
with a structured list of open datasets ready to foster data-driven research in this field. Furthermore, Calearo et al.
[69] present a review of data sources for EVs, categorized into different classes by the type of data and its availability.

Based on these papers, the ACN-Data dataset [70] was found to be one of the most widely used in the literature
in the context of EV data analysis. Zachary J. Lee, Tongxin Li, and Steven H. Low are responsible for the public
release of this dataset. In [71], the authors describe the characteristics of the dataset, how they managed to get the
data, and proved that this dataset has several possible applications, including clustering analysis of EV charging data
using GMM. At the time of writing, ACN-Data has 31424 EV charging sessions found. The first session was in Apr
2018, and the last was in Sep 2021. Data are broken out by charging station name/identification, transaction date,
transaction start/end time, energy use, and customer ID.

Another dataset found in [68] is from the city of Boulder, Colorado. Boulder dataset [72] has data from Jan 2018
until Sep 2023 and has 148136 EV charging sessions (1 row of the dataset, 1 EVSE transaction). Thus, it has one of
the most recent information about EV charging found online, frequently updated on the website. Boulder does not
have the customer ID field. Instead, it features extra fields, like the length of charging time, GHG emission reductions,
and gasoline savings from all city-owned EV charging stations.

Palo Alto dataset [73] is one of the largest datasets online. It covers six years and features 259416 EV charging
sessions, from Jul 2011 until Dec 2020 in the city of Palo Alto, California. It has the same fields as the Boulder dataset
plus the customer ID, like the ACN-Data.

ElaadNL dataset [74] is one of the best-known European datasets. An overview of 10000 random charging events,
including 15-minute meter values per transaction for 2019, is currently available on the official website. It is also
possible to access private data by requesting a code. In the literature, it can be seen that previous studies referencing
this dataset indicate different fields and time periods when compared to the dataset currently made available to the
general public. At the time of writing, the ElaadNL dataset features a Max Power entry, an absent field from the
previously mentioned open datasets, which allows the investigation of EV charging flexibility.

It is necessary to choose only a subset of the total available fields from the datasets to perform clustering and
produce meaningful results. According to the selected entries, the final outputs may be either EVSE accessibility, EV
charging profiles, or EV user behavior. A complete list of the fields found in each of the aforementioned datasets is
presented in Table 2.

In addition to these datasets, known as Charging Event Datasets or Transaction Datasets, it is also possible to
obtain data in time series format, called Meter Values Datasets. However, this differs from the literature’s norm for
studying EV charging profiles or user behavior. For instance, the file obtained through the ElaadNL dataset website
[74] also provides a meter values version for the same period (2019). Another dataset found online [75] corresponds
to meter values of household consumption of more than 700 EV owners who joined an 18-month smart charging trial,
known as the Electric Nation project [76], in the UK.

5. Applications of Clustering in EV Data

The literature often considers EV charging profiles and EV user behavior synonyms. Authors name their work
using one term or another depending on the dataset and the chosen fields. The same does not happen for EVSE
accessibility, whose studies utilize EVSE location data and not EV charging data. For example, Shen et al. [77]
grouped the charging sessions from the ACN-Data dataset by each user and then performed clustering, naming their
work EV user charging behavior identification. Shahriar and Al-Ali [78] also utilized the ACN-Data but chose the
features of each session without clustering the data by user, naming it charging behavior clusters. Ultimately, the two
studies found groups with similar charging behavior characteristics. Thus, this section presents the work done in each
of these areas, divided into the subsections EV User Behavior & Charging Profiles, EVSE Accessibility and Location,
and Other Applications.
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Table 2: Summary of the available fields in the open datasets reviewed.
Datasets ACN-Data Boulder Palo Alto ElaadNL

Format JSON file CSV file CSV file CSV file

Time Interval
25 Apr 2018

-
14 Sep 2021

20 Jan 2018
-

09 Sep 2023

29 Jul 2011
-

31 Dec 2020

01 Jan 2019
-

31 Dec 2019

Total Sessions 31424 148136 259416 10000

EVSE Identification
and Location

Only
Identification Both Both

Only
Identification

Start and End Times
(plug-in and plug-out)

Yes Yes Yes Yes

Charging Duration
(effective time of charging)

No Yes Yes Yes

Energy Consumed [kWh] Yes Yes Yes Yes

Port Type No Yes Yes No

Customer Identifier Yes No Yes Yes

GHG and Fuel Savings No Yes Yes No

Customer Postal Code No No Yes No

Max Power
(per charging session)

No No No Yes

5.1. EV User Behavior & Charging Profiles
EV charging data has been submitted to clustering methods to identify the most common and recurrent charging

profiles. As previously mentioned, these studies aim to identify valuable information to assist ESMs, DSOs, utilities,
and urban planners in correctly implementing EVs in the power system. EV batteries also represent a flexibility
potential that may become increasingly valuable to the energy system as RES increases in prevalence [79]. Previous
studies have proposed various methods to identify clusters of similar charging patterns.

For example, Shen et al. [77] employed the K-means algorithm to cluster EV charging behavior, aiming to im-
prove the efficiency of scheduling EVs within a 5G-enabled smart-grid environment. To enhance the accuracy of the
clustering process, especially when dealing with sparse or irregular data, the authors introduced a hybrid intelligence
concept known as Human-in-the-Loop (HITL). This approach involves manual supervision and adjustment of the
clustering results to correct potential errors that might arise from the algorithm. To obtain typical user behavior, the
authors grouped data based on individual users, employing features such as the average charging time, the standard
deviation of charging time, and the standard deviation of connection time. This method yielded three distinct clus-
ters: two representing users with stable and predictable charging behaviors and a third representing EV drivers with
unpredictable behaviors. Subsequently, the K-Nearest Neighbors (K-NN) algorithm was applied to classify new data,
effectively identifying whether new users exhibit stable or unstable charging patterns based on the clusters found.

Similarly, Xiong et al. [80] investigated EV user behavior by organizing the data at the user level, representing
each user with a tuple consisting of average arrival time, average departure time, standard deviation of arrival time, and
standard deviation of departure time. Additionally, the authors included the Pearson correlation coefficient between
stay duration and energy consumption to capture the relationship between these variables. Using this enriched data,
K-means clustering was employed to identify four distinct user profiles. One cluster exhibited highly predictable
behavior, with arrival and departure times falling within a well-defined range and minimal variance, while another
represented users with random travel schedules and energy consumption patterns. After identifying these clusters, the
authors employed a multilayer perceptron (deep learning approach) to study EV user charging records and generate
classifications based on the clustering labels, improving the ability to predict and manage future charging demands.

Van Kriekinge et al. [81] proposed a methodology to simulate the charging demand for different types of drivers.
Typical EV driver profiles with similar charging habits are needed to accomplish this goal. The authors performed
clustering with data from a private dataset, replacing all charging sessions with one specific theoretical charging ses-
sion per EV driver (average value of the plug-in times, parking times, and charged energy) with the goal of obtaining
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profiles of EV user behavior. The result is a mean behavior for each EV user. The clustering proposed in this study
works in two stages: the first step consists of clustering the mean features per EV user to find users with typical be-
havior, and the second step is conducted only on how frequently each EV driver charges their vehicle, always utilizing
the K-means algorithm. The results indicated five clusters, with big differences in behavior between the EV drivers.
In addition, the Kernel Density Estimation (KDE) process allows capturing the details of each cluster, and the specific
charging behaviors, helping in the final simulation stage, which demonstrated a strong impact on power and energy
demand when adding new EV users to the population.

Gerossier et al. [82] employed Hierarchical Clustering to classify EV charging behavior into four distinct groups.
The study processed time series data to extract individual charging sessions, categorizing them based on the start-up
time (initial plug-in time) and the duration of the charging process. This methodology is thoroughly documented and
presented in their work. Most customers were found to belong to the first group, characterized by charging activities
predominantly occurring during the evening and morning hours.

To find the typical behavior of users in fast charging EVSEs, Capeletti et al. [83] performed agglomerative cluster-
ing with kernel density estimation on private data from 10 charging stations on highways, using features such as stage
of charge, energy, power, time, and location to understand user dynamics during charging events. Despite defining
their work as user behavior, the characterizations of the 5 clusters found are much more in line with the notion of
EV charging profiles found in the majority of studies in the literature, since they characterize the charging sessions
(energy delivered, recharge time, average power, and start time) without having any connection to the users, contrary
to that verified in the Van Kriekinge et al. [81] study. The results indicated that certain locations have more char-
acteristic clusters than others, supporting the development of load demand forecasting models. However, the study
utilized a limited dataset of 5918 charging events collected over only 10 months, making the results unreliable in an
ever-changing world such as electric mobility.

Working with a large dataset from metropolitan areas of the Netherlands, Helmus et al. [84] carried out a two-
step, bottom-up data clustering approach that first employs GMM to cluster charging sessions and then portfolios of
charging sessions per user using K-Medoids (comparable to K-means clustering). The study considers starting time,
connection duration, the distance between two sessions, and hours between sessions as features. From the first step,
thirteen clusters were found: 7 types of daytime charging sessions (4 short, 3 of medium duration) and 6 types of
nighttime charging sessions. The second step resulted in nine distinct clusters: 3 clusters contained daytime chargers,
3 nighttime chargers, and the remaining 3 featured unusual users. The study is detailed, yet perhaps too complex. It
requires careful reading and prior knowledge of some of the methods used.

On the other hand, Märtz et al. [85] claim they utilized the most comprehensive (private) dataset on charging
patterns from an EV perspective known in the literature, containing approximately 21000 BMW i3 BEVs and about
2.6 million charging processes during one year (2019). The authors conducted GMM clustering on the EV charging
behavior, using plug-in time and duration as features, and identified seven distinct clusters: 3 overnight and 4 daytime.
Furthermore, the authors performed a supplementary analysis using K-means clustering to detect EV users transition-
ing between clusters. The methodology and decisions made throughout the manuscript are justified, enhancing the
reader’s comprehension of all the steps taken and providing an excellent visualization of the clusters identified, mak-
ing this analysis one of the most comprehensive in the literature. The authors also highlighted the potential flexibility
of the EV charging processes. Similarly, Singh et al. [86] utilized GMM clustering to classify EV charging behavior
and forecasted energy demand using regression models such as Random Forest and LSBoost. The authors reasoned
that GMM is advantageous over K-means because it accounts for data point variance. They also utilized plug-in time
and duration fields, determining the optimal number of clusters using Akaike’s Information Criteria (AIC) [87] and
Bayesian Information Criterion (BIC) [88], a comparable approach to Märtz et al. [85].

One of the most interesting EV charging analyses was conducted by Shahriar and Al-Ali [78]. This study on real
public EV charging activity during the COVID-19 pandemic performed cluster analysis with K-means, Hierarchical
Clustering, and GMM to identify similar groups of charging behavior based on vehicle arrival and departure times.
K-means produced the best results, followed by Hierarchical Clustering, according to the metrics Silhouette [65],
Davies-Bouldin [66], and Calinski-Harabasz [67]. The authors only discovered three clusters corresponding to the
knee of the elbow method curve. One of the study’s drawbacks is that it only employed a single method for establishing
how many clusters were appropriate for the data. Another drawback is that the authors only employed two features
to group the data into clusters: arrival and departure times. They mentioned that adding more features may cause the
results to vary, resulting in fewer generic clusters.
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Bayram et al. [89] conducted detailed research of the first publicly available AC charging sessions in the UK
over four months. This study focused on key features such as utilization rates, arrival and departure times, energy
delivered, and overstay duration. To analyze the data, the authors applied the DBSCAN algorithm, which enabled the
identification of patterns in charging behavior based on arrival and departure times. This approach highlighted distinct
clusters, providing valuable insights into charging patterns and station utilization. Similarly, Sadeghianpourhamami
et al. [90] employed DBSCAN to study a large dataset of EV charging sessions in the Netherlands. This analysis,
which included over 390000 sessions, aimed to quantify the flexibility of EV charging behavior by clustering the
sessions into three groups. These clusters were characterized by different behaviors, such as charging near home,
near work, or parking to charge, and were further analyzed for their impact on the grid, particularly in terms of load
flattening and renewable energy integration.

To address the existing gaps in the literature on charging profiles, Forte et al. [91] applied three clustering methods
from different fields, namely K-means, Gaussian Mixture Model, and Hierarchical Clustering, conducting a bench-
mark analysis with the silhouette, Davies-Bouldin, and Calinski-Harabasz scores. Using open (Caltech dataset) and
private (Greek dataset), focusing on the features energy delivered, connection time (plug-in time), and parking time
(sojourn time), the authors concluded that the best method for either dataset was K-means. The study applied charging
profiles to characterize the flexibility of charging processes, finding that, in Caltech, most chargers can benefit from
around a 40% reduction in charging power. In contrast, most users in Greece can achieve around an 80% reduction,
due to the characteristics of fast public EVSEs. These insights provide valuable empirical data for power system
operators and charging infrastructure managers, aiding better planning and improving grid integration of EVs.

Kim et al. [92] aimed to understand the operational characteristics of EVs to enhance the electrical grid’s stability
and reduce battery degradation. Different from the previously mentioned studies, the authors characterized EV charg-
ing profiles as a joint probability distribution of the start and end states of charge. Using a Hierarchical Clustering
algorithm based on the Jensen-Shannon distance, they validated their findings with Silhouette, Calinski-Harabasz, and
Davies-Bouldin indexes. The results indicated that most users analyzed in South Korea do not recharge their batteries
to 100%, but 80%. This outcome presents an opportunity to optimize charging structures and develop personalized
services for battery management.

Another interesting investigation is presented by Ahmed et al. [93], who introduced a study into the impact of
EV penetration in load profiling of domestic consumers by performing clustering. Consumers classified into different
classes before adopting an EV tend to fall into the same class after the incorporation of EV charging. The authors
employed K-means with data from only 10 EVs, making the analysis unreliable, with further in-depth work required.

Unlike previous research that aimed to find user behavior to adapt the power grid system better, Hu et al. [94]
conducted a study to identify and categorize typical EV users for marketing purposes. By extending the conventional
RFM model to the RFMLT model, the authors were able to cluster EV users using a two-stage clustering technique
that combines the DBSCAN algorithm and the K-means algorithm. The traditional RFM model is a well-known
database marketing technique that can extract the most valuable information from users with fewer indicators. After
analyzing several clustering techniques, the proposed strategy was more reliable than other methods. The findings
showed that six groups could be formed from the 7426 EV users: “high-value users”, “key users to maintain”, “key
users to develop”, “potential users”, “new users”, and “lost users”.

Table 3 presents a summary of the most relevant information of the aforementioned studies.

Table 3: Summary of the EV user behavior & charging profiles papers reviewed.

Study Brief summary Clustering method Dataset Conclusions

Shen et al. [77]
USA & Canada
2020

To manage (dis)charging
behavior of EVs in the smart
grid, proposes a communica-
tion network for analysis and
prediction of user behavior

HITL-based K-means
clustering and K-NN
algorithm for predic-
tion

ACN dataset, from
Caltech University
Campus

Identified 2 clusters of
stable and predictable users,
but the third cluster was
found to be unexpected
users
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Table 3 cont.

Study Brief summary Clustering method Dataset Conclusions

Xiong et al. [80]
Los Angeles, USA
2018

Proposes an EV user behavior
technique, using unsupervised
and deep learning techniques,
applied to historical EV data
to make the day-ahead park-
ing and charging prediction

K-means for clustering,
multilayer perceptron
for classification

More than 4 years
data of the UCLA
SMERC smart
charging network
infrastructure

Identified 4 clusters, with
3 relatively predictive
behavior, but one cluster
represented random
traveling schedule and
energy consumption

Kriekinge et al. [81]
Brussels, Belgium
2023

Proposes a methodology to
simulate charging demand for
different EV driver types. The
identification of similar profiles
is performed using clustering

K-means for clustering
and KDE to better
capture details for the
simulation stage

8 755 private EV
charging sessions
(Jul 2018 - Jan 2022)

Identified 5 clusters, with
distinct and different
characteristics, showing
good clustering results

Gerossier et al. [82]
Texas, USA
2019

Models the consumption
profile of EVs from raw power
measurements. The charging
habits model is then used for
forecasting short-term, one
day ahead, to long term (2030)

Hierarchical Clustering
with Ward’s method

46 private EV char-
ging data recorded
every minute of the
year 2015 in Texas

Identified 4 clusters.
Simulating the projected
demand in 2030, it
appears that the growth in
EVs will have little effect
on the load curve’s shape

Capeletti et al. [83]
Brazil
2024

Analyzes the recharging
sessions of highway public
fast chargers to investigate
the behavior of users when
requiring fast power

Hierarchical Clustering
and KDE to examine
the profiles

5918 charging events
from 10 public fast
EVSEs in Brazil
(Aug 2023 - Jun 2024)

5 clusters distributed
across the 10 locations.
More data is required to
validate the results

Helmus et al. [84]
Amsterdam,
Netherlands
2020

Provides a realistic analysis of
charging behavior and EV
user types based on clustering,
differing from the typical
literature that seems over-
simplified

Gaussian Mixture
Models for clustering
and Partition Around
Medoids to find
portfolios of charging
sessions per user

5.82 million charging
transactions (January
2017- March 2019)
from the Dutch
metropolitan area

13 clusters were found: 7
types of daytime charging
sessions (4 short, 3
medium duration) and 6
types of overnight charging
sessions

Märtz et al. [85]
Germany
2022

Investigates the possibility of
identifying different clusters
of EV charging processes,
validating the results against
synthetic load profiles and
the original data

Gaussian Mixture
Models and K-means

2.6 million private
charging processes
of 21000 BMW’s i3
model from 2019 in
Germany

High number of charging
opportunities during day,
as well as user exchange
between charging clusters,
to reduce localized energy
demand. Found 7 clusters

Singh et al. [86]
Ottawa, Canada
2022

Proposes a smart EV charging
strategy that incorporates
user charging behaviors to
optimize charging schedules
and reduce costs

Gaussian Mixture
Models, Random Forest,
LSBoost

ElaadNL, Dutch smart
charging dataset,
10000 sessions

Flexible smart charging
outperforms baseline
scheduling in reducing
charging costs and managing
load shifting

Shahriar and Al-Ali
[78]
UAE
2022

Investigates the impacts of
COVID-19 on EV charging
behavior by analyzing the
charging activity during the
pandemic

K-means, Hierarchical
Clustering, and
Gaussian Mixture
Models

ACN dataset, from
Caltech University
Campus

Identified 3 groups of char-
ging behavior. The best
clustering was obtained
using K-means followed by
Hierarchical Clustering

Bayram et al. [89]
UK
2023

Conducts a statistical analysis
of public AC EV charging
sessions to characterize usage
patterns and identify distinct
behavioral clusters using
unsupervised learning

DBSCAN

12000 EV charging
sessions from 595
public AC chargers
(7 kW and 22 kW)
across the UK

Identifies three clusters
(short overnight, daytime,
long overnight charging)
and shows significant
opportunities for smart
charging to reduce peak
loads by 30%
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Table 3 cont.

Study Brief summary Clustering method Dataset Conclusions

Sadeghia. et al. [90]
Netherlands
2018

Analyzes the flexibility in EV
charging behavior to optimize
load flattening and balancing,
using real-world charging data
from the Netherlands

DBSCAN

Private ElaadNL, with
387524 EV charging
sessions from public
EVSEs (2014-2015)

Identifies 3 behavioral
clusters (home, work, park),
highlighting significant
flexibility in charging times
that can be leveraged for
demand response strategies

Forte et al. [91]
Portugal & Greece
2025

Performs a benchmark analysis
of different clustering methods
to find the best charging profiles
to characterize the flexibility of
EVs and help integrate them
into the grid

K-means, Hierarchical
Clustering, and
Gaussian Mixture
Models

ACN dataset, from
Caltech University
Campus, and private
data from public
EVSEs in Greece
(2021-2023)

K-means performed better,
with the 8 ACN cluster
sessions mostly longer
and more adaptable, while
the 10 Greek cluster
sessions are shorter and
less flexible

Kim et al. [92]
S. Korea
2024

Aims to understand the
operational characteristics
of EVs to improve grid
stability and mitigate
battery degradation

Hierarchical
Clustering

Private charging
records from 499
EVs, during 1 year
in South Korea

Identified 7 distinct profiles,
with patterns ranging from
frequent full charges to
strategic partial charges
to preserve battery health

Ahmed et al. [93]
Pakistan & S. Korea
2021

Investigates the impacts of
inserting EVs into smart meter
data at the household level by
performing clustering

K-means

With 30 minutes
resolution, 30 EV
charging profiles
from the NREL
(USA) dataset

Consumers who were clas-
sified into different classes
before introducing EVs
tend to fall into the same
classes after adopting EVs

Hu et al. [94]
China
2022

The goal was to identify and
categorize typical EV users
for marketing purposes, by
extending the conventional
RFM model to the RFMLT

DBSCAN and K-means

228440 charging
records of 7426 EV
users, from Internet
of Vehicles Platform
in 2019

Identified 6 clusters: high
value users, key users to
maintain, key users to
develop, potential users,
new users and lost users

5.2. EVSE Accessibility and Location

Given the previously mentioned studies, it may seem that clustering is only applied to EV charging data. However,
the focus of the literature goes beyond EV charging patterns [95]. As EV sales increase, the location and positioning
of EVSEs may become an issue [96], which clustering can help to address.

Carlton and Sultana [97] perform spatial clustering of public EVSEs to analyze the characteristics of their land use
and how these characteristics impact EVSE accessibility. The authors applied DBSCAN to identify spatially clustered
Level-1, Level-2, and DC fast charging infrastructures in the Chicago Metropolitan Area. The results indicate that
access to EVSEs is unequal between suburban and urban neighborhoods, bringing social inequalities into view and
preventing the widespread adoption of EVs.

Finding the most appropriate location to place EVSEs is a big problem. Few studies have used clustering methods
to locate EVSEs; most research papers concentrate on building charging station placement models and positioning
charging stations based on various objective functions and restrictions [98]. To demonstrate that clustering can pro-
duce more accurate and understandable results, Li et al. [99] proposed a broadly applicable technique for finding
EVSE locations in Qingdao, China, based on multi-type clustering in response to the expanding demand for electric
taxis. Electric taxi parking information and charging needs are derived from the extensive GPS trajectories of gasoline
taxis. To find the ideal site for the charging station, the study area of Qingdao is subjected to multiple same-type clus-
tering and multi-type clustering methods. K-means and Agglomerative Hierarchical Clustering were methods utilized
for this comparative analysis, demonstrating that the positioning results of the multi-type clustering are more credible.
Similarly, Shukla et al. [100] aimed to reduce social costs by minimizing the distance traveled for charging EVs. The
number of EVSEs to be located was determined by calculating EVs’ energy demand and the EVSEs’ service radius.
K-means and fuzzy C-means [101] are used to find the location of EVSEs, with the location of stations given by the
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centroid of the clusters and the number of clusters corresponding to the number of stations needed in the area under
study.

Sánchez et al. [102] proposed a mixed-integer linear programming (MILP) model to solve the electric location
routing problem with time windows (E-LRPTW), integrating the optimization of EV routes with the best placement
of EVSEs. The model aimed to minimize the distance traveled, the number of EVs used, and the number of EVSE
locations by incorporating constraints such as state of charge, freight, battery capacities, and customer time windows.
To enhance computational efficiency, the authors employed K-means to group drivers and determine potential sites
for placing the EVSEs. Depending on the instance, the clustering algorithm identified two to five clusters, each
representing a specific geographical area with a centroid as a candidate location for a recharging station. This approach
significantly reduced the number of binary variables, allowing the model to optimize EV routing scenarios effectively
and solve larger instances in a reasonable time.

Sun [103] introduces a novel methodology for optimizing public EVSE deployment in urban neighborhoods,
focusing on high-traffic areas. The approach integrates several phases, including data preprocessing, DBSCAN clus-
tering, trajectory-road map matching, dynamic road segmentation, and optimal station placement using a 0/1 knapsack
problem. By analyzing EV taxi GPS data from one day within a 4.5 square kilometer area, the study identifies optimal
locations for charging stations. The DBSCAN clustering resulted in 256 distinct clusters, each representing areas
with dense EV traffic. These clusters were further refined using trajectory-road map matching to ensure alignment
with the road network, thereby avoiding impractical locations. The methodology proved more efficient than existing
infrastructure, achieving higher coverage rates with fewer charging stations, thus providing a scalable solution for
enhancing urban EV charging networks.

Furthermore, Kalakanti and Rao [104] addressed two main problems related to EVSE: the EVSE location prob-
lem and the EVSE need estimation problem. This work investigated different explainable solutions based on machine
learning and simulation. For the problem of EVSE location, the authors utilized a geolocation dataset of EV house-
holds (of Austin, USA, and a greenfield area of Bengaluru, India) to perform a comprehensive analysis with different
classes of clustering methods, namely K-means, GMM, OPTICS [105] (similar to DBSCAN but more flexible and
scalable), and Spectral clustering. The results were compared in two planning areas: the Austin area, with the existing
EVSE location data (to show the improvement over the existing setup), and a greenfield area like Bengaluru, where
synthetic EVSE data were used. Silhouette coefficient, Calinski-Harabasz index, and Davies-Bouldin index were
the chosen metrics to evaluate the clustering results. The final results guide urban planners in making better EVSE
placement.

Table 4 presents a summary of the most relevant information of the aforementioned studies.

Table 4: Summary of the EVSE Accessibility and Location papers reviewed.

Study Brief summary Clustering method Dataset Conclusions

Carlton et al. [97]
North Carolina,
USA
2022

Performs spatial clustering of
public EVSE to analyses their
associated land use tendency,
and how these can impact
EVSE accessibility

Hierarchical Clustering
based on DBSCAN

Public EVSE location
data from the
Alternative Fuel Data
Center (AFDC)

Majority of level 2 EVSE,
only 26% of clusters with
mixed land uses
(residential, commercial
and recreational)

Li et al. [99]
China
2022

Proves that clustering can
be used to find optimal
EVSE locations, specially
important for the growing
market of the electric taxis
in China

K-means and
Hierarchical Clustering

Obtained from
“Gao De Map”

The optimal location
result of the multi-type
clustering is more
plausible than that of the
same-type clustering

Shukla et al. [100]
India
2016

Intends to solve the optimal
location problem of EVSEs
by minimizing the distance
traveled for charging EVs

K-means and
fuzzy C-means

Estimate the EV no.
by evaluating the
households, modify-
ing the IEEE 123 bus
distribution system

The clustering methods
performed better when
compared with random
placement of EVSEs
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Table 4 cont.

Study Brief summary Clustering method Dataset Conclusions

Sánchez et al. [102]
São Paulo, Brazil
2022

Proposes a model for optimizing
EV routing and the placement
of EVSEs, using clustering
to reduce computational
complexity

MILP with K-means Simulated data based
on previous studies

The model reduces
computation time
significantly while
optimizing routes and
EVSE locations

Sun [103]
Undisclosed city,
2023

Optimizes the placement of
public EVSEs in an urban area
using real EV taxi trajectory
data. High-density traffic areas
are obtained trough clustering

DBSCAN

101600 EV taxi
trajectories,
GPS data from
October 2016

Methodology achieves
higher coverage rates
with fewer charging
stations compared to
existing infrastructure

Kalakanti and Rao
[104]
India
2022

Aims to solve two problems:
the EVSE placement and the
EVSE need estimation, to
guide the urban planners in
making better EVSE
placement

K-means, GMM,
OPTICS, Spectral
Clustering, and
other ML methods

Austin Charging
Station Network real
geolocations

K-means and GMM consis-
tently yielded the best
results, with OPTICS and
Spectral Clustering often
wrong or nonsense

5.3. Overview of Analyzed Applications per Clustering Method
To provide a more comprehensive overview of the clustering methods used in EV data analysis, Table 5 summa-

rizes the reviewed studies according to the clustering technique adopted and the primary objective. All the studies
listed identified EV user behavior/charging profiles or EVSE accessibility through clustering. However, while some
articles focused exclusively on uncovering these patterns, others utilized the identified profiles to support additional
objectives, such as scheduling, forecasting, grid impact assessment, flexibility quantification, or market segmentation.

Table 5: Summary of reviewed applications per clustering method.

K-means Hierarchical
Clustering GMM DBSCAN Fuzzy

C-means
Spectral
Clustering OPTICS

Scheduling [77] [86]

Forecasting/Classification Models [80], [85] [82] [85]

User Behavior Charging Analysis [78] [78], [83], [92] [78], [84]

Grid Impact Assessment [81], [93] [89]

Flexibility Quantification [91] [91] [91] [90]

Market Segmentation [94] [94]

EVSE Placement/Accessibility [99], [100],
[102], [104] [97], [99] [104] [97], [103] [100] [104] [104]

As revealed in Table 5, K-means and Hierarchical Clustering are among the most commonly employed methods
across various applications, particularly in EVSE planning and user behavior analysis. GMM and DBSCAN appear
less frequently, revealing that density-based methods are underexploited in EV data. However, GMM is more com-
petitive in studies focused on characterizing user behavior and charging profiles, while DBSCAN reveals its strengths
in EVSE placement. More advanced methods, such as OPTICS, spectral clustering, and fuzzy C-means, are less
commonly used, although they have emerged in studies targeting EVSE placement and accessibility.

This distribution highlights the popularity and limitations of traditional clustering techniques and the potential for
the adoption of more refined algorithms. The diversity of methods also reflects the variation in data availability and
research goals, reinforcing the need for methodological transparency and comparative studies.

5.4. Other Applications
In addition to EV user behavior, charging profiles, or EVSE accessibility, clustering can be an extra tool to achieve

different goals. In fact, the idea of applying clustering to help machine learning methods forecast charging habits has
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received a lot of attention in the literature.
The study by Nespoli et al. [107] aimed to create a complete representation of the power required for the charging

station through an EV charging session forecasting method that was both accurate and detailed. The main areas of
study were the forecast and reconstruction of the aggregated power profile, but clustering represented a key step in
obtaining the forecast results. The authors used OPTICS to obtain EV user behavior. To do that, they chose the start
charging time and the energy used throughout the charging period as features. From this, each charging session was
predicted with a trio of parameters: the “arrival time”, the “charging duration”, and the “average power” expected
during the process. Since the paper’s main goal was forecasting rather than clustering, the clustering step was not as
thoroughly discussed as the rest of the work. Nonetheless, it is a great example of how clustering can be used in EV
data analysis.

A more detailed and complex approach was performed by Shahriar et al. [108] and Crozier et al. [109].
Shahriar et al. [108] proposed the usage of historical charging data in conjunction with weather, traffic, and events data
to predict EV session duration and energy consumption using popular machine learning algorithms, including Ran-
dom Forest, Support Vector Machine, eXtreme Gradient Boosting, and deep Neural Networks. On the other hand, by
combining information from two different data sources (travel survey data and vehicle usage data), Crozier et al. [109]
employed a stochastic model to assess EV charging and predict its effects on the energy network in the UK. The model
is based on conditional probability distributions and incorporates random variables for vehicle usage, stage of charge,
time, and type of day. The survey dataset was clustered using K-means, and the discrete probability distributions were
created using the EV experiment data. The study underlined the importance of effectively understanding the diversity
of EV charging demands among consumers.

To better comprehend the process of forecasting EV charging, Zhu et al. [110] presented a comparative study of
deep-learning methodologies to forecast EVs’ short-term charging (for monitoring and controlling applications). Sev-
eral deep-learning-based methods were analyzed, using real-world data from EVSEs to compare their performance.

Based on actual fine-grained data, Sun et al. [111] completed a study to comprehend the behavior of an EV battery.
The objective was to identify profiles in time series data of battery charging rates that might be utilized to forecast
charging behavior. The authors performed alternating minimization [112] on an optimization function, comparing the
results with Euclidean distance, DTW, and a modified version of Euclidean distance, which yielded the best results.
This study demonstrates applications of EV time series clustering.

An alternative method to machine learning algorithms is simulation, a technique widely used by the great majority
of researchers due to the lack of EV real-world open data [68]. Several simulation models have been put out to address
this issue. Zhang et al. [113] investigated charging profiles of EVs, presenting a sophisticated simulation method that
takes people’s demographic and social characteristics into account. Numerous articles were written in the field of EV
charging analysis based on simulated data or information owned by private companies, which is rarely made available.
In the absence of real data, one approach is to use synthetic charging profiles derived from the driving behavior of
conventional vehicle users, like Schäuble et al. accomplished in [114].

6. Recommendations and Future Work

As EVs become increasingly integrated into power systems and urban environments, a deeper understanding and
evolution of clustering methods is essential to ensure their practical utility, robustness, and scalability [25]. This
section reflects on the current limitations observed in the literature, explores how clustering techniques are already
being applied in electric mobility, and outlines possible improvements and future work directions.

6.1. Limitations of Current Clustering Studies

Clustering has emerged as a valuable tool for EV user and charging behavior, yet several limitations persist in
existing studies that impede the generalization and scalability of their findings

Firstly, one of the most pressing issues is the limited availability of high-quality, publicly accessible datasets. As
previously mentioned in the review, many analyses rely on data from private companies, rarely made available to
the research community. Additionally, the currently available datasets typically focus on limited geographic regions
(primarily in the United States), which challenges the extrapolation of results to other contexts, particularly in Europe
and developing countries.
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Another critical limitation is the restricted dimensionality of the data used. Most studies apply clustering al-
gorithms to datasets with only a few features, often limited to charging session start times, durations, and energy
consumption. This narrow scope prevents the discovery of more nuanced behavioral patterns. In particular, contex-
tual variables such as weather conditions, traffic congestion, or local area events (often used by forecasting studies)
are rarely considered. Integrating these variables could significantly improve cluster interpretability and model per-
formance.

Finally, the diversity of clustering techniques remains limited. Classical approaches like K-means or Hierarchical
Clustering dominate the literature, but these are not always suitable for capturing dynamic and heterogeneous EV
charging behavior. The limited number of comparative studies and benchmarks further complicates the clustering
performance evaluation across research works.

6.2. Practical Applications of EV Clustering

Despite the limitations outlined earlier, clustering techniques have revealed strong potential for informing prac-
tical applications within the EV ecosystem by characterizing user/charging behavior and supporting operational and
strategic decisions:

• Charging Scheduling: Clustering can group users with similar charging patterns and preferences, enabling the
design of intelligent scheduling algorithms. These can optimize charging sessions to avoid grid congestion or
to align charging demand with renewable generation (Shen et al. [77], Singh et al. [86]).

• Forecasting and Classification Models: Clustering provides a valuable preprocessing step for machine learn-
ing models, improving the accuracy of forecasting EV demand or classifying users by their charging behavior
or energy flexibility (Xiong et al. [80], Gerossier et al. [82], Märtz et al. [85]).

• User Behavior and Charging Process Analysis: By analyzing clustered behavior, researchers can gain in-
sights into the diversity of user needs and charging habits. This enables more accurate user segmentation and
facilitates the personalization of EV services (Capeletti et al. [83], Helmus et al. [84], Shahriar and Al-Ali [78],
Kim et al. [92]).

• Grid Impact Assessment: Clustering also plays a key role in evaluating the impact of EV charging on the elec-
trical grid. By distinguishing high-demand clusters and their temporal patterns, system operators can anticipate
stress points and plan reinforcement actions accordingly (Kriekinge et al. [81], Bayram et al. [89], Ahmed et
al. [93]).

• Flexibility Quantification: Clustered profiles enable a more accurate estimation of the flexibility potential
from EV users, which is particularly important for demand response programs, where it is crucial to identify
which users or usage patterns are best suited for temporal load shifting (Sadeghianpourhamami et al. [90], Forte
et al. [91]).

• Dynamic Pricing and Market Segmentation: Grouping users into behavior-based clusters supports the de-
velopment of differentiated tariff structures and allows market actors to target specific segments with incentives
for off-peak charging, supporting more efficient grid operation (von Bonin et al. [39], Hu et al. [94]).

• EVSE Infrastructure Planning and Accessibility: Clustering helps uncover spatial and temporal charging
demand patterns, informing the placement and sizing of new EVSEs. This contributes to more efficient infras-
tructure deployment and improves accessibility (Carlton and Sultana [20], Li et al. [99], Shukla et al. [100],
Sanchez et al. [102], Sun [103], Kalakanti and Rao [104]).

6.3. Future Research Directions

To fully leverage the potential of clustering in electric mobility, future research must embrace more integrated,
context-aware methodological approaches in algorithm design and data processing. Addressing these challenges
facilitates a more effective application of clustering techniques and reveals several promising and underexplored areas
for future academic and practical research.

22



6.3.1. Integrating Contextual and Spatial Dimensions
Clustering methods should increasingly consider contextual and spatial variables to improve the interpretability

and relevance of identified patterns. Context-aware clustering can help explain temporal fluctuations in charging
behaviors by considering external factors such as weather, public holidays, or traffic [108]. Furthermore, future studies
could combine quantitative clustering analysis with qualitative methods, such as user surveys, to validate whether the
identified charging and behavior clusters truly reflect real-world usage patterns and needs.

However, an underexplored yet impactful direction lies in incorporating spatial context, which is essential for
supporting decision-making in EVSE accessibility and location planning. Factors such as urban density, proximity
to transport corridors, availability of EVSEs, and socio-economic characteristics significantly impact how, when,
and where vehicles are recharged. By embedding these geographical attributes into clustering models, it is possible
to generate more accurate and actionable profiles for ESMs, urban planners, utilities, and policymakers, enabling
comparisons across areas and supporting the identification of region-specific needs to maximize effectiveness and
user satisfaction.

6.3.2. Methodological Innovations in Unsupervised Learning
Traditional clustering algorithms have provided valuable insights in previous studies (recall Section 5). However,

they may fall short in capturing the complexity of high-dimensional, non-linear, or overlapping usage patterns, es-
pecially when combining various features. It is expected that access to big data by smart meters will imply a need
for future research to explore alternative and more advanced unsupervised learning techniques, such as spectral clus-
tering, fuzzy C-means, or OPTICS, which can better manage non-convex cluster shapes and uncertainty in behavior.
Additionally, hybrid approaches that combine classical clustering with deep learning models (e.g., autoencoders [115]
or self-organizing maps [106]) have shown promising results in several scientific domains and could improve the
detection of complex patterns in large-scale EV data.

6.3.3. Temporal Dynamics and Time Series Clustering
Despite its relevance, as mentioned in Section 3.5, the application of time series clustering remains limited in

the current electric mobility literature. Time series profiles are becoming indispensable for demand response pro-
grams, time-of-use pricing, and forecasting algorithms, which require time-stamped data. Integrating this technique
can uncover hidden structures in complex temporal datasets, offering insights that static clustering methods may over-
look [61]. Nevertheless, the adoption of these techniques also raises methodological challenges, such as selecting
appropriate distance measures, handling irregular sampling, and ensuring scalability with large datasets [116]. Future
research should, therefore, prioritize the development and validation of time series clustering methods that capture
the complexity and variability of user behavior. As the availability of fine-grained EV data increases, time series
clustering is expected to play an increasingly important role in optimizing electric mobility systems and supporting
data-driven policy and operational strategies.

6.3.4. Benchmarking, Reproducibility, and Open Data
To ensure progress in this field is cumulative, future studies must prioritize methodological transparency and

comparability. A significant challenge in the current clustering literature on EV data is the lack of standardized
benchmarking that allows for the comparison and replication of results. Researchers should consistently report vali-
dation metrics (e.g., silhouette score [65], Davies-Bouldin index [66]) and conduct sensitivity analyses to assess the
robustness of their outcomes. In addition, as new studies are published, sharing datasets in open repositories would
significantly accelerate innovation by allowing other researchers to validate, replicate, and build upon existing find-
ings. Fostering a culture of openness and reproducibility is essential for creating reliable and scalable clustering
frameworks that support data-driven decision-making in electric mobility.

7. Conclusions

A comprehensive review of clustering applications for electric vehicle (EV) user behavior, EV charging behavior,
electric vehicle supply equipment (EVSE) accessibility, and its optimal location has been presented in this paper. It
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started by providing the background and current state of EVs, an exposition of the main negative impacts of uncoor-
dinated EV charging, followed by a thorough description of the most commonly employed clustering algorithms in
the context of EV data analysis, along with various metrics that can be applied to validate the results. A comparative
analysis of various studies using different methods, objectives, and datasets was presented, structured by key topics
such as EV user behavior and charging profiles, EVSE accessibility, and location strategies. In addition, studies apply-
ing clustering for broader objectives, such as forecasting, scheduling, and quantifying flexibility, were also reviewed.
Finally, recommendations and future challenges were also discussed. We identified a scarcity of studies, regional bias
of open EV datasets, limited implementation of clustering techniques, and the absence of metrics to compare results
between articles. Practical use cases for clustering were explored, including its role in assisting charging schedul-
ing algorithms, forecasting and classification models, assessment of grid impact, flexibility quantification, and EVSE
planning. Furthermore, future research directions were discussed, from hybrid deep learning and adaptive cluster-
ing models to geographical expansion, data availability, and advanced unsupervised learning techniques. This study
highlights that clustering remains a powerful but underutilized tool for understanding EV charging behavior and sup-
porting the design of more efficient and user-centered mobility and energy systems. Continued research is needed to
improve model adaptability, integrate contextual data, and validate results across diverse geographic regions. These
efforts aim to identify valuable information to support energy system modelers, distribution system operators, and
urban planners in navigating the transition to a more electrified and sustainable future.
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