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Abstract 

Energy Communities (ECs) are emerging empowering consumers and creating new business opportunities for end consumers 
and for companies that will take the management of these communities. Considering the characteristics of the communities’ 
storage systems is key to balancing production and consumption in different periods of time. With an optimal management of 
the storage, it is also possible to take advantage of the volatile prices of electricity markets charging when the prices are low (or 
even negative) and discharge when the prices are high. This paper explores an optimal management approach that integrates 
day-ahead scheduling with real-time control to enhance the efficiency and effectiveness of ECs operations. Considering day-
ahead scheduling, two optimal functions will be presented namely the cost minimization and the self-consumption 
maximization. Concerning real-time control, the main aim is to follow the scheduling or, in other words, minimize the 
deviations. In the present method the deviations are measured mainly in the State-of-Charge of the storage systems. The use 
case (UC) involves an energy community comprising 20 participants, yielding very interesting results when compared to 
traditional control methods that aim to follow the scheduled production, or the energy imported from the main grid. 

Nomenclature 

𝐵 Set of batteries 

𝐸𝑉 Set of electric vehicles 

𝐺 Set of generators 

𝐿 Set of loads 

𝐶𝑡,𝑏
𝐵+ Cost associated with battery charge 

𝐶𝑡,𝑏
𝐵− Cost associated with battery discharge 

𝐶𝑡,𝑒𝑣
𝐸𝑉+ Cost associated with electric vehicle charge 

𝐶𝑡,𝑒𝑣
𝐸𝑉− Cost associated with electric vehicle discharge 

𝐶𝑡,𝑔
𝐺+ Cost associated with power imported 

𝐶𝑡,𝑔
𝐺− Cost associated with power exported 

𝐶𝑡,𝑙
𝑐  Cost associated with energy curtailed 

𝐶𝑡,𝑙
𝐸𝑁𝑆 Cost associated with energy not supplied 

𝐶𝑡,𝑙
𝑟  Cost associated with energy reduced 

𝐶𝑡
𝑏𝑢𝑦

 Cost associated with system’s imported power 

𝐶𝑡
𝑠𝑒𝑙𝑙 Cost associated with system’s exported power 

𝐿𝑡,𝑙
𝑐  Power load that can be curtailed 

𝐿𝑡,𝑙
𝐸𝑁𝑆 Power not supplied for the system’s loads 

𝐿𝑡,𝑙
𝑟  Power load that can be reduced 

𝑃𝑡,𝑏
𝐵+ Power charged by the batteries 

𝑃𝑡,𝑏
𝐵− Power discharged by the batteries 

𝑃𝑡,𝑏,𝑤
𝐵+  Power charged by the batteries by scenario  

𝑃𝑡,𝑏,𝑤
𝐵−  Power discharged by the batteries by scenario  

𝑃𝑡
𝐼𝑚𝑝

 Power import from the grid 

𝑃𝑡
𝐸𝑥𝑝

 Power export to the gird 

𝑃𝑡,𝑒𝑣
𝐸𝑉+ Power charged by the electric vehicles 

𝑃𝑡,𝑒𝑣
𝐸𝑉− Power discharged by the electric vehicles 

𝑃𝑡,𝑒𝑣,𝑤
𝐸𝑉+  Power charged by the electric vehicles 

𝑃𝑡,𝑒𝑣,𝑤
𝐸𝑉−  Power discharged by the electric vehicles 

𝑃𝑡,𝑔
𝐺+ Power imported by generators 

𝑃𝑡,𝑔
𝐺− Power exported by generators 

 

1 Introduction 

Energy Communities (ECs) present a promising model for 
decentralizing energy systems by enabling collective 
management of energy use, which may include renewable 
energy sources (RESs). The integration of Vehicle-to-
Everything (V2X) technologies allows electric vehicles (EVs) 
to function as both energy consumers and mobile energy 
storage units, taking on versatile roles within ECs. 
 
Initial studies have focused on understanding the social 
arrangements behind ECs, aiming to identify their strengths 
and limitations in fostering collaboration, engagement, and 
efficient energy use [1], [2], [3]. At the same time, as these 
technologies evolve, the development of algorithms to 
optimize energy consumption and generation has become 
increasingly important [4]. Various methods have been 
explored, including the use of smart charging and discharging 
strategies for self-consumption energy management, as 
proposed in [5]. For instance, different types of models, such 
as metaheuristic [6], [7] and stochastic [8], [9] approaches, 
have been employed in several studies. Nevertheless, 
deterministic models deliver better results due to their ability 
to minimize uncertainty compared to metaheuristic and 
stochastic models. 
 
As part of the European project Electric Vehicle Management 
for Carbon Neutrality in Europe (EV4EU), this paper aims to 
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propose an optimized approach to managing energy 
communities while prioritizing users' needs. The proposed 
methodology has been validated in a realistic scenario, 
utilizing data inputs from an EC that integrates the main grid, 
photovoltaic (PV) systems, battery energy storage systems 
(BESSs), electric vehicles (EVs), electric vehicle supply 
equipment (EVSEs), and typical load profiles. These inputs 
were sourced from a database containing real-world records 
from several residential households on a Portuguese island 
[10], along with energy pricing data from the Iberian market 
[11]. 
 

2 Deterministic Optimization Problem  

The deterministic optimization problem is implemented by 
Python Energy Communities (PyECOM), a user-friendly 
Python-based algorithm developed to facilitate the analysis, 
simulation, and optimization of energy communities. 
PyECOM includes a robust optimization model that considers 
energy production, consumption, storage, and distribution [4].  

To enhance the functionality of PyECOM's deterministic 
optimization model, three distinct methods were developed to 
modify the input data for load and production across different 
scenarios. Method 1 incorporates data from a forecasting 
module, which is trained using historical data from Method 2. 
Method 2 utilizes real-time data, as referenced in [10], while 
Method 3 combines both forecasting and real-time data to 
provide a more comprehensive input for the optimization 
model.  

 
Figure 1 – Input data process in the PyECOM tool for Method 1 

(forecasting data) and Method 2 (real data). 

 

 
Figure 2 – Input data process in the PyECOM tool for Method 3 

(mixed data – forecasting and real). 

The PyECOM deterministic model objective function (OF) 
focuses on minimizing costs and maximizing self-
consumption; in other words, it aims to utilize the community's 
resources as efficiently as possible. As expressed in Equation 
(1), the OF integrates five critical components that reflect the 
energy dynamics within the system. These components are 
detailed in subsequent equations: generators (2), loads (3), 
BESS (4), EVs (5), and the broader system operations (6). 

min 𝑓 = 𝐺 + 𝐿 + 𝐵 + 𝐸𝑉 + 𝑆 (1) 

𝐺 =∑∑(𝑃𝑡,𝑔
𝐺+𝛥𝑡𝐶𝑡,𝑔

𝐺+ + 𝑃𝑡,𝑔
𝐺−𝛥𝑡𝐶𝑡,𝑔

𝐺−)

𝑔∈𝐺𝑡∈𝑇

 (2) 

𝐿 =∑∑(𝐿𝑡,𝑙
𝑟 𝛥𝑡𝐶𝑡,𝑙

𝑟 + 𝐿𝑡,𝑙
𝑐 𝛥𝑡𝐶𝑡,𝑙

𝑐 + 𝐿𝑡,𝑙
𝐸𝑁𝑆𝛥𝑡𝐶𝑡,𝑙

𝐸𝑁𝑆)

𝑙∈𝐿𝑡∈𝑇

 (3) 

𝐵 =∑∑(𝑃𝑡,𝑏
𝐵+𝛥𝑡𝐶𝑡,𝑏

𝐵+ + 𝑃𝑡,𝑏
𝐵−𝛥𝑡𝐶𝑡,𝑏

𝐵−

𝑔∈𝐺𝑡∈𝑇

+ (𝑃𝑡,𝑏
𝑟𝑒𝑙𝑎𝑥𝐵+)

2
𝑚+ (𝑃𝑡,𝑏

𝑟𝑒𝑙𝑎𝑥𝐵−)
2
𝑚

+ 𝐸𝑡,𝑏
𝐵𝑟𝑒𝑙𝑎𝑥𝑀) 

(4) 

𝐸𝑉 =∑ ∑ (𝑃𝑡,𝑒𝑣
𝐸𝑉+𝛥𝑡𝐶𝑡,𝑒𝑣

𝐸𝑉+ + 𝑃𝑡,𝑒𝑣
𝐸𝑉−𝛥𝑡𝐶𝑡,𝑒𝑣

𝐸𝑉−

𝑒𝑣∈𝐸𝑉𝑡∈𝑇

+ (𝑃𝑡,𝑒𝑣
𝑟𝑒𝑙𝑎𝑥𝐸𝑉+)

2
𝑚

+ (𝑃𝑡,𝑒𝑣
𝑟𝑒𝑙𝑎𝑥𝐸𝑉−)

2
𝑚+ 𝐸𝑡,𝑒𝑣

𝐸𝑉𝑟𝑒𝑙𝑎𝑥𝑀) 

(5) 
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𝑆 =∑(𝑃𝑡
𝐼𝑚𝑝

𝛥𝑡𝐶𝑡
𝑏𝑢𝑦

− 𝑃𝑡
𝐸𝑥𝑝

𝛥𝑡𝐶𝑡
𝑠𝑒𝑙𝑙 +𝑃𝑡

𝐼𝑚𝑝𝑟𝑒𝑙𝑎𝑥
𝑝)

𝑡∈𝑇

 (6) 

Each equation relates to the energy production or consumption 
of individual components and the corresponding energy prices, 

with 𝛥𝑡 denoting the time interval. The OF is subject to 
operational constraints related to EVs, CSs, BESS, generators 
(including PVs), main grid constrains related to import and 
export power, and energy balance in the system. 

3 Case of Study and Results 

3.1 Case of Study 

To test the proposed optimization approach, a case study was 
chosen involving an EC with 20 participants, including 4 small 
commercial buildings and 16 residential households. 
Additionally, the community includes twenty BESS, one for 
each location, sixteen EVSE units, thirty-two EVs, and twenty 
generators (considered as PV units, one per location). 
Furthermore, the technical constraints of the distribution 
network are considered, including a local transformer with a 

nominal capacity of 100 kW, subject to an 80% usage limit.  

 
Figure 3 – Energy Community scenario considering stationary 

storage and electric vehicles 

The following outlines the efficiency assumptions and 
configurations applied to each component: 

Category Quantity Charging 
efficiency 

Discharging 
efficiency 

BESS 20 0.95 0.96 

EVSE with V2X 10 0.95 0.95 

EVSE without 
V2X 

6 0.95 1.00 

EVs with V2X 18 0.98 0.98 

EVs without 
V2X 

14 0.98 1.00 

 

About the input data, the forecasted generator peaks for the 
four commercial buildings are 7.5kW, 11.75kW, 16.09kW, 
and 20.6kW, while residential houses are expected to remain 
below 3.6kW. However, real data reveals higher peaks for the 
commercial buildings at 9.3kW, 14.4kW, 19.8kW, and 
25.4kW, whereas residential houses show lower peaks, staying 
under 2.8kW. Forecasted load consumption for the four 
commercial buildings is 31.23kW, 24.3kW, 17.7kW, and 
11.41kW, while residential houses remain below 4.7kW. Real 
data shows higher peaks for the buildings at 40.29kW, 
31.33kW, 22.88kW, and 14.73kW, and for residential houses 
at under 5.8kW. Plots of the input data for generators used in 
Method 1 (Forecasting Data) and Method 2 (Real Data) are 

illustrated in Figure 4 and Figure 5, respectively. 

 
Figure 4 – Generators profiles for Method 1 – Forecasting Data 

 

 
Figure 5 – Generators profiles for Method 2 – Real Data 

The input data for load consumption used in Method 1 
(Forecasting Data) and Method 2 (Real Data) are depicted in 

Figure 6 and Figure 7 respectively. 

 
Figure 6 – Load consumption for Method 1 – Forecasting Data 
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Figure 7 – Load consumption for Method 2 – Real Data 

3.2 Results 

The results of the EC management using Method 1 inputs 
show that grid import power peaked at 80 kW, coinciding with 
increased generator production at 12:00. EV discharges 
occurred during peak consumption hours (19:00 – 23:00), 
while BESS discharged from 01:00 to 03:00. During high solar 
production (13:00 – 15:00), EVs and BESS were charged, 
reaching peaks of 50.28 kW and 49.35 kW, respectively. There 
was no load reduction or energy export to the grid. Total load 
consumption was 2040.80 kWh, with grid import energy of 
1896.77 kWh, BESS discharging energy of 156.64 kWh, and 
EV discharging energy of 49.68 kWh. 

 
Figure 8 – Production for the model using Method 1. 

 

 
Figure 9 – Consumption for the model using Method 1. 

Method 2 capitalizes on a 7% increase in generator 
availability, leading to higher charging of BESS (54.69 kW) 
and EVs (46.07 kW) compared to Method 1. This results in 
reduced grid imports, particularly at 12:00 (17.42 kW). BESS 
discharges at night (peaking at 59.42 kW at 3:00), while EVs 
discharge from 6:00 to 12:00. The algorithm optimizes 
charging during peak solar production (11:00 – 17:00). By the 

end of the day, grid imports totaled 1823.40 kWh, BESS 
discharged 194.69 kWh, EVs 89.56 kWh, and generators 
produced 496.25 kWh, with no load reduction or energy 

export. 

 
Figure 10 – Production for the model using Method 2. 

 

 
Figure 11 – Consumption for the model using Method 2. 

For method 3, due to its inherent uncertainties, which 
combines real and forecasted data, it was not possible to avoid 
load reduction, having its peak reduction (64.03kW) at 3h00. 
EVs reached their peak charging power at 16:00 (49.83 kW), 
and BESSs peaked at 14:00 (68.08 kW), utilizing generator 
power. At 16:00, grid import power was minimized due to 
generator availability and a small contribution from EVs (1.23 
kW). BESSs supported the grid during high demand periods 
(1:00–3:00 and 20:00–24:00), with a peak discharge of 33.75 
kW at 22:00. EVs contributed from 18:00 to 22:00, with a peak 

discharge of 15.41 kW at 21:00. 

 
Figure 12 – Production for the model using Method 3. 
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Figure 13 – Consumption for the model using Method 3. 

4 Conclusion 

Based on the analysis, the deterministic model effectively 
optimizes energy community management by utilizing both 
forecasted and real input data. It successfully allocates energy 
for BESS and EV charging during periods of high generator 
availability while managing discharging during times of 
limited power. This is achieved without the need to export 
energy to the grid or reduce the community's load 
consumption. However, when combining forecast and real 
data, the model faces uncertainties that lead to a 5% and 6% 
increase in demand, particularly from EVs and BESSs, 
compared to scenarios using only forecast or real data. This 
highlights the challenge of handling uncertainties in future 
predictions and their impact on overall demand management. 
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